
Cache Aware Programming on Multicores

Contents of Lecture 8
Cache Misses
Reduce Communication
Impove Locality
Data Prefetching

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 1 / 19

jonasskeppstedt.net

Cache memories

Faster but smaller memories than normal RAM
When a variable is in the cache (a cache hit), reading it is fast
At a cache miss, a block with e.g. 128 bytes is copied from RAM
A cache miss and can take hundreds of clock cycles
Except in Sequential Consistency, writing to the cache is also fast
In SC it depends on if the cache already owns the cache block
Recall cache block ownership in cache coherence protocols
The time it takes to copy data from RAM is called the cache miss
latency

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 2 / 19

jonasskeppstedt.net

Locality of references

Temporal locality: After a variable X has been used, it is likely it will
be used again soon
Spatial locality: After a variable at address &X has been used, it is
likely a variable at address &X+1 will be used soon
Caches are for programs with locality of references
Fast programs need to have locality of references

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 3 / 19

jonasskeppstedt.net

Cache misses in multicores

Misses in uniprocessors:
compulsory misses (cold misses),
capacity misses, and
conflict misses

In addition to those found in sequential programs, we also have:
True sharing miss: essential miss since it communicates data
False sharing miss: non-essential miss.

False sharing misses are due to using a large cache block size
If only one variable at a time would be copied from RAM they would
disappear
But that would be inefficient

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 4 / 19

jonasskeppstedt.net

False Sharing Miss

Assume a cache block size of two words.

Access Processor 1 Processor 2 Comment
1 Load 0 Cold miss
2 Load 1 Cold miss
3 Store 1 Invalidation
4 Load 0 False sharing miss

Effects of larger cache block size:
Increased benefit from spatial locality (prefetching within block)
The larger risk of suffering from false sharing.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 5 / 19

jonasskeppstedt.net

True Sharing Miss

Access Processor 1 Processor 2 Comment
1 Load 0 Cold miss
2 Load 1 Cold miss
3 Store 1 Invalidation
4 Load 0 True sharing miss
5 Load 1 Reads a new value

While we cannot know it at the time of Access 4, that miss is a true
sharing miss (which we realize at Access 5).

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 6 / 19

jonasskeppstedt.net

Reducing false sharing

Suppose each thread should count something.
The following will result in false sharing

int count[NUM_THREADS];

/∗ ∗/

count[thread->index] += 1;

It is better to collect the variables a thread should use in a struct that
only that thread will modify.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 7 / 19

jonasskeppstedt.net

Reduce also true sharing

Ideally, each thread should work on its own data and no other should
be involved. No communication and no true sharing.
This is normally impossible for most algorithms, though.
True sharing can be reduced with clever decisions of which thread
should work on which data

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 8 / 19

jonasskeppstedt.net

Examples of tricks to exploit caches better

Use smaller data structures: an int instead of a pointer.
Use arrays instead of linked-lists if possible
If a node’s neighbors never change you can do:

struct node_t {
edge_t* a; /∗ array of edges . ∗/
int n; /∗ neighbors . ∗/

};
struct edge_t {

int v; /∗ the other node . ∗/
int i; /∗ edge number . ∗/
int b; /∗ di rect ion from lab0 ∗/

};

Keep track of the capacities and flows somewhere else.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 9 / 19

jonasskeppstedt.net

Examples of tricks to exploit caches better

Pad structs to fit cache blocks better — to avoid multiple cache
misses per struct
This can be done with an array in the struct with a suitable size if you
know the cache block size.
Put struct fields used at nearly the same time near each other
Avoid putting smaller and larger struct fields next to each other in a
struct to avoid padding between them.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 10 / 19

jonasskeppstedt.net

Cachegrind

valgrind --tool=cachegrind ./a.out < 4huge.in
f = 9924
==2250753==
==2250753== I refs: 182,135,320
==2250753== I1 misses: 2,006
==2250753== LLi misses: 1,916
==2250753== I1 miss rate: 0.00%
==2250753== LLi miss rate: 0.00%
==2250753==
==2250753== D refs: 79,372,178 (51,287,248 rd + 28,084,930 wr)
==2250753== D1 misses: 1,690,859 (1,510,713 rd + 180,146 wr)
==2250753== LLd misses: 1,416,910 (1,239,883 rd + 177,027 wr)
==2250753== D1 miss rate: 2.1% (2.9% + 0.6%)
==2250753== LLd miss rate: 1.8% (2.4% + 0.6%)
==2250753==
==2250753== LL refs: 1,692,865 (1,512,719 rd + 180,146 wr)
==2250753== LL misses: 1,418,826 (1,241,799 rd + 177,027 wr)
==2250753== LL miss rate: 0.5% (0.5% + 0.6%)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 11 / 19

jonasskeppstedt.net

operf on Power

ophelp lists all events that can be sampled
operf -e PM_LD_MISS_L1:100000 ./a.out < big/002.in

opannotate -s a.out
83 0.8820 : while (p != NULL) {
551 5.8555 : e = p->edge;

5625 59.7768 : p = p->next;
:

455 4.8353 : if (u == e->u) {
576 6.1211 : v = e->v;

: b = 1;
: } else {

773 8.2147 : v = e->u;
: b = -1;
: }
:

1221 12.9756 : if (u->h > v->h && b * e->f < e->c)
: break;
: else

63 0.6695 : v = NULL;

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 12 / 19

jonasskeppstedt.net

Data Prefetching

The purpose is to fetch data so that it is available in the cache when
it’s needed.
Compilers and hardware can do this for matrix codes.
This is very difficult on recursive data structures such as lists or trees.
Suppose we have a loop which traverses a list or tree.
To prefetch a node needed e.g. three iterations ahead, we need to
dereference multiple pointers where each dereference can result in a
cache miss.
In a superscalar processor with out-of-order execution of load
instructions (i.e. a relaxed memory consistency model), this can
possibly be useful.
In a processor with a blocking cache, the pipeline will halt at the first
cache miss and make the prefetching almost useless.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 13 / 19

jonasskeppstedt.net

An Approach to Prefetching Nodes

A problem with lists and trees is that we usually do not know the
address of a node needed in the future.
This is true if we allocate memory with standard methods such as
malloc

However, assume the size of a data structure is fixed for some time.
Then we can put pointers to the nodes in an array in the expected
order of traversal, and then we may be able to prefetch nodes
sufficiently in advance.
This can be useful if we will traverse a data structure multiple times.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 14 / 19

jonasskeppstedt.net

More difficulties

For shared data we intend to modify, it can be useful to prefetch it in
exclusive mode, meaning that we request ownership of the cache block.
The effect of this is:

Reduced write penalty in a sequentially consistent machine.
Reduced write traffic in all machines.

However, with the ownership requests, there is a risk that we
introduce additional cache misses!
Measurements are needed, but note they are dependent both on the

Input data
Machine parameters such as number of processors, cache sizes, and
latency.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 15 / 19

jonasskeppstedt.net

Prefetch with GCC

void __builtin_prefetch(const void *addr, int write, int loc);

for (i = 0; i < n; i++) {
a[i] = a[i] + b[i];
__builtin_prefetch(&a[i+j], 1, 1);
__builtin_prefetch(&b[i+j], 0, 1);

}

The loc has values in 0..3 with 0 no temporal locality and 3 most
temporal locality
Some CPU’s have extra buffers to save temporary data there instead
of polluting the cache
Data prefetch does not generate a segmentation fault if the address is
invalid.
The expression computing the address obviously must be valid.
You can use this on the competition if you want.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 16 / 19

jonasskeppstedt.net

Data Prefetching on Power

The stride is the distance between addresses used
Several processors, including Power, do prefetching of array references
in hardware
Of course, the CPU does not know it is arrays
They work by discovering a constant stride and then predict which
blocks will be required.
Modern processors (including Power) have prefetch instructions: dcbt
and dcbtst

Data cache block touch (for store)
Power also supports software programmable prefetch engines.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 17 / 19

jonasskeppstedt.net

Software Controlled Stream Prefetch on Power

Four data streams can be prefetched concurrently
The basic instruction is dst — data stream touch
One of the instruction fields is a two bit stream selector
Other parameters:

Prefetch unit size S in 16-byte blocks: 0..31 where 0 means 32.
Number of units to prefetch
Distance D in bytes between two units (i.e. stride)

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 18 / 19

jonasskeppstedt.net

Cache-miss initiated software controlled prefetch engines

Hardware knows what is happening now and the compiler what will
happen in near the future

Treat L2 cache misses as light weight exceptions — there soon will not
be much to do for the processor to do anyway.
Such exceptions do not involve the OS kernel but simply jump to a
special place in the program.
For certain references in certain loops, the compiler has created an
exception handler which will program a prefetch engine.

The exception handler is a part of the function’s control flow graph so
it has access to all local variables which are register allocated both for
the function and the exception handler.
Therefore the exception handler can compute what to prefetch while
the L2 cache miss is being serviced.
The instruction overhead of always prefetching is removed.
Knowing whether to insert prefetch instructions or not can be
impossible, e.g. for memcpy.

Jonas Skeppstedt (jonasskeppstedt.net) Lecture 8 2023 19 / 19

jonasskeppstedt.net

