
Real-Time Fluid Simulation on the GPU
Niklas Strandberg∗ Aron Söderling†

Lund University
Sweden

Abstract
The simulation of fluids in real-time graphics can have a great im-
pact on the visual appearance, but to simulate this on a GPU using
a traditional rasterization-pipeline is not straightforward.

In this paper, we describe one way to implement this on the GPU,
using an existing rasterization-based pipeline.This is done by doing
multiple render-passes per frame and saving the computed values
for several physical phenomena into textures, similar to deferred
shading where the rendering is split into serveral render-passes. To
be able to achieve this in real-time, the fluids are simulated us-
ing simplified physical models that are efficiently calculated on the
GPU, but that reasonably well reflect the real world. Due to the
limitations of the project we had to focus on making one effect and
this effect ended up being smoke.

1 Introduction
Simulating fluid physics is a very demanding task for a processor to
run, there are many computations that has to run for every element
in the fluid. However this is also a very parallel task, since every
single element has to run the exact same operation every loop cy-
cle, which fits the GPU very good. Our implementation utilises the
computational power of the GPU by running shader programs for
every pixel and storing intermediate results into textures. The simu-
lation can be used both as a computer graphics tool to produce good
looking fluids such as smoke, water, fire etc. or as a research tool
which could be used for example to simulate how smoke spreads
buildings or the flow of blood in medical studies. This project
also works as an introduction to general-purpose GPU(GPGPU)
and how powerful the GPU can be when running highly parallel
computations.

The algorithm for running fluid simulation is based on the
Navier-Stokes equations for incompressible flow. The equations
describes how the velocity of a flow varies over time incident to
the diffusion of the flow, the pressure in the fluid and the influence
of external forces. A description of how to solve these equations
and how to implement it on a GPU is presented in this report. We
implemented this algorithm using the Renderchimp framework and
started with the deferred shading assignment code from the course.

Our initial plan was to render three dimensional fluids such as
water, fire and smoke but we struggled with the implementation
and only had time to pleasingly render two dimensional smoke. It
should however be possible to extend our solution to cover those
things as well.

2 Algorithms
2.1 Introducing the Navier-Stokes equations
The flow of a fluid can be represented by a velocity and pressure
in every molecule of the fluid. There are two methods of imple-
menting this, Lagrangian and Eulerian. The Lagrangian method is
based on particles that store velocity and pressure. The Eulerian
method is based on using grids for storage. We chose to implement
the Eulerian method.

∗adi10nst@student.lu.se
†adi10aso@student.lu.se

Using this method the flow is represented by a vector field U for
velocity and a scalar field P for pressure. These fields vary both in
time and space. When initial state of the fields are known then the
fluid can be represented by the Navier-Stokes equations (1, 2):

δu

δt
= −(u · ∇)u− 1

ρ
∇p+ υ∇2u+ F (1)

u · ∇ = 0 (2)

Eq (1) consists of four terms, each describing a factor that in-
fluence the flow of the fluid. These factors are called advection,
pressure, diffusion and external forces. All of them are accelera-
tions and they represent different physical phenomena.

Advection: Advection (3) describes how a flow transports other
objects and itself. This term represents how the flow transports
itself.

−(u · ∇)u (3)

Pressure: Pressure builds up when molecules collide, this pres-
sure then pushes other molecules away and the movement propa-
gates though the fluid. This is represented by the pressure term (4).

−1

ρ
∇p (4)

Diffusion: Fluids can have a resistance to movement. This resis-
tance is described by the viscosity of a fluid. High viscosity leads
to slower movement e.g. honey, low viscosity leads to more move-
ment e.g. smoke. Viscosity leads to diffusion of the flow and is
represented by this term in the equation (5).

υ∇2u (5)

External forces: This term represents external forces such as
gravity, pushing objects, wind etc. 6.

F (6)

2.2 Solving the Navier-Stokes equations
To solve the different terms of the Navier-Stokes equations we need
to use some vector mathematics. The following formulas describe
the different uses of the nabla operator ∇ that are used to solve the
different terms:

Gradient

∇p = (
δp

δx
,
δp

δy
)⇒ pi+1,j − pi−1,j

2δx
,
pi,j+1 − pi,j−1

2δy
(7)

Divergence

∇ · u =
δu

δx
+
δu

δy
⇒ ui+1,j − ui−1,j

2δx
,
vi,j+1 − vi,j−1

2δy
(8)

Laplacian

∇2p = (
δ2p

δx2
,
δ2p

δy2
)⇒ pi+1,j − 2pi,j + pi−1,j

(δx)2
,
pi,j+1 − 2pi,j + pi,j−1

(δy)2

δx=δy
=

pi+1,j + pi−1,j + pi,j+1 + pi,j−1 − 4pi,j
(δx)2

(9)

Worth noting is that the right side of the arrow in (7), (8) and (9)
is the finite difference form of the left side.

It is only possible to solve the Navier-Stokes equations analyt-
ically in a few simple cases so we use an incremental numerical
approach instead.

To compute the new velocity field at a time step we can simply
take the previous velocity field, apply advection, calculate diffusion
and add influence of external forces. This result will however vio-
late the second part of the Navier-Stokes equations, the divergence
will no longer be zero. This can be solved by using the Helmholtz-
Hodge decomposition theorem:

w = u+∇p (10)

Where w is the non-divergence free velocity field, u is the diver-
gence free velocity field and p is the pressure field. From this theo-
rem we get:

u = w −∇p (11)

Basically we can get the divergence free field by subtracting the
gradient of the pressure field. Now we just need a way to compute
the pressure field which is given by applying the divergence to the
same theorem (10):

∇ · w = ∇ · u+∇ · ∇p = ∇ · u+∇2p (12)

Since (2) demands that divergence of u is zero this leads to:

∇2p · w = ∇ · w (13)

This is a poisson-equation which can be solved with Jacobi itera-
tions using w as input, which will be presented in 2.3. Since we
now know how we can get pressure we just need an exact way of
calculating w. From the definition of the dot product we know that
we can compute the projection of a vector on a unit vector by apply-
ing dot product between the two vectors. This operation can also be
applied to vector field. We can take advantage of this and define a
projection operation P that takes the field w and projects it onto the
divergence-free field u. Now we can apply this projection operation
to (10) and since P(w) = P(u) = u we get:

P(∇p) = 0 (14)

Now we can apply the same projection operation to the first Navier-
Stokes equation (1):

P(δu
δt

) = P[−(u · ∇)u− 1

ρ
∇p+ υ∇2u+ F] (15)

Since u is divergence free so is it’s derivative so the projection dis-
appears from the left hand side of the equation. Combining this
with what we know from (14) we arrive at the following equation
which is the final equation that our implementation will solve.

δu

δt
= P[−(u · ∇)u− 1

ρ
+ υ∇2u+ F] (16)

This is an equation we can compute at each time step. We have
access to the velocity field u and can simply apply the three inner
operations, add them together to produce w and apply the projection
operation to arrive at the final result which is the new velocity field.

Typically, the different components are not computed as in (16)
but instead calculated using state transformations. Each component
takes a vector field as input, performs calculations and produces a
new vector field that is used as input to the next component. We
therefore define S as the solution to (16) for a single time step. S
can be split into operations (applied right to left):

S = P ◦ F ◦ D ◦ A(u) (17)

A = Advection, D = Diffusion, F = External Forces, P = Projection
Advection To compute the advection at the current time we need

to access the velocity at the previous time step. Since we intend to
implement this in fragment shaders and we cannot change the posi-
tion of the current pixel, we instead back trace the velocity for each
grid cell and copy the contents from this position into the current
pixel. This can be applied on velocity, density, temperature etcetera.

Diffusion

(I − υδt∇2)u(x, t+ δt) = u(x, t) (18)

where I is the identity matrix.
This is a Poisson equation that we solve using Jacobi Iterations

(described in 2.3).

2.3 Solving the Poisson equations
To solve the diffusion equation (18) as well as the Poisson pressure
equation (4) we use several Jacobi iterations. Both equations can
be expressed on the form:

x
(k+1)
i,j =

x
(k)
i−1,j + x

(k)
i+1,j + x

(k)
i,j−1 + x

(k)
i,j+1 + αbi,j

β
(19)

This equation is evaluated once per iteration and the result is given
as input for the next iteration. The initial input has to be guessed
and in our implementation the initial guess is 0. After an amount of
iterations (20-40) the result starts to converge towards the desired
value. There are other solutions than Jacobi that requires less itera-
tions, but are far more complicated to implement on the GPU hence
we chose to use Jacobi.

2.4 Initial and boundary conditions
In order to have a fully functioning model, we need to know what
the initial state is for our velocity and pressure. We set the initial
velocity and pressure to zero throughout the grid. We also need to
know and what happens at the boundaries; we need to specify our
boundaries and boundary conditions. We imagine our simulation
takes place in a box that is positioned so that its entire contents is
visible on the screen. To get the effect of our fluid being contained
in this box, we wanted the fluid to ”bounce” on contact with the
walls. Therefore our velocity boundary condition was to take the
negative value of the nearest cell. For pressure we set the bound-
ary to have the same pressure as the nearest cell to get a realistic
simulation.

3 Implementation
From mathematical background we get (17) which we can imple-
ment. Every time step is the same, this code represents a single time
step:

u = a d v e c t (u) ;
u = d i f f u s e (u) ;
u = a d d F o r c e s (u) ;
u = p r o j e c t (u) ;

Where the project operation consists of two operations:

p = c o m p u t e P r e s s u r e (u) ;
u = s u b t r a c t P r e s s u r e G r a d i e n t (u , p) ;

This code could be implemented both on the CPU and the GPU,
however as stated in the introduction, the parallel nature of the GPU
makes it a much better match. To implement this kind of algorithm
on the GPU we need to learn how to do this kind of computation on
the GPU. In Renderchimp the algorithm looks somthing like this:

RCInit():

• Create quad that span the entire grid

• Setup textures to store all the different values at the grid
cells(velocity, temperature, pressure, etc)

• Initiate the fragment shaders that will perform the neccessary
calculations

RCUpdate():

• Render the quad into the different buffers using the different
shader programs that perform the operations(advect, diffuse,
divergence etc.)

• Iterate Jacobi renders to compute the pressure

• Subtract the pressure gradient to arrive at the final velocity
field

To run the simulation we need at least two buffers that we render
to, velocity and pressure. Running only this simulation is however
not very interesting. To get something interesting our of it you need
to put somthing into the fluid that is carried through the flow and
can be visualized. Since we focused on making smoke we chose to
visualize this by adding a buffer for the density and a buffer for
temperature. In reality the temperature of smoke influences the
velocity of the flow, hot smoke rises faster and cool smoke slows
down. This also creates a swirliness. Smoke without this swirli-
ness doesn’t look like smoke at all so we had to implement another
operation in our algorithm, bouyancy. This operation takes the tem-
perature field, compares the temperature to the ambient temperature
and adds a value to the velocity. Since changes in temperature now
causes the velocity to change we no longer need to add forces di-
rectly to the velocity, but can instead add an impulse in temperature
to start the flow.

Another property of smoke is that it has a very low diffusion. So
low that it really has no effect on visual appearance and therefore
the diffusion operation could be skipped. We also added some sim-
ple interaction where left click moves the temperature and density
impulse to the clicked location and right click lowers the tempera-
ture at the clicked area.

4 Results

Figure 1: Smoke rendered using a combination of density and tem-
perature

Unfortunately, we spent a lot of time struggling with various
bugs in the 2D simulation which meant we did not manage to get

Figure 2: The density texture during simulation

Figure 3: The temperature texture during simulation

a working 3D implementation. This should (at least theoretically)
not be too difficult by using a multiple vector fields instead of just
one and extending the calculations to three dimensions.

Due to the difficulties we had we were not able to experiment
with different kinds of fluids but focused mainly on smoke. We
did however achieve visually pleasing smoke rendering as seen in
figure 1. Figure 2 and 3 are rendered with the same parameters but
shows the density and temperature textures during the simulation.

The performance of the simulation could be greatly improved
by optimizing the implementation. We have not focused on this
but instead focused on making an as simple and straightforward
solution as possible. Possible optimizations are discussed further in
section 5.

5 Discussion
We struggled a lot with small bugs in the 2D simulation resulting
in weird visual artifacts. One particularly persistent bug we believe
was caused by small rounding errors when converting from a RGB-
value in the range 0 to 255 to a float in the range -1 to 1.

We currently use the same grid size for the physics simulation
as the rendered image to simplify the implementation. This is not
optimal and reducing the grid size for the simulation would dramat-

ically increase performance without having a great negative impact
on the final result. With this optimization we could increase the
number of Jacobi iterations to get an even more realistic result.

Normally in a game you don’t want smoke covering an entire
scene, but only around certain objects such as a chimney or a fire.
Since the smoke would dissipate it wouldn’t reach the boundaries
of the grid and thus should not produce any weird looking artifacts.

Another solution that we considered was to use OpenCL for the
computational parts of our program to make it even more effective.
After some research however we agreed that it would be to much
work to learn OpenCL as well as implement our program to be able
to finish in time.

References
CRANE, K. 2008. GPU Gems 3. In GPU Gems [Nguyuen and

Corporation 2008], ch. 30. Real-Time Simulation and Rendering
of 3D Fluids.

FERNANDO, R. 2006. GPU gems: programming techniques, tips,
and tricks for real-time graphics. Addision-Wesley.

HARRIS, M. J. 2006. GPU gems: programming techniques, tips,
and tricks for real-time graphics. In [Fernando 2006], ch. 38.
Fast Fluid Dynamics Simulation on the GPU.

NGUYUEN, H., AND CORPORATION, N. 2008. GPU Gems 3.
GPU Gems. Addison Wesley Professional.

