
Simulating rain
Desirée Ohlsson*

Lund University
Sweden

Abstract

This report describes the implementation of a rain effect in
the Sponza scene using mesh particles based on the Simulat-
ing Particle Effects using OpenGL article [van Oosten 2011].
The implementation of the rain is added on top of the code
for the second assignment in the course High Performance
Computer Graphics and the goal is to create a realistic rain
effect that reacts to light.

1 Introduction

An interesting effect in a 3D scene to make it feel more alive
is weather. The goal with this project is to add a rain effect
to the Sponza scene. Real rain drops are not perfectly round
and the way we perceive them is more like lines.

Since real rain make things wet, that is a thing that will be
considered in this project as well. The way it is done here
is by flooding the Sponza scene and have a constantly rising
water level.

2 Algorithms

2.1 Particle system

The particle system consists of mesh particles. In this case
the particle is a sphere that has been distorted to resemble a
rain drop when it is in motion. A shader is then applied to
the particle rain drop to give it the appearance of a rain drop.
The transformed used on the sphere is a scaling transform:

scale(x, y, z) = (0.25, 6, 0.25)

Since the goal is not to have only one raindrop, animation
was added in the implementation of the particle effect. Since
the Sponza atrium has a rectangular box shape, a bounding
box with approximately the same size was used to determine
where it should be raindrops and where it should not be rain
drops.

The rain drops where then where then spawned randomly

*e-mail: desiree.ohlsson@gmail.com

(from a rectangular distribution) within the bounding box.
The amount of particles used was 30000, which was chosen
to resemble a quite heavy rainfall. The raindrops where then
given a velocity of 20 in the negative y-direction to animate
the rainfall. When a rain drop then hits the ground, it is im-
mediately placed back on its starting height and re-used to
create more rain without creating more particles.

To make the raindrops react to light, they are not added to
the depth buffer.

2.2 Flooding effect

The rain particle system on its own is not enough to create a
realistic rain effect. The ground also has to be wet after be-
ing hit with heavy rain. Since the Sponza scene looks pretty
solid without any real doors, windows or drainage system,
I thought it would be reasonable to assume that the scene
would be flooded in case of rain.

To make the scene look flooded, a large tesselated quad was
added on top of the scene. To give more life to the water, the
vertexes on the quad were displaced using a sum of two sine
functions and a colour was added to the water. The water
does not account for how optics work in water. To make
the water look transparent, OpenGLs blending functions are
used.

Since the scene is flooded because of the heavy rain, the wa-
ter level has to rise over time when it keeps raining. This is
solved by changing the y-coordinate of the quad with time.

Since the water level is rising, the raindrops have to ”disap-
pear” when they hit the water surface. In this project this is
done by checking the depth buffer.

2.3 The rendering

The effects created in this project are all added into the same
geometry buffer as the Sponza model. The effects are then
all rendered in the first render pass as shown in figure 1 to
make the effects react to light.



Figure 1: Order of the rendering and rendering passes.

3 Results

The rain may not look super realistic on still images like the
screenshots in figure 2 and 3, but it is still resembles rain.
The images still show how the rain reacts to light. When the
rain is animated, which is the purpose here, the rain looks
more like actual rain.

Figure 2: Raindrops and flooded Sponza scene

Figure 3: Raindrops as seen when looking from the ground
up to the ”sky”.

3.1 Usefulness

Since the rendering of the rain is not too inefficient, this is an
effect that could be useful. The effect could for example be
used in a scene in a game to simulate more realistic weather.

4 Discussion

A lot of shortcuts have been taken to create the rain effect
in this project, so there are a lot of ideas for improvements!
The shaders used for both the rain and the rising water level
are simple. The shaders could be improved to make a better
model of how water and light interacts, but that could be at
the cost of performance.

One thing that could be added to the water level shader to
make is ripples where the rain hits the surface instead of just
having the slightly wavy effect that is used now. If ripples
where used instead, they could either be modelled using a
lot of sine waves I believe or they could be modelled by just
using a ripple bump map, which would probably be compu-
tationally more efficient.

One thing that I tried was to use different sizes of the rain-
drops, but it did not really look better. The rain looked less
like rain when the size of the raindrops varied.

The particle effect is achieved using mesh particles which is
not as efficient as for example billboard particles. But since
the raindrops consists of mesh particles, it is easy to add an-
other shape for fun. If you for example skip the part where
the spherical particle is scaled and reduce the velocity of the
particles, you would have something that resembles snow in-
stead without much work.



References

VAN OOSTEN, J., 2011. Simulating particle effects us-
ing opengl. https://www.3dgep.com/simulating-particle-
effects-using-opengl/.


