
2021-10-20 17:06 JastAdd.org

https://jastadd.cs.lth.se/web/documentation/reference-manual.php 1/12

About

Download

Documentation

Concept overview

Tutorial

Reference manual

Examples

Concurrent Attributes

ExtendJ: The JastAdd Extensible
Java Compiler

Tool support

Applications

Contact

Reference Manual for JastAdd 2.3.5
Click here to read the
JastAdd 2.1.13 manual.

Index

Syntax overview
Abstract Syntax

Predefined AST classes
Basic constructs, Naming, Tokens,
Inheritance, NTAs
Lists & Opts, Building, Using JJTree

Aspects
Aspect files (.jadd and .jrag files)
Supported AOP features, Differences from AspectJ,
Idiom for aspect variables

Attributes
Synthesized, inherited, method syntax,
lazy/caching, refine
Parameterized, broadcasting,
circular, NTAs, collections

Rewrites
Building with JastAddGradle
Command line syntax
Options

Quick syntax overview

AST Specification Syntax

Syntax for AST class declarations in .ast files:

Syntax Meaning
A; AST class
B: S; AST subclass (B is a subclass of S)
abstract A; AST class, abstract
B ::= Y; Child component Y.
B ::= MyY:Y; Child component MyY of type Y.
X ::= C*; List component C, containing C nodes.
X ::= MyC:C*; List component MyC, containing C nodes.
Y ::= [D]; Optional component D.
Y ::= [MyD:D]; Optional component MyD of type D.
Z ::= <E>; Token component E of type String.
Z ::= <F:Integer>; Token component F of type Integer.
U ::= /V/; NTA component V.
U ::= /G:V/; NTA component G of type V.

Aspect declarations

Syntax for attribute declarations in .jrag and .jadd files:

Declaration Meaning
aspect N { decl* } Aspect declaration
syn T A.c(); Synthesized attribute
syn T A.c() = exp; Synthesized attribute, default equation
syn T A.c() { stmt* } Synthesized attribute, method body
syn lazy T A.c() { stmt* } Synthesized attribute, cached
syn X A.c() circular [bot] = exp; Synthesized attribute, circular
syn nta X A.c() = exp; Nonterminal attribute (NTA)
eq B.c() = exp; Synthesized equation
eq B.c() { stmt* } Synthesized equation, method body
inh X A.i(); Inherited attribute
inh lazy X A.i(); Inherited attribute, cached
eq B.getChild().i() = exp; Inherited equation, broadcast
eq B.getChild().i() { stmt* } Inherited equation, broadcast, method body
eq B.getA().i() = exp; Inherited equation for the A child of B nodes.
eq B.getDecl(int index).i() = exp; Inherited equation for the Decl list component of B nodes.
coll LinkedList A.c() [new LinkedList()] root A; Collection attribute
coll LinkedList A.c(); Collection attribute, short form
B contributes exp when cond to A.c() for targetexp; Collection contribution
B contributes exp when cond to A.c(); Collection root contribution
refine FileName thing = exp; Refine an attribute equation (synthesized or inherited)
refine FileName thing { stmt* } Refine an attribute or intertype method
rewrite A { when condition to B { stmt* } } AST node rewrite
uncache A.x(); Never cache A.x()
cache A.y(int a); Please cache A.y(int)
public void A.m(int x) { stmt* } Intertype declared method
public String A.f = exp; Intertype declared field

Abstract syntax

Abstract grammars are specified in .ast files and are used to generate a Java
class hierarchy. The classes in an abstract
grammar are referred to as AST
classes. The AST classes are used by the parser to build Abstract Syntax Trees
(ASTs).

https://jastadd.cs.lth.se/web/index.php
https://jastadd.cs.lth.se/web/download.php
https://jastadd.cs.lth.se/web/documentation
https://jastadd.cs.lth.se/web/documentation/concept-overview.php
https://jastadd.cs.lth.se/web/documentation/tutorial.php
https://jastadd.cs.lth.se/web/documentation/reference-manual.php
https://jastadd.cs.lth.se/web/examples.php
https://jastadd.cs.lth.se/web/concurrent.php
https://jastadd.cs.lth.se/web/extendj
https://jastadd.cs.lth.se/web/tool-support
https://jastadd.cs.lth.se/web/applications.php
https://jastadd.cs.lth.se/web/contact.php
https://jastadd.cs.lth.se/web
https://jastadd.cs.lth.se/releases/jastadd2/2.1.13/reference-manual.php

2021-10-20 17:06 JastAdd.org

https://jastadd.cs.lth.se/web/documentation/reference-manual.php 2/12

Predefined AST classes

The AST classes include user declared classes in the abstract grammar, as well
as a few predefined AST classes that are
implicitly generated. The predefined
AST classes are described in the table below.

Predefined
AST class Purpose Accessing children

ASTNode

This is the base
class which all
other AST classes
extend.
Children
are numbered
from 0 to
getNumChild() -
1.

Children are accessed using the generated methods getNumChild() and getChild(int).

public ASTNode<T extends ASTNode> implements Cloneable {

 int getNumChild();

 ASTNode getChild(int index);

 ASTNode getParent();

 Iterable<T> astChildren();

 Iterator<T> astChildIterator();

}

List
Contains elements
of list components
in AST classes.

getNumChild() and getChild(int) are inherited
from ASTNode. The enhanced for
statement can
be used on the list since List implements
Iterable<ASTNode>.

public List<T extends ASTNode> extends ASTNode<T> implements Iterable<T> {

}

Opt

Used to
implement
optional
components in
AST classes. Has
0 or 1 child.

getNumChild() and getChild(int) inherited
from ASTNode can be used when accessing
Opt nodes directly.

public Opt<T extends ASTNode> extends ASTNode<T> {

}

See also "About Lists and Opts".

Abstract syntax constructs

The table below documents the syntax used to declare user declared AST classes
in .ast files.

Basic constructs

Construct Meaning Generated API

abstract A; A is an abstract AST class.
A corresponds to a
nonterminal in the context free grammar.

abstract class A extends ASTNode { }

B: A ::= ...; B is a concrete subclass of A.
B corresponds to a
production of A in the context-free grammar.

class B extends A { }

C: A ::= A B C; C has three children of types A, B, and C.
The API
supports typed traversal of the children.

class C extends A {

 A getA();

 B getB();

 C getC();

}

D: A; D has no children.
D corresponds to an empty
production of A.

class D extends A { }

E1 ::= A; E1 has a child of type A.
class E1 {

 A getA();

}

E2 ::= [B]; E2 has an optional component of type B.

class E2 {

 boolean hasB();

 B getB();

}

E3 ::= C*; E3 has a list component of zero or more C nodes.

class E3 {

 int getNumC();

 C getC(int);

 List<C> getCList();

}

E4 ::= <D>;

E4 has a token component of type D.

The set method is intended to be used only by the
parser to set the token
value. The token value should
not be changed after tree construction, and
the set
method should not be used by an attribute equation
as it has side
effects.

class E4 {

 String getD();

 void setD(String);

}

A ::= /D/;

A has a nonterminal attribute (NTA) component D.
The
D component is not created by the parser, it is instead
computed on demand, using an attribute equation.
See specifying NTAs for more info.

class A {

 D getD();

}

Naming children

2021-10-20 17:06 JastAdd.org

https://jastadd.cs.lth.se/web/documentation/reference-manual.php 3/12

Construct Meaning Generated API

F ::= Foo:A Bar:B;

It is possible to give components custom names.

Note! If there is more than one child of the same type, they
must be named.

class F {

 A getFoo();

 B getBar();

}

G ::= Thing:B*; List components can be named.

class G {

 int getNumThing();

 B getThing(int);

 List getThingList();

}

H ::= [Foo:X]; Optional components can be named.

class H {

 boolean hasFoo();

 X getFoo();

}

Typed tokens

Tokens are implictly String typed. But you can also give a token
an explicit type:

Construct Meaning Generated API

A ::= <T>; Here, T is a token of the type String.

class A {

 String getT();

 void setT(String);

}

A ::= <T:String>; This is equivalent to the example above.

A ::= <T:int>; Here, T is a token of the Java primitive type int.

class A {

 int getT();

 void setT(int);

}

A ::= <Ref:B>;
Here, Ref is an intra-AST reference to a node of type B. This is a
static
reference to another node in the AST. The reference is not
computed,
rather it is set once during tree building.

class A {

 B getRef();

 void setRef(B);

}

Inheriting children

AST class children are inherited by subtypes.

Construct Meaning Generated API

abstract A ::= B C;

D: A;

E: A;

D and E are subclasses of A and
inherit the children
of A.

abstract class A extends ASTNode {

 B getB();

 C getC();

}

class D extends A { }

class E extends A { }

A ::= B C;

D: A ::= F;

A subclass declaration can add children, but not
remove children from the superclass.
Here, D has
the children B, C,
F.

class A extends ASTNode {

 B getB();

 C getC();

}

class D extends A {

 F getF();

}

A ::= B C;

D: A ::= C F B;

Subclasses can repeat superclass children to change
the child order.
Here, the order of children in D is: C,
B, F. This affects the generated constructors
of D
and the children accessed by getChild(int).
See
below for more info about generated constructors.

Same as above.

List and Opt components

JastAdd generates accessor methods to access optional and list components. The
generated methods can be used instead of
accessing the Opt and List
container directly. The generated accessor methods are listed in the table
below. The Opt
and List nodes can be accessed by getXOpt() and
 getXList() , if needed.

Construct Generated API Example use

A ::= [B]; class A {

 boolean hasB();

 B getB();

 Opt getBOpt();

}

A a = ...;

if (a.hasB()) {

 B b = a.getB();

 ...

}

2021-10-20 17:06 JastAdd.org

https://jastadd.cs.lth.se/web/documentation/reference-manual.php 4/12

C ::= D*;

class C {

 int getNumD();

 D getD(int index);

 List<D> getDList();

}

C c = ...;

for (D d : c.getDList()) {

 ...

}

Building AST nodes

Use the following constructor API to build the AST. Typically you build the
AST in the action routines of your parser. But you
can of course also create
an AST by coding it explicitly, e.g., in a test case. If you use JavaCC and
JJTree, see below.

AST declaration Generated constructor Comment

A ::= B C [D] E* <G>; A(B, C, Opt<D>, List<E>, String) The constructor parameter order is same as the
child order.

A ::= A /B/ C; A(A, C) Nonterminal attributes are not initialized via the
constructor.

The predefined AST classes Opt and List have some default constructors to help
with building trees:

Predefined
AST class Generated constructors

List<T>

List() create an empty list.
List(T...) this constructor accepts a variable
number of AST nodes as
arguments, and adds the arguments as
children of the constructed list.
List(Collection<T>) adds all AST nodes in a
collection to the list.

The constructor parameter
order is same as the child
order.

Opt<T> Opt() creates an empty optional.
Opt(T) creates an optional containing the given AST node.

Nonterminal attributes are not
initialized via the constructor.

The List node constructor that takes no arguments can be used together with
the add method which returns the list
itself, so you can chain multiple list
additions after creating a new node, like this:

A1 a = ...;

A2 a = ...;

List<A> list = new List<A>().add(a1).add(a2);

Below is an example of building an AST based on the grammar

A ::= B*;

B ::= C;

C ::= <ID>;

An example AST for this grammar can be built like this:

A = new A(new List(new B(new C("foo")), new B(new C("bar"))));

Building ASTs using JJTree

If you use JJTree, the tree building code is generated by JJTree. You can use
the "#X" notation in the JJTree specification to
guide the node creation.

JJTree maintains a stack of created nodes. The "#X" notation means:

1. Create a new object of type X.
2. Pop the nodes that were created during this parse method and insert them as
children to the new X node.
3. Push the new X node.

You need to explicitly create List and Opt nodes. When the parsing structure
does not fit the abstract tree, e.g. when
parsing expressions, you need to use
some additional tricks. You also need to set token values explicitly.

Aspects

JastAdd aspects support intertype declarations for AST classes. An
intertype declaration is a declaration that appears in an
aspect file, but that
actually belongs to an AST class. The JastAdd system reads the aspect files and
weaves intertype
declarations into the target AST classes.

The kinds of intertype declarations that can occur in an aspect include
ordinary Java declarations like methods and fields,
and attribute grammar
declarations like attributes, equations, and rewrites.

An aspect file can contain import declarations and one or more aspects, e.g.:

import java.lang.util.*;

aspect A {

 abstract public void Stmt.m();

 public void WhileStmt.m() { ... }

 public void IfStmt.m() { ... }

 ...

}

aspect B {

 private boolean Stmt.count = 0;

}

The aspect syntax is similar to that of AspectJ, but in contrast JastAdd
aspects are not real language constructs. The JastAdd
system simply reads the
aspect files and inserts the intertype declarations into the appropriate AST
classes. For example, the
method m() and its implementations are inserted
into classes Stmt , WhileStmt , and IfStmt . And the declaration of
the
field count is inserted into the class Stmt . Import declarations are
inserted into all AST classes for which there are

2021-10-20 17:06 JastAdd.org

https://jastadd.cs.lth.se/web/documentation/reference-manual.php 5/12

intertype declarations in the
aspect. So, the import of java.lang.util.* is inserted into Stmt.java ,
 WhileStmt.java ,
and IfStmt.java . For a more detailed discussion on the
similarities and differences between JastAdd aspects and AspectJ,
see
below.

The aspect names, e.g., A and B above, do not show up in the woven Java code,
other than in generated documentation
comments for woven attributes and
intertype declarations. Aspect names are used for refine
declarations.

Aspect names are a way to indicate the purpose of the aspect. A common idiom
for naming aspects is to have one aspect per
aspect file, and give the aspect
the same name as the filename sans the extension.

JADD and JRAG files

An aspect file can have the suffix .jadd or .jrag . The JastAdd system does
not differ between these two types of files,
but we recommend the following
use:

Use .jrag files for declarative aspects, i.e., where you add
attributes, equations, and rewrites to the AST classes
Use .jadd files for imperative aspects, i.e., where you add
ordinary fields and methods to the AST classes

It is perfectly fine to not follow this convention, i.e., to mix both
imperative and declarative features in the same aspect, but
we try to follow
the convention in our examples in order to enhance the readability of a system.

Example imperative aspect (JADD)

Here is an example imperative aspect that adds pretty printing behavior to
some AST classes. Typically, this file would be
named PrettyPrint.jadd :

aspect PrettyPrint {

 void WhileStmt.pp() {

 System.out.format("while %s do %s%n", getExp().pp(), getStmt().pp());

 }

 void IfStmt.pp() { ... }

 void Exp.pp() { ... }

}

Example declarative aspect (JRAG)

Here is an example declarative aspect that adds type checking to some
AST classes. Typically, this file would be named
TypeCheck.jrag :

import TypeSystem.Type;

aspect TypeCheck {

 syn Type Exp.actualType();

 eq LogicalExp.actualType() = Type.boolean();

 eq IdUse.actualType() = decl().getType();

 ...

 inh Type Exp.expectedType();

 eq WhileStmt.getExp().expectedType() = Type.boolean();

 syn boolean Exp.typeError() = !(actualType().equals(expectedType());

}

Supported AOP features

Feature Comment

Intertype
declaration
of AST
fields,
methods,
and
constructors.

See the prettyprinting example above. The declarations are inserted into the
corresponding AST classes by
the AST weaver. Any modifiers (public, private,
static, etc.), are interpreted in the context of the AST class.
I.e., not as in
AspectJ where the public/private modifiers relate to the aspect.

Intertype
declaration
of attributes,
equations,
and
rewrites.

See the type checking example above. For more details,
see Attributes.
Note that access modifiers (public,
private, etc.) are not supported for
attributes. All declared attributes generate public accessor methods in the
AST
classes.

Declare
additional
interfaces
for AST
classes.

In an aspect you can write

WhileStmt implements LoopInterface;

This inserts an "implements LoopInterface" clause in the generated
 WhileStmt class.

Declare
classes and
interfaces in
an aspect.

In an aspect you can write

interface I { ... }

class C { ... }

This is equivalent to declaring the interface and class
in separate ordinary Java files. The possibility to declare
them inside an aspect is just for convenience.

Refine a
method
declared in
another
aspect.

For extensibility it is often useful to be able to replace or refine
methods declared in another aspect. This can
be done using a "refine"
clause. In the following example, the aspect A declares a method
m() in the class C.
In the aspect
B, the method is replaced, using a "refine" clause. This
is similar to overriding a method in a
subclass, but here the
"overridden" method is in the same class, just defined in another
aspect. Inside the
body of the refined method, the original method can
be called explicitly. This is similar to a call to super for
overriding methods.

aspect A {

 void C.m() { ... }

}

aspect B {

 refine A void C.m() { // Similar to overriding.

 ...

 refined(); // Similar to call to super.

2021-10-20 17:06 JastAdd.org

https://jastadd.cs.lth.se/web/documentation/reference-manual.php 6/12

 ...

 }

}

Note that the refine clause explicitly states which aspect is refined (A in
this case). Additional aspects may
further refine the method. For example, an
aspect C can refine the method refined in B.

In most situations, the modifiers, type parameters, and return type of the
original declaration should be re-
stated in the refinement.

The original method can be called using the keyword "refined". JastAdd
replaces all occurrences of this
keyword with the new name of the refined
method. Be careful with how you use refined - even occurrences in
string
literals or comments are replaced!

Similarities and differences from AspectJ

The aspect concept in JastAdd was developed in parallel to the AspectJ
development, and we have gradually adopted the
AspectJ syntax, for features
that are similar. The important similarity between JastAdd aspects and AspectJ
aspects is the
intertype declarations. In addition, JastAdd aspects support
attribute grammar features which AspectJ does not. Note,
however, that JastAdd
supports intertype declarations only for the AST classes, not for classes in
general as AspectJ does.
There are many other features of AspectJ that are not
supported in JastAdd, for example:

Fields and methods private to an aspect are not supported.
Declaration of additional parent classes is not supported.
Dynamic features like AspectJ's pointcuts or advice are not supported.

Idiom for private fields and methods

As mentioned, JastAdd does not support fields and methods that are private to
an aspect. As a workaround idiom, such fields
and methods can be implemented as
(non-private) static fields and methods in class ASTNode . As an example,
consider the
pretty printer. We might want to parameterize the pretty printer methods so
that it can pretty print to any PrintStream
object, not only on System.out .
Here is how you could write this in AspectJ and the corresponding JastAdd
implementation:

AspectJ code JastAdd code

aspect PrettyPrinter {

 private PrintStream ppStream = null;

 public void prettyprint(ASTNode n, PrintStream s) {

 ppStream = s;

 n.pp("");

 ppStream = null;

 }

 void ASTNode.pp(String indent) { }

 void WhileStmt.pp(String indent) {

 ...

 ppStream.println(...);

 ...

 }

 ...

}

aspect PrettyPrinter {

 static PrintStream ASTNode.ppStream = null;

 public void ASTNode.prettyprint(PrintStream s)
 ppStream = s;

 pp("");

 ppStream = null;

 }

 void ASTNode.pp(String indent) { }

 void WhileStmt.pp(String indent) {

 ...

 ppStream.println(...);

 ...

 }

 ...

}

Attributes

Attributes are specified in JastAdd aspect files.

Different kinds of attributes are documented in the following sections.

Synthesized attributes

Syntax Meaning

syn T A.x();

Declares a synthesized attribute x of type T in class A.

There must be equations defining x in A (if A is concrete) or in all
concrete subclasses of A
(if A is abstract).

Note! Synthesized attributes are conceptually equivalent to abstract
virtual functions
(without side-effects). The main difference is that their
values may be cached (see below).
They can be accessed in the same way as
virtual functions. I.e., the declaration generates
the following Java API:

T A.x();

eq A.x() = Java-expr;

The equation defines the value of the synthesized attribute x of AST nodes of
type A.

The Java-expression that defines the value must be free from externally visible
side-
effects. The context of the expression is the class A, and any part of the
class A's API may
be used in the computation, including accesses to other
attributes.

Note! Equations defining synthesized attributes are conceptually
equivalent to virtual
method implementations (without side-effects).

eq B.x() = Java-expr;

Suppose B is a subclass of A. This equation overrides the corresponding
(default) equation
for A.x().

Note! This is equivalent to overriding method implementations.

syn T A.x() = Java-expr;

The declaration of a synthesized attribute and the
(default) equation for it can be written
in one clause. So
the clause to the left is equivalent to:

syn T A.x();

eq A.x() = Java-expression;

2021-10-20 17:06 JastAdd.org

https://jastadd.cs.lth.se/web/documentation/reference-manual.php 7/12

Inherited attributes

Inherited attributes propagate information down in the AST. When an inherited
attribute is evaluated, the evaluation code
first searches upward in the AST
for a node that can compute the inherited attribute. The equation may be on the
parent of
the current node, or an ancestor, even the root of the tree.

Syntax Meaning

inh T A.y();

y is an inherited attribute in class A and of type T.
There must be equations
defining y in all classes that have
children of type A. If a class has several children
of type
A, there must be one equation for each of them.
Inherited attributes can be
accessed in the same way as
synthesized attributes. I.e., the declaration generates
the
following Java API:

T A.y();

Note! Inherited attributes differ from ordinary
virtual functions in that their
definitions
(equations/method implementations) are located in the
parent AST
node, rather than in the node itself.
Note! The concept of inherited attributes
in
this Attribute Grammar sense is completely different from
object-oriented
inheritance. Both attribute grammars and
object-orientation were invented in the
late 60's and the
use of the same term "inheritance" is probably a mere
coincidence: In AGs, inheritance takes place between nodes
in a syntax tree. In
OO, inheritance takes place between
classes in a class hierarchy.

eq C.getA().y() = Java-expr;

This equation defines the value of the inherited attribute
y() of the A child of a C
node.
Note! The Java-expression executes in the context of
C.
Note! The equation
is similar to a method
implementation.
Note! The equation actually applies to all
inherited
attributes y in the subtree rooted at A, provided that they
declare the y
attribute. See below under broadcast
attributes.

eq D.getA().y() = Java-expr;

Suppose D is a subclass of C. In this case, the equation
overrides the previous one.

Note! This is analogous to overriding a virtual
method implementation.

Method syntax

It is possible to write the computation of an attribute value as a
method body instead of as a single expression. This may be
convenient
when the computation is complex. Inside the method body it is possible
to use ordinary imperative Java code
with local variables, assignments,
loops, etc. However, the net result of the computation must not have
any side-effects.
(Currently, JastAdd does not check the absence of
such side-effects, but future versions might do so.)

Example of a method body in a synthesized attribute:

syn T A.x() {

 ...

 return Java-expr;

}

Cached attributes

An attribute can be declared lazy in order to speed up subsequent
evaluations of the attribute. An attribute that is declared
lazy will have its
value is cached after the first access to it. The next time the attribute is
accessed, the cached value is
returned directly. We recommend that attributes
that are expensive to compute and that are accessed multiple times should
be
declared lazy. For example, declaration bindings and type attributes are good
candidates for caching. JastAdd has
facilities for automatically computing good
cache configurations based on profiling, but this is not yet documented here.

Example lazy attribute declaration:

syn lazy A.x();

Another way to change the caching behaviour of attributes is to use a separate
cache declaration:

Syntax Meaning

uncache A.x();
This prevents attribute x of class A from ever being cached, though
attributes with the same name in
subtypes of A can still be cached if
declared lazy.

cache A.x(); This tells JastAdd to cache attribute x of class A.

Cache declarations take precedence over the lazy keyword, but conflicting
cache declarations for a single attribute will
cause JastAdd to report an error
as there is no way to select the proper caching strategy.

Refining attributes

Equations defined in one aspect can be refined in another aspect, in the same
way as methods can be refined, see JastAdd
aspect files. In the
example below, the equation replaces the corresponding equation declared in the
aspect named S :

refine S eq B.x() = Java-expr;

The value of the original equation in S can be accessed by the expression
 S.B.x() . Older JastAdd code accessed the
original equation by using the
expression refined() .

Parameterized attributes

Attributes can have parameters. This is a bit unusual for attribute grammars,
but a natural generalization when attributes
are viewed as virtual functions.

Syntax Meaning

syn T A.x(int a);

eq A.x(int a) {

Here, x is a parameterized synthesized attribute. The equation is
similar to a
method implementation and the argument values can be used
in the computation
of the resulting value.

2021-10-20 17:06 JastAdd.org

https://jastadd.cs.lth.se/web/documentation/reference-manual.php 8/12

 return Java-expr;

}

inh T A.y(int a);

eq C.getA().y(int a) {

 return Java-expr;

}

Here, y is a parameterized inherited attribute. The equation executes
in the
context of C and can in addition access the arguments (a in this
case).

Broadcasting inherited attributes

Often, an inherited attribute is used in a number of places in a subtree. If
basic inherited attributes are used, the value
needs to be copied explicitly
using inherited attributes in all the intermediate nodes. For convenience,
JastAdd supports
another technique called broadcasting, where an inherited
attribute is available in every node of a complete subtree. An
equation
defining an inherited attribute actually broadcasts the value to the complete
subtree of the child. By using this
technique, no explicit copy attributes are
needed.

Syntax Meaning

eq C.getA().y() = ...;

inh T A.y();

Here, the equation defines an inherited attribute y() declared in the A
child of a C
node. This equation actually applies not only to the
inherited y() attribute of the A
child, but to all inherited y()
attributes in the whole subtree of A. In order to for a
node N in the
subtree to access y(), the attribute must, however, be exposed by
declaring y() as an inherited attribute of N.

inh T B.y();
Here, the attribute y() is exposed in B by declaring it as an inherited
attribute
there. If there is a B node that is in the subtree rooted at the A
that is a child of a
C node, then the equation above will apply.

Overruling broadcast definitions

A broadcast definition of an attribute a() applies to all nodes in a subtree
rooted by N. If, however, there is a node in the
subtree which has another
equation that defines a() for a child M, that equation will take precedence for
defining a() in M
and its subtree.

Differentiating between children in a list

When defining an inherited attribute of a child node that
is an element of a list, it is sometimes useful to know
which index
the child node has. This can be done as
follows:

C ::= E*;

eq C.getE(int index).y() = expr;

Here, a C node has a list of E children. When defining the y() attribute
of a given (subtree of an) E child, the value
might depend on the index of
the child. For example, if the E nodes are actual arguments of a procedure,
we might want to
pass down the expected type of each argument.

The example equation shows how to declare the index as a parameter of the
 getE() method, and to access the index in
the equation body.

Circular attributes

Attributes can be circularly defined, meaning that the value of the attribute
can depend (indirectly) on itself. Circular
attributes are evaluated
iteratively, starting with a start value given in the declaration of the
attribute. The evaluation stops
when the value equals that for the previous
iteration.

Circular attributes are always cached. They do not need to be declared "lazy".

It is an error if a lazy attribute is circular, but not declared as such. With
the visitCheck and componentCheck options
this can be detected at runtime,
and an exception will be generated. To be sure that the evaluation of circular
attributes will
converge, the values should be arranged into lattices of finite
height, the bottom values should be used as starting values,
and each equation
on the cycle should be monotonic with respect to the lattices.

syn T A.x(int a) circular [bv];

eq A.x(int a) = rv;

Here, the attribute x is a circular attribute. The starting value is bv (a
Java expression).

The equation defines x as having the value computed by the Java expression
 rv . Note that rv may depend (directly or
indirectly) on x.

If an attribute A.x() that was not declared circular becomes part of a
circular evaluation, for example by adding an
extension aspect, then it is
essential that the original attribute is never cached. This can ensured using
the uncache
declaration described above:

uncache A.x();

Attribute systems with circular attributes are well defined if at least one
attribute on every possible circular dependency cycle
is declared circular and
the other attributes on all cycles are either also declared circular or
declared uncached as above.

The --safeLazy Option

Although it is normally an error to have cached non-circular attributes in a
circular evaluation, the safeLazy option can be
used to make non-circular
attributes aware of circular evaluations and safely cache their results during
circular evaluation.
This still requires that at least one attribute on every
circular dependency cycle is declared circular.

The safeLazy option adds an extra cache field for each cached non-circular
attribute which tracks the cycle ID on which
the attribute was last evaluated.
When the attribute is later re-evaluated it can reuse the cached value if the
cycle ID is
identical, or if it was previously cached outside of any circular
evaluation.

Nonterminal attributes

Nonterminal attributes (NTAs) are nodes in the AST. Whereas normal AST nodes
are built by the parser, the NTAs are viewed
as attributes and are defined by
equations.

2021-10-20 17:06 JastAdd.org

https://jastadd.cs.lth.se/web/documentation/reference-manual.php 9/12

NTAs can be inherited or synthesized.
The value in the equation should be a freshly built AST subtree. It should
be complete in the sense that all its children
should also be freshly
created nodes (i.e., they are not allowed to be initialized to null).
The NTA can itself have attributes that can be accessed like normal
attributes.
If the NTA has inherited attributes, there must be equations for those
attributes in some ancestor, as for normal
children.

Declaration Syntax

syn nta C A.anNTA() = new C();

Older syntax

In the older syntax, a nonterminal attribute is added as follows:

Declare the NTA in the ast file, see also NTAs in the abstract
syntax.
Declare the NTA as an attribute in a jrag file. It can be declared as a
synthesized or an inherited attribute. The name of
the attribute should be
the same as in the AST traversal API, e.g.,
getX if the NTA is called X.
Add equations defining the NTA. The defining value should be a new AST of the
appropriate type, created using the
AST building API.

Note that if the NTA is a list or an optional node, you need to create the
appropriate AST with a List or an Opt node as
its root. See examples below.

Simple synthesized NTA

In an .ast file:

A ::= B /C/;

In a .jrag file:

syn C A.getC() = new C();

The NTA C is declared in the .ast file. It is then declared as a
synthesized attribute getC() in the .jrag file. The equation is
provided directly in the declaration and creates a new C node.

List NTA

In an .ast file:

A ::= B /C*/;

In a .jrag file:

syn C A.getCList() =

 new List()

 .add(new C())

 .add(new C());

The list NTA C is declared in the .ast file. It is then declared as a
synthesized attribute getCList() (the same name as in the
implementation
level traversal API) in the .jrag file. The equation is
provided directly in the declaration and creates a List
node to which is
added a number of C nodes (two in this example).

Collection attributes

Collection attributes have composite values defined by so called
contributions. Contributions are similar to sythesized
attributes which
add their value to the collection attribute value. Contributions may be
located in any node in the subtree of
the collection root node.

Collection attributes are evaluated in two phases: first a survey phase which
searches for nodes that can contribute to the
collection value and then
a collection phase in which all contributions are computed.

In the survey phase, the attribute evaluator first finds the collection root
node and then searches the subtree of the root
node to find all contributing
nodes. If no root node is declared, the grammar root node is used (if one
exists).

Examples

Collection attributes are commonly used to collect error messages. For example:

coll ArrayList<String> Program.errors();

Div contributes

 "Division by zero is not allowed!"

 when getRight().isZero()

 to Program.errors();

Declaration syntax

The syntax for declaring a collection attribute looks like this:

coll T A.c() [fresh] with m root R;

where

T is the type of the attribute. Usually T is a subtype of
java.lang.Collection.
A is AST class on which the attribute is evaluated.
The .c() part declares the attribute name, in this case c.
(optional) [fresh] tells JastAdd how the intermediate collection result
is initialized. The Java expression fresh creates
an empty instance of
the result type. This part is optional if T is a concrete type with a
default constructor, if it is
omitted the default constructor of the type
T is used, i.e. new T().
(optional) with m specifies the name of a method to be used for updating
the intermediate collection object. This part
is optional and the default
method add is used if no update method is specified. The update method
must fulfill these
requirements:

The method m, should be a one-argument method of T.

2021-10-20 17:06 JastAdd.org

https://jastadd.cs.lth.se/web/documentation/reference-manual.php 10/12

The method m should mutate the T object by adding one object to it.
The method m should be commutative, in the sense that the order of
calling m for different contributions should
yield the same resulting
T value.

(optional) The root R part declares the collection root type. The
collection mechanism starts by finding the nearest
ancestor node of type R
for the A node which the collection attribute is evaluated on. The subtree
rooted at that
nearest R ancestor is searched for contributions to
A.c(), this means that the collection is scoped to the subtree of R,
and
contributions outside that tree are not visible.

Contribution declaration

When JastAdd evaluates a collection attribute it first performs a "survey" of the AST,
searching for contributions to the given
collection attribute. Contributions are added
by using contribution statements like below:

N1 contributes value-exp

 when cond-exp

 to N2.a()

 for N2-ref-exp;

Let's look at each part of the above template statement:

N1 is the type of AST nodes that provide this particular contribution to
the target collection attribute.
value-exp is a Java expression that evaluates to an object to be added to
the intermediate collection of the target
collection attribute.
(optional) when cond-exp is an optional contribution condition: the contribution is
only added to the target collection
attribute if the Java expression
cond-exp evaluates to true.
N2 is the node type where the target collection attribute is declared.
.a() is the name of the target collection attribute.
(optional) for N2-ref-exp gives a Java expression, N2-ref-exp, which evaluates to
a reference to the AST node that
owns the collection attribute this
contribution is contributing to. This is the target expression, and it can be
omitted if
the target node is identical to the collection root node.

One can optionally contribute one contribution to multiple target nodes by using this syntax:

N1 contributes value-exp

 when cond-exp

 to N2.a()

 for each N2-ref-set;

where N2-ref-set is a Java expression that evaluates to an Iterable<N2> containing
references for the set of
contribution target nodes.

It is possible to contribute multiple values in a single contribution by using this syntax:

N1 contributes each value-exp

 when cond-exp

 to N2.a()

 for each N2-ref-set;

Note the each before value-exp . This syntax works if value-exp has the
type Iterable<E> where E is the element
type of the collection attribute.
For example, if the collection attribute is declared as coll
LinkedList<String> ... then
value-exp should have the type
 Iterable<String> .

NTA Contributions

It is possible to add contributions from an NTA child to a collection attribute
using the following variation of the
contributes statement:

N1 contributes nta getMyNta() to N2.a();

The above statement means that the NTA child named MyNta in node type N1 is
also searched for contributions during
the survey phase of the evaluation of
the collection attribute N2.a() .

Custom Collection Survey

It is possible to customize the tree traversal used to search for contributions
for a collection attribute. This can be done using
an alternative form of the
 contributes statement, where the expression part is replaced by a code block:

N1 contributes {

 getA().collectContributions();

 super.collectContributions();

} to N2.a();

The meaning of the above code is that the N1 node type should search its A
child while searching contributions for the
N2.a() collection attribute. The
call to super.collectContributions() is needed to ensure that all regular
children of
N1 are also searched for contributions.

Multiple custom collection survey blocks like this can be used, but only one of
them needs to call
super.collectContributions() . It is possible to use
attributes inside the code blocks to decide when a particular subtree

should be
searched for contributions.

Rewrites

JastAdd has a mechanism for replacing AST nodes by a rewritten version of the
node whenever the node is first accessed.
Rewrites are declared using rewrite
rules, described below.

Unconditional rewrite rule

rewrite A {

 to B {

 ...

 return exp;

 }

}

2021-10-20 17:06 JastAdd.org

https://jastadd.cs.lth.se/web/documentation/reference-manual.php 11/12

An A node will be replaced by the node specified in the Java expression
exp. This will happen as soon as the A node is
accessed (by a get()
method from its parent), so if you traverse the tree you will only be able to
access the final rewritten
nodes.

A and B must be AST classes.

The exp must be of type B.

Let the set S be the superclasses of A (including A) that occur on right-hand
sides of productions in the abstract syntax. B
must be a subclass of all
classes in S. This guarantees that replacing an A node by a B node does not
break the rules in the
abstract syntax.

The code in the body of the rewrite may access and rearrange the nodes in the
subtree rooted at A, but not any other nodes
in the AST. Furthermore, the code
may not have any other side effects.

Conditional rewrite rule

rewrite A {

 when (condition)

 to B {

 ...

 return exp;

 }

}

The conditional rewrite works in the same way as the unconditional one, but
performs the replacement only if the boolean
expression condition is
true. The condition may access anything in the AST, e.g., attributes, other
tree nodes and their
attributes, etc.

Iterative rewriting

After a node has been replaced according to a rewrite rule, all conditional
rewrite rules are checked again, and a new rewrite
may be performed. This is
iterated until no rule conditions hold.

Order of rewriting

At each iteration of rewriting, the rule conditions are evaluated in a certain
order. The first condition that is true is used for
rewriting in that
iteration. The order in which rule condition evaluation occurs is the
following:

conditions in superclasses are evaluated before conditions in subclasses
conditions within an aspect file are evaluated in lexical order
conditions in different aspect files are evaluated in the order the files are
listed in the jastadd command.

Confluency

If the order of rewriting of a node does not effect the final result, the rules
are said to be confluent. This is highly desirable,
since it makes the
specification more readable to not have to take lexical order of rules into
account. However, JastAdd
cannot check that the rules are confluent. In cases
where several conditions for a node are true at the same time, we
recommend
that you contemplate the rules and try to find out if they could be
non-confluent. In that case, we recommend
you to refine the conditions so that
only one can apply at a time. This makes your specification independent of
lexical order.
Note that it is often useful to have several different rules
that apply at the same time for a given node, but which are
confluent.

Shorthand notation

If you have several conditional rewrite rules, you may write them inside
the same rewrite block. So, e.g., writing

rewrite A {

 when (condition-1)

 to B {

 ...

 return exp-1

 }

 when (condition-2)

 to C {

 ...

 return exp-2

 }

}

... is equivalent to:

rewrite A {

 when condition-1

 to B {

 ...

 return exp-1

 }

}

rewrite A {

 when condition-2

 to C {

 ...

 return exp-2

 }

}

Sometimes you don't need a block for computing the resulting node. It may be
sufficient with an expression. In that case,
you may simply write the
expression instead of the block, e.g., as follows:

rewrite A {

 when (condition-1)

 to B exp-1

 when (condition-2)

 to C exp-2

}

... which is equivalent to:

rewrite A {

 when (condition-1)

 to B { return exp-1 }

 when (condition-2)

 to C { return exp-2 }

}

Building with JastAddGradle

One of the simplest ways to build a JastAdd project is by using the
Gradle build system and the JastAddGradle
plugin.

To use JastAddGradle, add the following to the plugin block in build.gradle :

plugins {

 id "org.jastadd" version "1.13.3"

}

To use JastAddGradle you can, for example, define a new task of type JastAddTask :

https://gradle.org/
https://plugins.gradle.org/plugin/org.jastadd

2021-10-20 17:06 JastAdd.org

https://jastadd.cs.lth.se/web/documentation/reference-manual.php 12/12

task generateAst(type: org.jastadd.JastAddTask) {

 outputDir = file("src/gen")

 sources = fileTree("lang")

 options = ["--package=lang"] // Options (see below).

 doFirst { file('src/gen').mkdirs() }

}

Remember to also include the generated sources in the Java source set:

sourceSets { main { java { srcDir "src/gen" } } }

More documentation and several examples of how to use JastAddGradle are available in
the JastAddGradle GitHub
repository.

Running JastAdd from the command line

JastAdd may be run from the command line using the following syntax:

java -jar jastadd2.jar [options] <source files>

Source file arguments are filepaths ending in .ast , .jrag and .jadd . At least
one .ast file must be provided,
otherwise JastAdd will not generate any code.
Some of the available options are listed below.

Options

JastAdd has a large number of options that control code generation for attributes
and also enable/disable certain kinds of
attributes.

Here is a summary of available options:

Option Purpose
--help Print help text.
--version Print version information.
--package=NAME Optional package for generated files, default is none.
--o=PATH Optional base output directory, default is current directory.
--ASTNode=NAME Change name of ASTNode class to NAME.
--List=NAME Change name of List class to NAME.
--Opt=NAME Change name of Opt class to NAME.
--stateClassName=NAME Change name of ASTState class to NAME.
--generateImplicits=yes/no Enables code generation for all implicit types (ASTNode, Opt, List). Default is yes.
--
generateAnnotations=yes/no

Enables code generation for meta annotations for attributes and classes.

--ASTNodeSuper=NAME Sets supertype for ASTNode class.

--beaver
For compatibility with Beaver parsers. Use beaver.Symbol as ASTNode supertype and add
setters for tokens accepting beaver symbols.

--jjtree JJTree compatibility mode.
--grammar=NAME In JJTree mode, generates accept methods for NAMEVisitor.
--rewrite=regular Enable ReRAGs support.
--visitCheck=false Disable circularity check for attributes.
--cacheCycle=false Disable cache cyle optimization for circular attributes.
--safeLazy Makes non-circular memoized attributes safe to use in circular attributes. (recommended)
--defaultMap=EXPR Replaces the default map consturction expression for memoization with EXPR.
--defaultSet=EXPR Replaces the default set construction expression for memoization with EXPR.
--
rewrite=none/cnta/regular

Rewrite implementation: cnta is highly recommended for new projects.

--lineColumnNumbers=yes/no Generate code for handling line/column numbers with Beaver parsers.
--cacheCycle=yes/no Performance tuning option for circular attributes. (untested)
--componentCheck=yes/no Check that circular attributes do not depend on memoized non-circular attributes. (obsolete)
--indent=ARG Choose indentation in generated code, can be one of: tab, 2space, 4space, 8space.
--license=TEXT TEXT is inserted at the top of each generated Java file.
--concurrent Enables concurrent attribute evaluation. See Concurrent Attributes.
--numThreads=NUM Number of concurrent workers for parallelized collection attributes.
--concurrentMap=NAME Name of concurrent map class used in concurrent code generation.
--tracing=ARGS See Attribute Tracing.
--cache=all|none Choose if all attributes are memoized.
--incremental=ARGS Experimental incremental attribute evaluation option.
--flush=ARGS Generate methods for flushing attribute caches.
--dot Generate a DOT graph of the abstract grammar.
--emptyContainerSingletons Use singleton objects for empty List or Opt nodes.
--optimize-imports Remove unused imports in generated code.
--statistics=PATH Output attribute statistics in CSV format to a file.
--minListSize=NUM Performance tuning: minimum non-empty child list size.
--staticState=yes/no Performance tuning: use a static field to store reference to AST state object.
--inhEqCheck=yes/no (deprecated) Check that equations exist for inherited attributes.
--traceVisitCheck=yes/no (deprecated) Print a message instead of throwing an exception on circularity error.
--private=yes/no (deprecated) Use private modifier for generated methods.
--lazyMaps=yes/no (deprecated) Choose if memoization maps are lazily initialized when evaluating attributes.
--refineLegacy (deprecated) Enables old syntax for calling refined method.

https://github.com/jastadd/jastaddgradle
http://beaver.sourceforge.net/
http://jastadd.org/web/concurrent.php
http://jastadd.org/web/tool-support/tracing.php

