EDAF95/EDAN40: Functional Programming
Types and Type Classes

Jacek Malec
Dept. of Computer Science, Lund University, Sweden
March 29th, 2023
Resources

https://hoogle.haskell.org/

“In programming languages, a type system is a collection of rules that assign a property called type to various constructs a computer program consists of, such as variables, expressions, functions or modules.”

“A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute.”
Type system

(+) :: ???
3 + 5 :: ???
3.0 + 5 :: ???
filter odd :: ???

ghci> :type filter odd
Haskell type system

Motivation:
- Static type system
- Type inferencing, thus run-time errors are rare
- Workflow: edit and typecheck instead of: edit and test run
- Actually, you will encounter run-time errors, too
Type theory (future topic)

- Hindley-Milner type system
- type inference algorithm W
- origins: Haskell Curry, typed lambda calculus, 1958 (wait a couple of lectures:-)
- deduces most general type, even without type annotations (1969, Hindley)
- complete (1982, Milner and Damas)
- normally linear time, suitable for large programs
- for bounded nesting of let-bindings: polynomial
- for “pathological” inputs: exponential (1990)
Type inference

\[
f :: A \rightarrow B \quad e :: A
\]

\[
f \ e :: B
\]
Basic types

Bool
Char
String
Int
Integer
Float
Double
Basic types

[Int]

[a]

(a, b)

f :: a -> b
Basic types during exam

(+)(+)
(+5)(1:)(filter odd)(:[1,2,3])
-- below actual question
((.):)
(+0).(0+)
(.)(.)
Type derivation during exam

Rewrite with list comprehension and state the type:

\[g \, x = \text{map} \, (\, x) \]

State the type of \(h \) and tell what does it do:

\[h \, f = \text{fst} \, . \, \text{head} \, . \, \text{dropWhile} \, (\text{uncurry} \, (\neq)) \, . \, \text{ps} \, (\text{iterate} \, f) \]
where
\[\text{ps} \, g \, x = \text{zip} \, (\text{tail} \, (g \, x)) \, (g \, x) \]

Find the point-free form of:

\[f \, x \, y = (3 - x) \, / \, y \]
Three kinds of type declarations

type Name = String

type synonym

data Season = Spring | Summer | Autumn | Winter

algebraic datatype

newtype Name = Nm String

renamed datatype
Same as data with a single unary constructor. Better performance as there is no runtime bookkeeping of a separate type.
Qualified types

> :type elem
elem :: (Eq a) => a -> [a] -> Bool

Qualification needed here to ensure that equality test is defined. Uses type classes. E.g.

> elem sin [sin, cos, tan, cot]

causes a type error.
Type classes

A structured way to introduce *overloaded* (or *polymorphic*) functions

class Example a where
 f1 :: a -> a -> String
 f2 :: a -> a
 f3 :: a

Usage: create *instances*

instance Example Int where
 f1 x y = show $ (+) x y
 f2 = (+1)
 f3 = 0
Class and instance declaration

Class:

class Graphical a where
 shape :: a -> Graphics

Instances:

instance Graphical Box where
 shape = boxDraw -- assumed to be previously defined

instance Graphical a => Graphical [a] where
 shape = (foldr1 overGraphic) . (map shape)
Class inheritance

class Graphical a => Enclosing a where
 encloses :: Point -> a -> Bool

Multiple constraints:

(Eq a, Show a) =>

Multiple inheritance:

class (Eq a, Show a) => EqShow a
Another example

data Eq a => Set a = NilSet | ConsSet a (Set a)

Introduces two (data) constructors NilSet and ConsSet with types

> :t NilSet
NilSet :: Set a
> :t ConsSet
ConsSet :: Eq a => a -> Set a -> Set a

Type inference will ensure that ConsSet can only be applied to values typed as instances of Eq.

f (ConsSet a s) = a
> :t f
f :: Eq a => Set a -> a
Default definitions

class Eq a where
 (==), (!=) :: a -> a -> Bool
 x != y = not (x==y)
 x == y = not (x!=y)
Derived instances

data Season = Spring | Summer | Autumn | Winter
 deriving (Eq, Ord, Enum, Show, Read)

notWinter = [Spring..Autumn]

From Prelude only Eq, Ord, Enum, Bounded, Show and Read can be derived.
Derived instances

data Season = Spring | Summer | Autumn | Winter
deriving (Eq, Ord, Enum, Show, Read)

notWinter = [Spring..Autumn]

From Prelude only Eq, Ord, Enum, Bounded, Show and Read can be derived.

“Classes defined by standard libraries may also be derivable.”

See “generic classes” in GHC (but not in pure Haskell 2010).
deriving

-- Maybe type
data Maybe a = Nothing | Just a deriving (Eq,Ord,Read,Show)

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing = n
maybe n f (Just x) = f x

How does deriving work?
deriving

-- Maybe type
data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing = n
maybe n f (Just x) = f x

How does deriving work?

Answer: “naturally” or “magically”:)
Exact (somewhat) answer can be found in Haskell 2010 report, Chapter 11.
Haskell vs. Java

Haskell types ⇔ Java classes
Haskell class ⇔ Java interface

Java: A class implements an interface
Haskell: A type is an instance of a class

Java: An object is an instance of a class
Haskell: An expression has a type
Type class example

Consider the following class (taken from the Prelude):

```haskell
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```

The `fmap` function generalizes the `map` function used previously.

```haskell
instance Functor [] where
    fmap = map
```
A note

Functor laws (not enforced by Haskell):

\[\text{fmap \ id} = \text{id} \]
\[\text{fmap \ (f \cdot g)} = (\text{fmap \ f}) \cdot (\text{fmap \ g}) \]

The laws mean that \(\text{fmap} \) does not alter the structure of the functor.
Type class examples

Other instances:

```haskell
instance Functor Maybe where
    fmap f (Just x) = Just (f x)
    fmap f Nothing = Nothing

data Tree a = Leaf a | Branch (Tree a) (Tree a)
instance Functor Tree where
    fmap f (Leaf x) = Leaf (f x)
    fmap f (Branch t1 t2) = Branch (fmap f t1) (fmap f t2)
```

Note: higher-order class definitions Here
Maybe and Tree, not Maybe a or Tree a, is a functor!

Jacek Malec, http://rss.cs.lth.se
Type class examples

Other instances:

```haskell
instance Functor Maybe where
    fmap f (Just x) = Just (f x)
    fmap f Nothing = Nothing

data Tree a = Leaf a | Branch (Tree a) (Tree a)
instance Functor Tree where
    fmap f (Leaf x) = Leaf (f x)
    fmap f (Branch t1 t2) = Branch (fmap f t1) (fmap f t2)
```

Note: higher-order class definitions
Here `Maybe` and `Tree`, not `Maybe a` or `Tree a`, is a functor!
class Monad m where

 (>>=) :: m a -> (a -> m b) -> m b
 (>>) :: m a -> m b -> m b
 return :: a -> m a
 fail :: String -> m a

m >>= k = m >>= _ -> k
fail s = error s
Requirements on monadic types

All instances of Monad should obey the following laws:

\[
\begin{align*}
\text{return } a \mathbin{>>=} k &= k a \\
m \mathbin{>>=} \text{return} &= m \\
m \mathbin{>>=} (\lambda x \to k x \mathbin{>>=} h) &= (m \mathbin{>>=} k) \mathbin{>>=} h
\end{align*}
\]

Instances of both Monad and Functor should satisfy also:

\[
\text{fmap } f \; \text{xs} = \text{xs} \mathbin{>>=} \text{return } . \; f
\]
Field labelling

Type definitions

data C = F Int Int Bool

and

data C = F { f1, f2 :: Int, f3 :: Bool}

are exactly the same (except that we get “deconstructor” functions)
Field labelling

Type definitions

data C = F Int Int Bool

and

data C = F { f1, f2 :: Int, f3 :: Bool}

are exactly the same (except that we get “deconstructor” functions)

Note that in pattern matching notation \(F \ {} \) matches every use of type \(F \).
Type renaming

newtype Age = Age Int

or

newtype Age = Age {unAge :: Int}

Note 1: Just one field possible!
Note 2: the second variant brings into scope two functions, constructor and deconstructor:

Age :: Int -> Age
unAge :: Age -> Int
Numbers in Haskell

All numeric types are instances of the `Num` class.

```haskell
class (Eq a, Show a) => Num a where
    (+), (-), (*) :: a -> a -> a
    negate, abs, signum :: a -> a
    fromInteger :: Integer -> a
```
Haskell 98 predefined type classes

Taken from Prelude
Numeric type classes

Diagram showing the hierarchy of numeric types:
- `Num` is the root.
- `Real` and `Fractional` are children of `Num`.
- `Integral`, `RealFrac`, and `Floating` are children of `Num`.
- `Word`, `Int`, `Integer`, `Ratio`, `RealFloat`, `Rational`, `Float`, and `Double` are children of their respective parent types.

Key: `Ord`, `Eq`, `Enum`
Main numeric types

<table>
<thead>
<tr>
<th>Type</th>
<th>Subtype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>Integral</td>
<td>Arbitrary-precision integers</td>
</tr>
<tr>
<td>Int</td>
<td>Integral</td>
<td>Fixed-precision integers</td>
</tr>
<tr>
<td>(Integral a) => Ratio a</td>
<td>Fractional</td>
<td>Rational numbers</td>
</tr>
<tr>
<td>Float</td>
<td>RealFloat</td>
<td>Floating-point, single precision</td>
</tr>
<tr>
<td>Double</td>
<td>RealFloat</td>
<td>Floating-point, double precision</td>
</tr>
</tbody>
</table>
Main numeric classes

Num (Eq, Show)
 Fractional
 Floating

Real
 Integral
 RealFrac (Fractional)
 RealFloat (Floating)

(+), (-), (*), ...
(/)
exp, log, sin, cos, ...
toRational
quot, rem, mod, ...
round, truncate
exponent, significand, ...
Extended Example: MyNatural

numeric type based on Peano’s definition

data MyNatural = Zero | Succ MyNatural
 deriving (Eq, Show)

Some values of this type:

two = Succ $ Succ Zero
three = Succ two
Functions on MyNatural

\[
\text{natPlus } \text{Zero } y = y \\
\text{natPlus } (\text{Succ } x) y = \text{Succ } (\text{natPlus } x y)
\]

\[
\text{natMinus } x \text{ Zero } = x \\
\text{natMinus } \text{Zero } y = \text{error } "\text{Negative Natural}" \\
\text{natMinus } (\text{Succ } x) (\text{Succ } y) = \text{natMinus } x y
\]
Functions on MyNatural

natTimes Zero y = Zero
natTimes (Succ x) y = natPlus y (natTimes x y)

natSignum Zero = Zero
natSignum (Succ x) = Succ Zero

integerToNat 0 = Zero
integerToNat (x+1) = Succ (integerToNat x)
Making MyNatural a number

instance Num MyNatural where
 (+) = natPlus
 (-) = natMinus
 (*) = natTimes
 negate = error "Negative natural"
 abs x = x
 signum = natSignum
 fromInteger = integerToNat
Better output

showNat n = show (intValue n)
where
 intValue Zero = 0
 intValue (Succ x) = 1 + intValue x

instance Show MyNatural where
 show = showNat

and remove previous deriving of Show!
Another example: ListNatural

Natural numbers corresponding to lists (of nothing)

type ListNatural = [(())]

For example:

twoL = [((),())]
threeL = [((),(),())]

What is: (::)?
What is: (++)?
What is: map (const ())?
ListNatural, Exercise

1. What do these functions do?

 \[f_1 \ x \ y = \text{foldr} \ (_ : _) \ x \ y \]

 \[f_2 \ x \ y = \text{foldr} \ (\text{const} \ (f_1 \ x)) \ [] \ y \]

 \[f_3 \ x \ y = \text{foldr} \ (\text{const} \ (f_2 \ x)) \ [()] \ y \]

2. Continue this definition:

 instance Num ListNatural where ...

 Note: requires ListNatural to be declared as a newtype!
Church numbers

type ChurchNatural a = (a -> a) -> (a -> a)

zeroC, oneC, twoC :: ChurchNatural a
zeroC f = id -- zeroC = const id
oneC f = f -- oneC = id
twoC f = f . f
Church numbers

\[
\begin{align*}
\text{succC } n \ f & = f \cdot (n \ f) \\
\text{threeC} & = \text{succC } \text{twoC} \\
\text{plusC } x \ y \ f & = (x \ f) \cdot (y \ f) \\
\text{timesC } x \ y & = x \cdot y \\
\text{expC } x \ y & = y \cdot x
\end{align*}
\]
Church numbers

\[
\text{showC } x = \text{show } \$ (x (+1)) 0 \\
\text{pc} = \text{showC } \$ \text{plusC twoC threeC} \\
\text{tc} = \text{showC } \$ \text{timesC twoC threeC} \\
\text{xc} = \text{showC } \$ \text{expC twoC threeC}
\]