
Lund University
Computer Science
Jesper Öqvist, Görel Hedin, Niklas Fors, Christoff Bürger

Compilers
EDAN65

2021-09-04

Programming Assignment 2
LALR Parsing and Building ASTs

The goal of this assignment is to understand how to use LALR parsing for more complex grammars with
expressions, and how to construct Abstract Syntax Trees (ASTs) during parsing. You will:

• Write a more complex context-free grammar and implement it using an LALR parser.

• Resolve ambiguities and experiment with LALR conflicts.

• Build an AST in the semantic actions of the parser.

In addition to JFlex, Beaver, and other tools you used in the previous assignment, you will use the
JastAdd tool to define AST classes. For documentation of JastAdd, see https://jastadd.cs.lth.se.

You will define a language called SimpliC (Simplistic C), and generate a compiler that parses SimpliC
into ASTs. To your help, there is a demonstration example CalcAST showing how to build ASTs for the
Calc language.

Try to solve all parts of this assignment before going to the lab session. If you get stuck, use the forum
to ask for help. If this does not help, you will have to ask at the lab session. Make notes about answers
to questions in the tasks, and about things you would like to discuss at the lab session.

I Major tasks are marked with a black triangle, like this.

1 The CalcAST Demo

The CalcAST demonstration example implements an extended version of the Calc language from Assign-
ment 1, introducing some new features that will illustrate the use of lists and optionals. The language
now allows a list of variable bindings in the let expression, and a new ask user expression with an
optional default value has been added.

Here is an example of a Calc program:

let

radius = ask user [1.0]

pi = 3.14

in

2.0 * pi * radius

end

The idea is that when this program is run, the ask user expression will ask the user to input a value,
using the default value of 1.0. An ask user expression without the optional default value would be
written simply as ask user, without the square bracket clause.1

This example program is named example2.in and can be found in the testfiles/ast directory.

I Download the CalcAST example. Run the tests and see that they pass.

1Note, however, that we will not actually run Calc or SimpliC programs until Assignment 5 and 6.

1

https://jastadd.cs.lth.se

1.1 The abstract grammar

The Context Free Grammar (CFG) for the new Calc language is

program → exp <EOF>

exp → factor | (exp ’*’ factor)
factor → let | numeral | id | ask
let → ’let’ binding+ ’in’ exp ’end’
binding → id ’=’ exp
numeral → <NUMERAL>

id → <ID>

ask → ’ask’ ’user’ [’[’ exp ’]’]

To represent an AST in Java we will use a class hierarchy generated by JastAdd, and defined in an
abstract grammar, in this case calc.ast. The abstract grammar is similar to the CFG:

Program ::= Expr;

abstract Expr;

Mul: Expr ::= Left:Expr Right:Expr;

Numeral: Expr ::= <NUMERAL:String>;

IdUse: Expr ::= <ID:String>;

Let: Expr ::= Binding* Expr;

Binding ::= IdDecl Expr;

IdDecl ::= <ID:String>;

Ask: Expr ::= [Default:Expr];

Here, an abstract grammar rule

A: B ::= children ;

corresponds to a Java class A which extends the superclass B and has a number of children (composition
relationships in UML). The children can be of the following kinds:

C A child of type C

C* A list of children of type C

[C] An optional child of type C

<T:S> A token named T of type S

Children may be explicitly named, for example:

N:C A child named N of type C

and if no explicit name is given, the type name is used for the child.

The nonterminal exp in the CFG has been modelled as an abstract class Expr in the abstract grammar.
The alternatives on the right-hand side in the CFG have been modelled using subclassing in the abstract
grammar. This is a common pattern when using object-orientation for representing ASTs: replace
alternatives with subclassing.

Note that we are not interested in having factor as a class in the abstract grammar: this nonterminal
is only used for disambiguating the CFG so that we can parse text into a tree in an unambiguous way.
Instead, all expressions (Mul, Numeral, IdUse) are direct subclasses of Expr.

Another difference is that the nonterminal id in the CFG has been replaced with two classes IdUse and
IdDecl in the abstract grammar. This separation is useful when implementing name analysis, where name
uses are bound to name declarations. We will implement name analysis later on, in another assignment.

2

The JastAdd abstract grammar notation supports repetition of zero or more components (*), but not
repetitions of one or more (+). It is highly recommended to use X* instead of trying to model (+) as
X X* in the abstract grammar. This is because the abstract grammar should be kept simple to make it
easy to program semantic analysis later on. The requirement on there being at least one element can
easily be checked either by the parsing rules, or by adding an attribute (see Assignment 4).

1.2 Generated AST classes

The generated classes will contain accessor methods for the children and tokens, as the following simplified
API illustrates for the classes Mul and IdUse.

public class Mul extends Expr {

Expr getLeft();

Expr getRight();

void setLeft(Expr e);

void setRight(Expr e);

}

public class IdUse extends Expr {

String getID();

void setID(String id);

}

The Java classes generated by JastAdd will have the following class hierarchy:

ASTNode

List Opt Program Binding IdDecl Expr

Mul Numeral IdUse Ask

ASTNode, Opt and List are predefined implicit AST classes. They are generated by JastAdd without
any mention in the .ast file. Opt and List are used to represent optional and list components in the
abstract syntax tree. ASTNode serves as the common superclass of all AST nodes.2

I Look at the abstract grammar specification (src/jastadd/calc.ast) and make sure you understand
it. Look at the corresponding generated classes in src/gen/lang/ast. The classes contain lots of
generated methods, but you should be able to find, for example, Mul’s getLeft() and getRight()

methods mentioned above. Familiarize yourself briefly with the JastAdd reference manual3 so that you
know where to look for details later.

1.3 Well-formed ASTs

When building a JastAdd AST, care must be taken to build it so that it is well-formed. Suppose we have
an abstract grammar class P ::= A [B] C*. A P node is well-formed if

• an ordinary child, like A, is represented by a node of type A.

• an optional child, like [B], is represented by a node of type Opt which has zero or one children of
type B.

• a list child, like C*, is represented by a node of type List which has zero or more children of type
C.

2ASTNode, Opt and List are generated into the package lang.ast. Note that this generated List class is different from
the standard class java.util.List.

3https://jastadd.cs.lth.se/web/documentation/reference-manual.php

3

https://jastadd.cs.lth.se/web/documentation/reference-manual.php

• Each node must be a real object, i.e., not null.

• The node objects must form a tree, i.e., it is not allowed to reuse an node in several places in the
same AST, or in different ASTs.

The example below shows a well-formed AST for P ::= A [B] C*

P

A Opt

B

List

C C

These conditions are not checked when generating the parser, and several of them are not even checked
when the parser code is compiled. So take care in building the AST correctly, as you might otherwise
run into runtime errors and problems that are difficult to debug.

I What would be examples of other well-formed ASTs for the P ::= A [B] C* class? What would be
examples of ill-formed ASTs?

1.4 Building the AST

The abstract syntax tree is built by the parser, as specified in the .beaver file, using so called semantic
actions of the production rules. We have to instruct Beaver what kind of JastAdd AST node is built by
the productions for each Beaver nonterminal. This will become the return type of the semantic action in
the generated parser. We specify this using Beaver’s %typeof directive, as the following code fragment
illustrates.

%typeof program = "Program";

%typeof exp = "Expr";

%typeof factor = "Expr";

%typeof let = "Let";

...

Note that to the left in each clause, we have a nonterminal in the Beaver CFG, like program. To the
right, we have a class from the JastAdd abstract grammar, like Program.

1.4.1 Semantic Actions

To build AST nodes, the productions in the parser specification need to be extended with semantic
actions. Semantic actions are code snippets that are run during parsing. Consider the production for the
program nonterminal:

program = exp.a {: return new Program(a); :} ;

Note the code inside the {: and :}. This is the semantic action code – ordinary Java code for constructing
the AST node representing the parsed production. In this case, the semantic action simply creates a new
node of type Program with an expression as its child. Note that program is a nonterminal in the parser
specification, whereas Program is an AST node type, specified in the abstract grammar. The expression
inside the semantic action must have the same type as specified in the %typeof directive.

In Beaver, a right-hand side component can be named using dot notation: in the example above, the
nonterminal exp has been named a, by writing exp.a. The name a refers to the AST subtree constructed
by the exp nonterminal, and can be used inside the semantic action to refer to that subtree. In this case,
a is used in the semantic action as an argument to the Program constructor.

4

1.4.2 Optional Components

For most productions, building the AST is straightforward as explained in the previous section. But if
there are optional or list components in a production, an extra Opt or List node must be built.

Although Beaver does have some support for optionals and lists, it is easier to build the AST if we first
rewrite the grammar to eliminate optionals and lists, using explicit alternatives. Recall the new Ask

construct which has an optional default expression. The context-free rule is

ask → ’ask’ ’user’ [’[’ exp ’]’]

and the abstract grammar rule is

Ask: Expr ::= [Default:Expr];

To implement this in Beaver, we first rewrite the context-free rule to eliminate the optional notation. We
can do this by introducing a new nonterminal opt_exp with two alternatives: one non-empty and one
empty:

ask → ’ask’ ’user’ opt exp
opt exp → ’[’ exp ’]’ | ε

The Beaver specification can now be written as follows:

ask =

ASK USER opt_exp.d {: return new Ask(d); :};

opt_exp =

LBRACKET exp.a RBRACKET {: return new Opt(a); :}

| /* epsilon */ {: return new Opt(); :}

;

We also need to specify the type of the new opt exp nonterminal, in the beginning of the Beaver file:

%typeof opt_exp = "Opt";

Note that the semantic action always builds an Opt node to match the optional expression, and that
different Opt constructors are used depending on if the optional expression is present or missing.

1.4.3 List Components

In order to handle list components (repetition), we use a similar technique as for optionals, rewriting the
parsing grammar to replace repetition with a new nonterminal with explicit alternatives.

Recall the abstract grammar rules for bindings in let-expressions:

Let: Expr ::= Binding* Expr;

Binding ::= IdDecl Expr;

To implement this in Beaver, we first rewrite the context-free grammar rule for Let:

let → binding+

replacing the repetition with a new nonterminal binding list:

5

binding list → binding | binding list binding

The Beaver specification for binding list can be written as follows:

%typeof binding_list = "List";

...

binding_list =

binding.a {: return new List().add(a); :}

| binding_list.list binding.a {: return list.add(a); :}

;

I Look at the parser specification (src/parser/parser.beaver) and make sure you understand how the
AST is built. Where are the semantic actions? How are optionals and lists handled?

1.5 The DumpTree Aspect

The CalcAST example contains code for printing an AST, using indentation to show the tree structure.
This is useful when writing test cases and for debugging, to check that the AST is well-formed and correct.

The code is located in an “aspect file” DumpTree.jrag in the src/jastadd directory in the CalcAST
project. A JastAdd aspect may contain methods of AST classes, but specified in a separate file. The
JastAdd system weaves those methods into the generated AST classes. The file DumpTree.jrag contains
a single aspect declaration:

aspect DumpTree {

public String ASTNode.dumpTree() {

ByteArrayOutputStream bytes = new ByteArrayOutputStream();

dumpTree(new PrintStream(bytes));

return bytes.toString();

}

public void ASTNode.dumpTree(PrintStream out) {

[...]

}

[...]

}

The methods in the aspect have an extra qualifier before the method name, e.g., ASTNode.dumpTree. The
JastAdd code generator will weave the method into the generated ASTNode class. This way of writing
a declaration in an aspect instead of in the class in which it belongs is called an inter-type declaration.
Later in the course, we will look at other kinds of inter-type declarations you can write in an aspect.

The compiler.jar main class is Compiler.java and it will parse in a calc program and then print it
using the dumpTree method.

I Try out compiler.jar on one of the test programs. For example:

./gradlew jar

java -jar compiler.jar testfiles/ast/example2.in

6

1.6 Testing framework

The CalcAST example uses a testing framework that is more advanced than the one used in Assignment 1.
The new test framework uses a JUnit feature called parameterized tests. With parameterized tests you
don’t need to write a test method for each test case: it is sufficient to add an input and expected output
file to the testfiles/ast directory.

In CalcAST, this testing technique is used for the AST tests to check that correct ASTs are built
when parsing different test programs. The framework starts one test per .in-file in the testfiles/ast

directory. Each test file is parsed and the tree is printed to a corresponding .out file. If there exists a
matching .expected file then the contents of the output is checked against the expected output.

When adding new tests it is usually too tedious to hand-write each .expected file. Instead, you can add
just the input file, run the tests to get the .out file, and then rename the .out file to use the .expected

extension. Of course, it is important to inspect the .out file before renaming it, to make sure it really is
correct!

I Look at the testcases in the testfiles/ast directory. The .expected files contain the expected output
after parsing the corresponding .in-file and printing the AST using the dumpTree method. Make sure
you understand what AST an .expected file corresponds to.

I Add a new AST test case in the CalcAST project.

1.7 Build Script

The CalcAST Gradle script (build.gradle) contains some more elements and tasks compared to the
script we used in Assignment 1. To be able to run JastAdd, it uses the org.jastadd plugin and a new
generateJava task:

compileJava.dependsOn ’generateJava’, ’generateScanner’, ’generateParser’

task generateJava(type: org.jastadd.JastAddTask) {

description ’Generates the compiler AST classes from JastAdd specifications.’

...

}

2 Troubleshooting

Many things can go wrong when you generate a parser. Your grammar might be non-LALR in which case
the parser generator will report conflicts. Some errors in the .beaver specification are not discovered
until you compile the generated Java code, or until you run the generated parser. It is very likely that
you will run into problems like these, and it will be much easier to deal with them if you have encountered
them before in a controlled setting. So in this section, we will experiment with the CalcAST example to
provoke some common errors so that you understand them better.4

2.1 Provoke an LALR conflict in the parsing specification

I Add a conflict to the CalcAST parser specification (parser.beaver) by changing factor.b to exp.b in
the rule

exp =

factor

| exp.a MUL factor.b {: return new Mul(a, b); :}

;

4The examples in this section are tested on NeoBeaver 0.1.5. If you are using another version, error handling might
differ.

7

After this change the grammar is no longer LALR(1), and there will be a conflict in the parsing table.
In this case, it is a shift-reduce conflict.

I Rerun the build (./gradlew test) to see how Beaver handles this problem. Remember to “refresh” your
Eclipse project (if using Eclipse).5

Note that the build goes through and the tests are run, even if there is a conflict. Scroll back to look
at the Beaver output. Note that Beaver gives a warning, rather than an error. This is because it by
default resolves shift-reduce conflicts by selecting shift. It goes on and generates a parser that will shift
in the conflicting situation. In this case, shift is not the right way to resolve the conflict, and because we
happen to have a good test suite, several tests fail.

Important advice. When you get a conflict, try to figure out what the problem is, and change the
grammar to resolve it. Even if Beaver happens to resolve the conflict in the right way, make sure to
change the grammar so that you don’t get any warnings and default resolutions by Beaver. Otherwise,
it will be very difficult for you to sort out new conflicts later on.

To find out what the problem is, study the error message given by Beaver, study any test cases that
fail, and think about your last change to the grammar. If you can construct an example program that
illustrates the conflict, this will help you understand the problem.

In this particular case, the error message is:

WARNING: resolved SHIFT/REDUCE conflict on [MUL] by selecting SHIFT:

REDUCE exp = exp MUL exp

SHIFT MUL

Context:

exp = exp . MUL exp [END]

exp = exp MUL exp . [MUL]

exp = exp . MUL exp [EOF]

exp = exp . MUL exp [MUL]

exp = exp . MUL exp [RBRACKET]

exp = exp . MUL exp [IN]

exp = exp . MUL exp [ID]

This means that if a MUL token appears after parsing the right hand side of

exp = exp.a MUL exp.b

both shift and reduce would fit the grammar, and Beaver will choose to shift.

We can try to understand what happens by constructing an example corresponding to that situation:

x * y * ...

The conflict occurs after y, when reading the second MUL. We can either reduce x * y, or shift the MUL.
If we reduce x * y, a left-recursive tree will be built. If we shift the MUL, we will later have to reduce
y * ..., and a right-recursive tree will be built.

I Undo the change and make sure all tests pass again.

5When you run unix commands, Eclipse does not automatically know that files have been added, changed, or removed.
When you do a “refresh” in Eclipse, it will scan the files in the project directory to look for changes.

8

2.2 Unintended empty productions

A common mistake is to use an extra | in a rule, which results in an extra empty production. This
can easily happen when copying and pasting lines with production rules. As an example, consider the
following rule:

binding_list =

binding.a {: return new List().add(a); :}

| binding_list.a binding.b {: return a.add(b); :}

;

When writing this rule, we might by mistake let the first production start with | as follows:

binding_list =

| binding.a {: return new List().add(a); :}

| binding_list.a binding.b {: return a.add(b); :}

;

But this means that before the first |, there is actually an empty production. If we do want an empty
production, it is good practice to add a comment to make it more prominent, like this:

binding_list =

/* epsilon */

| binding.a {: return new List().add(a); :}

| binding_list.a binding.b {: return a.add(b); :}

;

But in this case, we don’t want the empty production, and running the grammar above through Beaver
gives a shift-reduce conflict with the following message:

WARNING: resolved SHIFT/REDUCE conflict on [ID] by selecting SHIFT:

REDUCE binding_list =

SHIFT ID

We see that it has found a shift-reduce conflict that would occur after parsing the right-hand side of an
empty production for binding_list.

I Experiment with this problem by adding an extra | to the binding_list production in the .beaver file
to get an empty production. Rebuild, and confirm that there is now a shift-reduce conflict. Do all the
tests still pass? If so, why?

I Undo the change and make sure all tests pass again.

2.3 Errors in the generated Java code

The code you write in Beaver’s semantic actions is Java code. But Beaver does not analyze it, so you will
not see compile-time errors in it until you compile the generated code. It can be a bit tricky to understand
how compile-time or runtime errors correspond to the code you originally wrote in the semantic actions.

Try a couple of common mistakes:

I Remove one of the %typeof directives in the .beaver file. Note that the parser is generated without any
errors, but when you compile the generated code, the Java compiler will complain about both incompatible
types and missing symbols (declarations).

I In one of the semantic actions, remove the return keyword. Note that the parser is generated without any
errors. Depending on what version of Beaver/NeoBeaver you are running, you might get a compile-time
error when you run the Java compiler, or a run-time error when you run the parser.

9

2.4 Cast exception when running the generated parser

If you leave out a semantic action in the parser specification, a default semantic action will be generated.
The default action will return the result of parsing the last symbol in the production (or the last variable,
in case the rule contains variables). This is sometimes what you want, but not always. Consider the
following example:

factor =

let

| ask

| numeral

| id_use

;

let = LET binding_list IN exp END;

For factor, the default behavior is what we want. However, for the let rule, the last symbol is the END

token. This is, of course, completely wrong—what we would like to return is a new Let subtree. Because
of the way Beaver is implemented, the error will not show at compile-time, but instead at runtime, when
running the parser. The generated parser will at some point cast an object to what it thinks is an
expression, but since it is actually an END token, a class cast exception is thrown.

I Replace the let rule in the Beaver specification by the one shown above (without semantic action or vari-
ables). Confirm that you get a class cast exception when you run the compiler on testfiles/ast/let.in.

2.5 Add print statements

As always, inserting print statements is a primitive but useful way to help with debugging. The semantic
actions are just Java code inserted into the generated parser at different places. If you add more code
than building ASTs, it will of course be run too.

I As an experiment, add some print statement, for example System.out.println("Hello"), in one of the
semantic actions. Generate the parser and run the tests.

10

3 The SimpliC Language

Your main task in this assignment is to implement a parser for a small C-like language named SimpliC.
You should do this by specifying a JastAdd abstract grammar, a Beaver parser, and a JFlex scanner.
The parser should produce a well-formed abstract syntax tree which follows the abstract grammar.
Furthermore, there should be automated tests showing that the parser produces the correct AST for a
number of examples. There should also be some negative tests, showing that the parser detects parsing
errors in erroneous input files.

3.1 Informal specification

A SimpliC program consists of a list of function declarations which all return an integer result (although
the return statement can be omitted). There are also two built-in functions: read which reads an integer
from standard in, and print which prints its argument to standard out. These are not declared in the
program, but can be called from the program.

There are no global variables, only local variables and function parameters. All variables and param-
eters are integer typed. Statements supported include assignments, return statements, function call
statements, if, and while statements. Expressions supported include identifier uses, function calls, and
common binary arithmetic expressions like +, -, *, /, % and the comparison expressions ==, !=, <=, <, >=,
and >. Binary expressions should be represented as trees, where each node corresponds to an operator
having its operands as left and right subtrees. The usual priority and associativity rules should apply.
For example, “<” should have lower priority than + and be non-associative. The remainder operator,
%, has the same priority and associativity as multiplication and division. Parentheses can be used in
expressions. SimpliC also supports end-of-line comments.

The SimpliC language is simple enough that it would be possible to prevent some type errors already in
the parser. However, you should not try to prevent type errors in the parser. They should instead be
caught in the semantic analysis phase, which we will do in later assignments. This makes the compiler
design simpler and more extensible. For example, programs like the following should be parsable, even if
it is not type correct.

...

a = (b > c) - 10;

a = (b > c) * x;

a = x / (b == c);

if (b) {

a = 3;

}

The semantic analyzer will check the types of all subexpressions anyway, so nothing is gained by trying
to prevent some of these cases in the parser. It only makes the design unnecessarily complex.

Some additional points to keep in mind:

• Function declarations may not be nested.

• It should be possible to make function calls both as expressions and as statements. Hint! Introduce
a FunctionCall which is an expression, and a FunctionCallStmt which is a statement that has a
FunctionCall as a child.

• Don’t introduce special syntax for calls to read and print. Use the normal function call syntax.

• Functions and blocks are allowed to be empty.

• Make sure lists work correctly. For example, it should not be allowed to write an extra comma,
like
p(x, y,)

11

3.2 SimpliC Code Samples

The example program below shows large parts of the SimpliC syntax. The gcd1 and gcd2 functions im-
plement two different algorithms for finding the greatest common divisor (GCD) of two positive integers.
The main function tests both algorithms with inputs provided by the user:

int gcd1(int a, int b) {

while (a != b) {

if (a > b) {

a = a - b;

} else {

b = b - a;

}

}

return a;

}

int gcd2(int a, int b) {

if (b == 0) {

return a;

}

return gcd2(b, a % b);

}

// Test two different GCD algorithms and print the results.

// The results should be equal when both inputs are positive.

int main() {

int a;

int b;

a = read();

b = read();

print(gcd1(a, b));

print(gcd2(a, b));

int diff = gcd1(a, b) - gcd2(a, b);

print(diff);

return 0;

}

3.3 Implementing the parser

In implementing the parser, you should work in small steps: first implement a parser for a small subset
of the language, then add a few constructs, and so on. Many things can go wrong, so this way you can
easier relate any new problems to your latest changes.

I For each of the implementation steps below, this is how you should work: Write down a test program
that you want to be able to parse. Then design the abstract grammar (using the JastAdd .ast format),
and a corresponding concrete grammar in EBNF (the latter can be on paper). Try to make the EBNF
as similar as possible to the .ast grammar. However, it must be unambiguous, for example dealing with
priorities and associativity, which might call for adding more rules. Then rewrite the EBNF grammar
to eliminate lists and optionals, and code it up in a .beaver specification. Get the parser to work, and
automate the test. Run all your tests to make sure you have not broken anything that worked previously.
Review your implementation to make sure you use good names for classes and components in the abstract
grammar. If you get stuck, take a look at the CalcAST example for inspiration.

To your help there is an example called MinimalAST that you can download and use as a starting point.
MinimalAST is similar to CalcAST, but supports a very small language with just one token and one
production.

12

It is recommended to use Git (or some other version control tool), and save a new version as soon as you
have a working version of your project where all current tests pass. This way, you can easily back up to
an earlier stable state in case you get into a too big mess. Remember to make the Git repository private,
so only you and your lab partner can see it.

3.3.1 Step 1: Simplified function declarations

I As the first step, implement a parser for programs consisting of only a list of empty function declarations
without parameters. For example:

int a() { }

int b() { }

3.3.2 Step 2: Variable declarations and uses

I As a next step, extend your parser to support variable declarations and uses, and also assignments and
integer literals. Distinguish beween declarations and uses of identifiers in the abstract grammar, for
example using the classes IdDecl and IdUse. Here is an example test program:

int a() {

int x;

int y;

x = 5;

y = x;

}

3.3.3 Step 3: Expressions

I Expressions is usually the trickiest thing to get right in a parser. The abstract grammar should be
simple, but the parser needs to deal with priorities and associativity. Extend your parser to support all
the different kinds of expressions. First write down some simple test programs that will make it possible
for you to check that you get everything right. Then try to make them work. It is a good idea to break
this problem down into several subproblems. For example, start by making + and * work. Then add the
other operators. See section 3.1 for what operators should be supported.

3.3.4 Step 4: Complete the language

I Complete the parser by adding new test cases and extending the specification. Remember to work in
small steps: add one or a few language constructs at a time and make them work, before going on with
the next step. Make sure you cover all the constructs discussed in sections 3.1 and 3.2. Make sure the
parser generation does not give any warnings about shift-reduce conflicts that are automatically resolved.

3.3.5 Step 5: Look over your test cases and specifications

I Look over your test cases and specifications. There should be test cases covering all parts of the syntax,
and test cases covering tricky interactions between constructs (like priorities, etc.). There should also be
negative test cases that check that the parser gives errors for syntactically incorrect input programs. The
gcd program in section 3.2 should be one of the test cases. Make sure also that your abstract grammar is
simple and well designed with good names for the different constructs. It is important to get everything
correct and simple, as the following assignments will build on this one.

13

3.3.6 Step 6: Test your compiler in the ”self-grader”

I To help you debug your compiler, there is a web site where you can upload your compiler and run it on
a large number of test cases. See the course page for details.

3.4 Optional additions

If you would like to implement a slightly larger language, here are some optional things you could add:

• Allow multiple variable declarations like (int a, b;).

• Support for break and continue statements.

• Multi-line comments.

It is recommended to not add these optional parts until you have all the mandatory parts working.

4 What to show and discuss with assignment supervisor

When you are ready with the assignment, these are typical things your supervisor may ask you to do:

• Show your test cases.

• Show that you can run your generated parser (compiler.jar) on an example

• Show that you can run all your test cases automatically on the generated parser (./gradlew test).

• Show that your parser generation does not result in any warnings.

• What does your .ast, parser, and scanner specifications look like? Is there anything you would like
to ask or comment about them?

14

	The CalcAST Demo
	The abstract grammar
	Generated AST classes
	Well-formed ASTs
	Building the AST
	Semantic Actions
	Optional Components
	List Components

	The DumpTree Aspect
	Testing framework
	Build Script

	Troubleshooting
	Provoke an LALR conflict in the parsing specification
	Unintended empty productions
	Errors in the generated Java code
	Cast exception when running the generated parser
	Add print statements

	The SimpliC Language
	Informal specification
	SimpliC Code Samples
	Implementing the parser
	Step 1: Simplified function declarations
	Step 2: Variable declarations and uses
	Step 3: Expressions
	Step 4: Complete the language
	Step 5: Look over your test cases and specifications
	Step 6: Test your compiler in the "self-grader"

	Optional additions

	What to show and discuss with assignment supervisor

