
Lund University
Computer Science
Christoff Bürger, Görel Hedin, and Niklas Fors

Compilers
EDAN65

2021-08-29

Programming Assignment 0
Java, Unix, Gradle, and Git

To run the assignments in the course, you need basic familiarity with Java, Unix, Gradle, and Git. This
assignment gives a basic introduction to these tools.

Depending on your experience, you might already be familiar with some or many of the topics of this
assignment. You can skip any section that practices things you are already familiar with. If you have
questions, don’t hesitate to ask at the course forum.

You need a Unix command line to do this assignment. You can either use your own machine (Mac, Linux,
or Linux subsystem for Windows), or one of the student lab machines with Linux.

There are student lab machines with Unix in the following rooms:
venus, mars, jupiter (north part of E-house basement)
hacke, panter, lo, val, falk, varg (south part of E-house basement)
alfa, beta, gamma (2nd floor, E-house)
backus (entry level, Math house)

1 The Unix filesystem

Can you perform the following tasks using the Unix command line, without looking in a manual?

1. Open a terminal window and go to your home directory.

2. Print the full path name of your home directory.

3. Find out what files there are in the current directory.

4. Get help for a command by reading its manual. For example, can you find out what the -t option
does for the ls command?

5. Go to the parent directory. What files are there and which access rights do they have?

6. Go to the /bin directory. Do you recognize any of the files there?

7. Go back to your home directory and create two new subdirectories adir and bdir.

8. Create a new file afile in the adir directory. (You can use the touch command to create new
empty files.)

9. Copy the file afile from adir to bdir.

10. Copy the directory adir, including its contents, to a new directory cdir.

11. Rename the file afile in bdir to bfile.

12. Rename the directory cdir to ddir.

13. Move the file bfile in bdir to ddir.

14. Move the directories adir and bdir into the directory ddir.

15. Remove the directory ddir including all its contents.

16. If you did everything right, all the files and directories you created in this exercise should now be
gone again.

If you are sure you can do all these tasks without looking in a manual, you can skip the rest of this section
and go to Section 2. If not, read the rest of this section, then go back and do the tasks above.

1

1.1 Opening a terminal window

If you don’t know how to open a terminal window on your operating system, search on your favorite
search engine with a query like this:

open terminal window <operating system>

1.2 Navigation

Play around with the following commands to understand how you can navigate in the Unix file system:
Note! If you don’t know how to type the tilde character (~) on your platform, google this.

pwd Print working directory.
cd Change directory to your home directory.
cd dir Go to the local directory dir, relative to the current directory.
cd /usr/bin Go to the directory with the absolute path /usr/bin

(not relative to current directory).
cd .. Go to the parent directory.
cd ~/foo Go to the directory foo in your home directory.
ls List all files in the working directory.

Files starting with a period, like .gitignore, are not listed.
ls -a List all files in the working directory, including those starting with a period.
ls -l -h List files with detailed information like size, change time and access rights.
man ls Show the manual for the ls command. Type space to go to the next page.

Type b to go to the previous page. Type q to quit.

1.3 Manipulation

Play around with the following commands to understand how you can manipulate files and directories.
Note! There is no undo in Unix! Be careful not to delete or overwrite important files.

mkdir d Make (create) directory d.
touch f Create a new empty file named f.

The touch command updates the last modified timestamp of a file,
but if the file did not exist before, it is created.

cp dir/f1 f2 Copy file dir/f1 and name the copy f2.
The copy will be created in the working directory,
the original is in subdirectory dir.

cp f .. Copy file f to its parent directory.
cp ../f . Copy file f in the parent directory to the working directory.
cp -r d1 d2 Recursively copy directory d1 into directory d2; copies d1 and all its content.
rm f Remove file f.
rmdir d Remove directory d; however, works only if d is empty.
rm -r d Recursively remove directory d; deletes d and all its content.
mv x y If x is a file and y a directory: moves x into y.
mv x y If x is a file and y does not exist: renames x to y.
mv x y If x and y are files: renames x to y – the old y is overwritten.
mv x y If x is a directory: rename it to y if y does not exist yet,

otherwise move it into y (assuming y is a directory),
otherwise the operation is aborted with an error (because y

is an already existing file and not a directory).

1.4 Further reading

If you need further help in using Unix commands, you can read, for example:

https://linuxcommand.org -> Learning the shell -> Navigation/Looking Around/Manipulating Files

2

https://linuxcommand.org

Introduktion till LTH:s Linuxdatorer, Per Foreby, 2020. In Swedish.
http://www.ddg.lth.se/perf/unix/unix-x.pdf

1.5 Check your proficency

Now check your proficiency with Unix commands by going back to the beginning of section 1 and do the
tasks there.

2 Editing text files

You should be able to use a text editor like Atom, VS Code, Emacs, Vim, Gedit, or Nano to edit code
and other descriptions as text files. All of these editors run on all major platforms (Windows, Linux,
Mac), and they are all preinstalled at the LTH student computers. If you have no idea which to run, we
suggest that you try Atom or VS Code.

2.1 Create a small Java program by using a text editor

Use the text editor to construct a java program Hello.java:

public class Hello {

public static void main(String[] args) {

System.out.println("Hello!");

}

}

Make sure the file contains the correct code by typing

less Hello.java

in the terminal window. The less command lists the contents of a file, and you can move forward and
backward one page at a time using space and b, just like in the man command. You can also use the
arrow keys to move forward and backward a line at a time. Type q to quit from the less command.1

3 Java from the command line

You need to be able to compile and run Java programs from the command line.

Can you do the following tasks without looking in a manual?

• Implement two Java classes, A and B in a package p, where B contains a main method and imports A.
The main method prints Hello! on the standard output and the toString() value of an A object.

• Compile all classes.

• Run the main method of B.

• Pack the classes into an executable Java Archive called hello.jar (you have to create a manifest).

• Execute hello.jar.

• Add a while (true) { System.out.println("Foo"); } loop to the main method of B; recompile
it. If you execute it, how can you abort?

1If you wonder why it is called less: it is a more powerful and faster variant of the original unix more command.

3

http://www.ddg.lth.se/perf/unix/unix-x.pdf

• Add a string argument to B so that it prints Hello arg ! instead of only Hello!, where arg is the
argument you give on the command line when you run B.

Hints: Classes must be in directories named like their package; their first code line should declare the
package name. To compile and run them, your working directory has to be the parent directory of the
package hierarchy.

If you are sure you can do all these tasks without looking in a manual, you can skip the rest of this
section. Otherwise, read through the rest of this section and then go back and do the tasks above.

3.1 Compiling and running Java programs

Here are some commands for compiling and running Java programs from the command line.

javac C1.java C2.java Compile source files C1.java and C2.java to class files C1.class

and C2.class. The class files contain bytecode for the Java
Virtual Machine.

javac p/*.java Compile all java source files in the package p.
javac -d dir p/C.java The generated class files are placed in the directory dir.
javac -cp d1:d2 C.java The compilation classpath (-cp) is extended with the directories

d1 and d2 so that the compiled class C can use classes in d1 and d2.
By default, the classpath includes the working directory and the
standard Java library with lang, util, and so on.

java p.C Execute the main method of class C in package p.
java p.C just three args Execute p.C with string arguments "just", "three", and "args".
java -cp d1:d2 p.C The execution classpath (-cp) is extended with directories d1 and

d2 so that the executed class p.C can use classes in d1 and d2.
java -jar prog.jar Execute the main method specified in the manifest of the Java

Archive prog.jar.
ctrl-c (while program runs) Abort execution of running program.

Note that the compilation command (javac) takes files as arguments, like p/C.java, whereas the execu-
tion command (java) takes classes as arguments, like p.C.

3.2 Jar files and classpaths

Java programs are packaged and distributed as JAR (Java Archive) files. We will now create a JAR file
that will contain the A and B classes defined before. A JAR file requires a Manifest file that specifies, for
example, which class is the main class of the JAR file. We will start by creating the Manifest file.

Create a file MANIFEST.MF and add the following code to it:

Manifest-Version: 1.0

Main-Class: B

We can see that B is specified as the main class. The command for creating JAR files is jar. The pattern
for using it is as follows.

$ jar cfm jar-file manifest-file input-file(s)

For example, we can create a JAR file HelloJar.jar as follows, using the Manifest file that we defined
earlier.

$ jar cfm HelloJar.jar MANIFEST.MF p/A.class p/B.class

Note that we only include the class files, and not the source code (A.java and B.java). A JAR file can
contain source code as well, but that is not necessary. Having the JAR file, it can be executed as follows.

4

$ java -jar HelloJar.jar

The command java starts the Java virtual machine (JVM) which runs a program by loading class files
and calling the main method of the main class.

The classpath specifies where the JVM should look for the class files. Specifying the classpath may be
required when several different libraries are used that are located in different JAR files. The classpath
can be given using the flag -cp as the following illustrates.

$ java -cp lib1.jar:lib2.jar:. MainClass

The classpath is given as a list of colon-separated JAR files and directories. In this case, the JVM will
look for class files in lib1.jar, in lib2.jar, and in the current working directory; the dot (.) means the
current working directory. The standard classpath is the current working directory, which is equivalent
to the following.

$ java -cp . MainClass

Often, it is required to include the library files when compiling the source code as well. For example,
suppose we have a class MainClass that uses classes from the JAR files lib1.jar and lib2.jar. Then
when compiling the MainClass.java file, we need to include the JAR files in the classpath as follows.

$ javac -cp lib1.jar:lib2.jar MainClass.java

3.3 Check your proficiency

Now check your proficiency with creating, compiling and running Java programs by going back to the
beginning of section 3 and do the tasks there.

4 The build tool Gradle

As a project grows larger, there may be many commands that need to be run in order to compile, test,
create jar files, etc. Running these commands manually after each change of the source code would
quickly become both tedious and error prone. Instead, software projects use build tools that document
and automate the commands to run. Examples of common build tools are Make, Ant, and Gradle. In
this course, we will use Gradle.

The Gradle build tool is implemented in the language Groovy, which compiles to Java bytecode. We will
run Gradle by using the script gradlew (or gradlew.bat on Windows). When this script is run the first
time, the Gradle tool (a jar file) is downloaded from the web. This way, you don’t need to manually
install Gradle on your computer.

Gradle is a very powerful build tool. Here are some things it can do:

• automate common tasks like compiling, producing jar files, and running tests

• support different languages by the use of plugins. There is, for example, a Java plugin.

• incremental build, i.e., avoid building things that are already up to date. For example, if you run a
build, but did not change any source files since your last build, then no compilation or testing will
be run.

• automatic download of dependencies, i.e., appropriate versions of library files that your project
depends on. These files are downloaded from global repositories like Maven and Ivy.

5

4.1 Gradle basics

To understand the basics of how Gradle works, download A0-JavaGradleProject.zip from https:

//cs.lth.se/edan65, and unzip it. This is an empty Java project, set up to build with Gradle. In the
project you find the following files and directories:

build.gradle The Gradle build script.
gradle/ Files for running Gradle.
gradlew shell script for running Gradle on Unix.
gradlew.bat batch script for running Gradle on Windows.
src/main/java where your main Java code should be placed.
src/test/java where your JUnit test code should be placed.

When you run Gradle, it reads in the file build.gradle. This file is called the build script and it
contains rules for how to build the project. Take a look at build.gradle. The only thing it contains is
the following lines of code that says that the Java plugin should be used:

plugins {

id "java"

}

The Java plugin defines rules for building Java projects. It defines a number of tasks, i.e., pieces of work.
You can find out which tasks are supported by running the command2

./gradlew tasks --all

As you see, there are quite a few tasks. We will only discuss the following:

build compiles any source and test files, creates a jar file, and runs any test files
compileJava only compiles the main Java code (not the test code)
compileTestJava only compiles the test code (the JUnit tests)
clean removes the generated files (class files, jar files, etc.)

Try out these tasks. For example, run

./gradlew build

Note that all generated files are placed in a generated directory build. Since there are no source files yet
in this project, there will in this case be no generated class files, but a jar file will be generated, although
it contains nothing but a manifest. The jar file is named A0-JavaGradleProject.jar after the project
directory.

Now run the clean task, and note that the build directory with all the generated files is removed.

./gradlew clean

Tasks depend on each other in a directed acyclic graph. When a task is called, and everything it depends
on is unchanged, it does not have to be run again. Instead, it is reported to be UP-TO-DATE. This is called
incremental building: after changes, Gradle rebuilds only the parts of the project that are affected by
the change.

As a simple example of incremental building, run the clean task (in case you did something else after
your last clean), and then run the build task twice. The second time you run build, everything is
already up to date, and no tasks are run.

./gradlew clean

./gradlew build

./gradlew build

2The first time you run the ./gradlew command, it will download the Gradle jar file from the web, which may take a
short while. The Gradle jar file will be placed in a directory .gradle in your home directory.

6

https://cs.lth.se/edan65
https://cs.lth.se/edan65

Gradle keeps its internal information in a directory .gradle in your home directory, and in a directory
.gradle in each project. Any dependencies (library jar files, etc.) downloaded by a build will be stored
in the .gradle directory in your home directory, so that they can be shared by all your Gradle projects.
The Gradle tool itself is also stored there.

4.2 Experiment with Gradle on some Java code

Add some Java code to the project. For example, you could add a package p with a class A whose main
method prints Hello. The code should be placed in the src/main/java directory. You will need to create
the src/main/java/p directory and place the A.java file inside it. Run a build (./gradlew build).
Note where Gradle places the classes and the jar file (build/classes/java/main and build/libs,
respectively). You should now be able to run your code by either

java -cp build/classes/java/main p.A

or

java -cp build/libs/A0-JavaGradleProject.jar p.A

4.3 Experiment with adding a test case

We will now show how you can run JUnit tests from Gradle. JUnit is a framework for automated testing
of Java code. In the labs, we are using JUnit version 4.13.3

First you need something to test. Edit your class A, and add a static method m that simply returns a
constant, say 5. Now create a test class TestA with a JUnit test method that tests that m works correctly:

package p;

import org.junit.*;

import static org.junit.Assert.*;

public class TestA {

@Test

public void testm() {

assertEquals(5, A.m());

}

}

Gradle will only recognize tests if they are placed in the src/test/java directory, so the above test class
should be placed at the location src/test/java/p/TestA.java.

The imports used in the test code refer to entities in the JUnit library. To compile the tests, Gradle
needs access to this library. To handle this, you declare a dependency in the build.gradle file. More
precisely, when compiling tests, there is a dependency on a particular version of the JUnit library. You
also need to state in what global repository Gradle can find the dependencies (i.e., the libraries). You do
this by adding the following code to the build.gradle file:

repositories.mavenCentral()

dependencies {

testImplementation "junit:junit:4.13"

}

3If you are not familiar with JUnit, or this particular version, read through the following introduction to JUnit: https:

//fileadmin.cs.lth.se/cs/Education/EDAN65/misc/junitForEDAF45.pdf. This introduction was originally written for
another course and includes some details on how to use JUnit from Eclipse. Other IDEs have similar support.

7

https://fileadmin.cs.lth.se/cs/Education/EDAN65/misc/junitForEDAF45.pdf
https://fileadmin.cs.lth.se/cs/Education/EDAN65/misc/junitForEDAF45.pdf

Here, testImplementation is a so called dependency configuration defined by the Java Gradle plugin,
and which is used by the task that compiles the tests (compileTestJava).

Now, when you run ./gradlew build, Gradle will locate the Maven central repository, and find the JUnit
library jar file (version 4.13), and download it to your computer (placing it in the .gradle directory in
your home directory). It will then compile the test code, using this jar on the class path, and it will also
run the tests.

Check that you can get this to work, and that the test case succeeds (the build should be reported as
successful).

Now change the code so that the test will fail. For example, let the method in A return 4 instead of 5.
What happens when you build again? Where can you find a report of the test results?

Hint: you can add the -i (short for --info) to the Gradle command to get more information about test
failures.

5 Use Git for version control of your code

Git is a version control system that allows you to:

• work iteratively, committing (saving) each stable change of the code as a new version. This is very
useful, for instance, if you mess up and need to restore the previously working version.

• easily collaborate with others. You can push your commits to a common repository, from which
your partner can pull them, and vice versa. You can easily see what your partner has changed, and
you can merge your changes if you are both changing the same parts of the code.

For the labs, you will use a Git repository provided by a server at the department. See the course web
for details.

To work with the labs, you clone the server repository once to your computer, and you can then start
working, saving your work, and collaborating with your partner by doing commit, push, and pull. You
should be familiar with the following basic Git commands and concepts:

git clone server-loc copies the repository located at server-loc to your current directory
git commit -am "msg" commits your changes to your local copy of the repo
git push pushes up your new commits to the server
git pull pulls down other new commits to your local copy of the repo
git add newfiles puts the files newfiles under version control
git status show the current status of your local copy of the repo
.gitignore a file that specifies what files git should ignore

Other useful commands are:

git rm files version-aware removal of files
git mv file1 file2 version-aware rename of file1 to file2
git diff files shows the diffs between your edited files and the latest commit
git stash moves all your changes (since the latest commit) to a hidden stash
git stash apply applies the stashed changes again

If you are familiar with these Git commands, you can skip the rest of this section. The official documen-
tation for Git is here: https://git-scm.com

8

https://git-scm.com

5.1 Getting started with the Git repository

First, check that you have Git installed.

git version

If not, consult https://git-scm.com for how to install git.

If you have not used Git before on your computer, you should also do a First-Time Git Setup, in
order to set what username and email Git should attach to your commits, and what default editor
Git should start if it wants to prompt you with a message. See https://git-scm.com/book/en/v2/

Getting-Started-First-Time-Git-Setup.

Next, create a directory on your computer where you want to place your work, and clone your repository
(replacing yyyy and reponame with the year and name of your repository).

mkdir edan65

cd edan65

git clone https://coursegit.cs.lth.se/edan65/yyyy/reponame

A subdirectory reponame will be created. Initially, it will only contain a file README.md (a readme file in
the markdown format). Check that this is the case:

cd reponame

ls

5.2 Change files, commit and push

To get started with changing files, do a small edit to the README.md file, then commit it, and push it up
to the server. Do git status between the commands, so you see what happens:

edit the README.md file

git status

git commit -am "Improved README"

git status

git push

git status

Note! the option -a tells git that it should commit all modified files that are under version control. The
option -m with the argument "Improved README" provides the commit log message.

Note also that the commit gets a unique identifier, e.g., something like 7dffdae5.

Browse to your repository on the server, and verify that the contents were pushed: Select Repository->Files
in the left-column menu to see the files in the repository, and Repository->Commits to see a list of com-
mits.

9

https://git-scm.com
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup

5.3 Add a new file, and put it under version control

If you create new files that you would like to include in the repository, you need to explicitly add them
to git. You do this by creating the file, adding it to git, then committing, then pushing. Again, do git

status between each command, so you understand what goes on.

edit a new file, say example.txt

git add example.txt

git commit -am "Added new file example.txt"

git push

Note that it is easy to forget to do git add on new files that you want in the repository. If you do git

status you will see what files you have not added so far.

5.4 Add a .gitignore file

Often, the tools you use will add files in your directory that you don’t want to version control. Examples
include backup copies of textfiles, generated files like class files and jar files, etc.

As a general rule: don’t put generated files under version control. They will give you messy merge conflicts,
and will make your repository grow in size very quickly, taking up unnecessary resources and slowing
down your work.

By adding a .gitignore file, you can tell Git which files it should ignore. For example, the git status

command will not list any of those files.

Here is an example of a .gitignore file:

java (ignore .class files generated from Java)

*.class

#

Mac OS (ignore settings files generated by Mac operating system)

.DS_Store

#

Ignore the file hidden.txt

hidden.txt

Create a .gitignore file like the one above, and verify that git status ignores files accordingly:

Create a file called hidden.txt

git status

Add a file called .gitignore that ignores the new file

git status

When you are satified with your .gitignore file, you can put it under version control (do git status

between all commands to see what happens).

git add .gitignore

git commit -am "Added .gitignore file"

git push

10

5.5 Collaboration and merging

When you collaborate with your partner on the same repository, you will need to pull down your partner’s
changes now and then. If you have changed the same files, you will need to merge them. These things
are simple to do with git. Try out a simple scenario at first:

1. You change a file, commit, and push the changes to your common repository on the server.

2. Ask your partner to pull the change to his/her computer.

3. Ask your partner to change a file, commit, and push.

4. Now you pull the new changes.

Now let’s look at a scenario where you both edit at the same time, and you might get merge conflicts.

1. Ask your partner to change a file, commit, and push.

2. Now, before pulling, you also make a change to the same file, at the same line. Then commit, and
push.

3. Note that you cannot push, because your commits are not changes based on the latest version on
the server.

4. You need to first do git pull. Your partner’s changes will then be merged with what you have in
your repository. An automatic merge commit will be created.

5. Note that if you edited the same file, git will try to merge the two versions of the file. If you edited
on the same line there will be merge conflicts that you will have to resolve manually. Git will insert
some markers in the file, so you see what changes came from what version.

6. Fix any merge conflicts by editing the file. Then you can commit again, and push.

5.6 Push often and clean

When collaborating, it is important that each commit and push represents a clean state of the project.
For example, all the code should compile without errors, and all tests should run.

In order to collaborate in a good way, it is good to commit, push, and pull often:

• Before starting on some new work, check that your repository doesn’t contain uncommitted work
(use git status), and do a git pull so that you start working on the latest version. Check that
the new version you pulled down actually works (compiles and tests) before starting. This should
have been checked by the person doing the commit – but they might have missed something.

• When doing work, split it down into small clean pieces. For example, make one little thing work, or
work better than before. Check that it compiles and tests before committing and pushing. Commit
each little piece of clean new/improved functionality.

• Commit often. That way, if you mess up, it is easy to back up to the latest stable commit, e.g.,
using git stash.

• Push often. That way your partner has to merge instead of you. And the merges will be smaller
and easier for your partner than if you wait.

• Pull often. That way the changes that your partner made will be smaller and easier to merge than
if you wait.

• Communicate with your partner. That way you can avoid unpleasant surprises.

11

6 Further reading

To get quick help, use a search engine like Google. Often you will find useful answers at Stack Overflow
(https://stackoverflow.com).

Additional resources:

• Java cheat sheet from Princeton:
https://introcs.cs.princeton.edu/java/11cheatsheet/

• Oracle’s Java tutorial: https://docs.oracle.com/javase/tutorial/java/index.html

• Java standard base library documentation: https://docs.oracle.com/en/java/javase/11/docs/
api/java.base/module-summary.html

• (Alternatively, look at the older library for Java version 8, which might be more convenient to
navigate: https://docs.oracle.com/javase/8/docs/api/index.html)

• About running java and javac from the command line:
man java

man javac

• JAR tutorial: https://docs.oracle.com/javase/tutorial/deployment/jar/index.html

• Gradle documentation: https://docs.gradle.org/7.2/userguide/userguide.html

• User guide for the Java plugin for Gradle: https://docs.gradle.org/7.2/userguide/building_
java_projects.html

• JUnit 4 documentation: https://junit.org/junit4/

• Git documentation: https://git-scm.com

12

https://stackoverflow.com
https://introcs.cs.princeton.edu/java/11cheatsheet/
https://docs.oracle.com/javase/tutorial/java/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/module-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/module-summary.html
https://docs.oracle.com/javase/8/docs/api/index.html
https://docs.oracle.com/javase/tutorial/deployment/jar/index.html
https://docs.gradle.org/7.2/userguide/userguide.html
https://docs.gradle.org/7.2/userguide/building_java_projects.html
https://docs.gradle.org/7.2/userguide/building_java_projects.html
https://junit.org/junit4/
https://git-scm.com

	The Unix filesystem
	Opening a terminal window
	Navigation
	Manipulation
	Further reading
	Check your proficency

	Editing text files
	Create a small Java program by using a text editor

	Java from the command line
	Compiling and running Java programs
	Jar files and classpaths
	Check your proficiency

	The build tool Gradle
	Gradle basics
	Experiment with Gradle on some Java code
	Experiment with adding a test case

	Use Git for version control of your code
	Getting started with the Git repository
	Change files, commit and push
	Add a new file, and put it under version control
	Add a .gitignore file
	Collaboration and merging
	Push often and clean

	Further reading

