Xilinx Vivado/SDK Tutorial

(Laboratory Session 1, EDAN15)

Flavius.Gruian@cs.lth.se

March 21, 2017

This tutorial shows you how to create and run a simple MicroBlaze-based system on a Digilent Nexys-4 prototyping
board. Such a system requires both specifying the hardware architecture and the software running on it. These two are
then combined into one FPGA configuration, which is used to configure the Artix-7 FPGA located on the Nexys-4 board.

note Please be aware that, as with any complex tool chain, the software we use in the lab may contain bugs as well as
discrepancies between different versions. The actions described in this tutorial were carried out for Vivado version
2016.4, so there might be inconsistencies with your current tool chain. With a bit of flexibility, similar actions can
be carried out in your lab setup.

The Sample Design

This tutoriaE] revolves around creating a system (hardware and software) that can output a simple message via the UART
(in our case over USB-UART) and blink some leds on the board. The simplest of programmable hardware architectures
that can be built involves a single processor, a MicroBlaze in our case, and some minimal support for it (memory,
interconnect). On top of this, the functionality for communicating over the UART is needed. Furthermore, without great
effort, one can add functionality for sensing and controlling other physical components present on the Nexys-4 board
(such as push buttons, switches, temperature sensor, accelerometer).

Naturally, a programmable hardware architecture will require a program (software) to run on it. In a second phase,
the tutorial will address the steps needed to build an simple software environment via Xilinx SDK.

Finally, the last part of the tutorial describes how to finally configure the FPGA with the hardware and software you
just built, how to run your design and actually display the output of the UART.

An simplistic overview of the design flow used for building the whole system is depicted in Figure[I] Note that similar
steps are taken both on the hardware and on the software flows, but the terminology is somewhat different for historical
reasons.

Creating the System Architecture (Hardware)

Hardware architectures are created using Xilinx Vivado, a GUI that helps you to specify
e which processors, memory blocks and other soft IPs (peripherals) to use
e how the different IPs are interconnected
e the memory map, i.e. for addresses for memory mapped IO/peripherals

e how the different input/output signals map to actual pins on the FPGA and thus resources on the board

1This document is loosely based on the Lab 3: Using the Embedded MicroBlaze Processor from the| Xilinx Embedded Processor Hardware
Design, UG940 (v2016.3) October 19, 2016, For the readers interested in more details we strongly recommend the UG940 document.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug940-vivado-tutorial-embedded-design.pdf

Software Flow
SDK

Hardware Flow
Vivado

(Build Model) (Write Program)
v
y

y .
_ Compile to
(Synthesize) Intermediate Representation
y

/ arch. \
Implement ! (Generate Assembly)

v

Generate Executable
(ELF)

/
(Merge to One Configuration
v

Run on Nexys-4

Generate
Bitstream

Figure 1: Overview of the Design Flow in this Tutorial (simplistic)

The output from Vivado is that part of the FPGA configuration that describes the hardware of your system. The FPGA
and board resources require this configuration to emulate the hardware architecture you described in Vivado.
The hardware architecture in this tutorial, depicted in Figure [2| will include:

e A processor: MicroBlaze
e Associated local memory, dual ported - one port for data, one for instructions

e A few peripherals (IPs): UART (handling serial connections), GPIO (handling onboard leds), Timer (for getting
performance data)

e A bus connecting the peripherals with the processor: AXI

A clock generator and a reset generator associated with the whole system

clk Instr. port A
CPU - Local
(MicroBlaze) |q——p Memory
rst Data port B
\
< Peripheral Bus (AXI) >
A \ A
\/ \ \/
GPIO)
UART (LEDs) Timer

Figure 2: Overview of the Hardware Architecture in this Tutorial

1 Invoke the Vivado IDE and Create a Project

1. Open the Vivado IDE by clicking the desktop icon or by typing vivado at a terminal command line. From the
Quick Start page (Figure [3]), select Create New Project. The New Project wizard opens.

2. In the Project Name dialog box, type the project name and location.

® N>

Quick Start

i i - g
' —I8 -
= il

Create New Project Open Project Open Example Project
Tasks
/l £': I“i
=1
f’ll g)]
Manage IP Open Hardware Manager Xilinx Td Store

Information Center

Documentation and Tutarials Quick Take Videos Releaze Notes Guide

Figure 3: Vivado Quick Start Page

note Note that path cannot contain spaces. Also, due to group policies in our Windows machines, you will only be
able to properly work with the project from certain directories. Make sure to locate all your projects
under C:/Users/user-id/Program/ or you will not be able to run certain steps! At the end of each
lab session you may want to save your project on H:, to be able to use it on another machine.

Make sure that Create subdirectory is checked. Click Next.
In the Project Type dialog box, select RTL Project. Click Next.

In the Add Sources dialog box, ensure that the Target language is set to VHDL or Verilog. Leave the
Simulator Language set to its default value of Mixed. Click Next.

In Add Existing IP dialog box, click Next.
In Add Constraints dialog box, click Next.
In the Default Part dialog box, select Boards and choose Nexys-4, see Figure 4l Click Next.

Review the project summary in the New Project Summary dialog box before clicking Finish to create the
project.

Create an IP Integrator Design

. From the Flow Navigator window (usually leftmost in Vivado), under IP Integrator item, select Create Block

Design. The Create Block Design dialog box opens, as in Figure

Specify the IP subsystem design name. For this step, the tutorial will use the default value, but any name without
spaces will do. Leave the Directory field set to its default value of <Local to Project>.

Leave the Specify source set drop-down list set to its default value of Design Sources.
Click OK in the Create Block Design dialog box, shown in Figure

In the Block Design area, Diagram tab should look like in Figure[6} You can either select Add IP here, or find the
Add IP button on the left side of the Diagram tab (you will use this button when the design is not empty).

As shown in Figure[7] type micr in the Search field to find the MicroBlaze IP, then select MicroBlaze and press
the Enter key.

note The IP Details window can be displayed by clicking CTRL+Q key on the keyboard.

-

¢ New Project

Default Part

4 Filter/ Preview

Select: § Parts

B Cmod A7-15t
B Cmod A7-35t

' MNexysd
& Mexys4DDR.

digilentinc.com B.0

digilentinc.com C.1

Choose a default Xilinx part or board for your project. This can be changed later.

5 xc7a35tcpo236-1
C7al00tcsg324-1

& xc7a100tcsg324-1

324

324

11 50
1.1 135

Vendaor: |.|5.II - |
Display Name: |Al| - |
Board Rev: | Latest - |
Reset All Filters
Search: |Qv - |
)) .) Blodk
Display Mame Vendar Board Rew Part /0 Pin Count File Version RAMs
B arty 27-7010 digilentinc.com A.0 i xc72010dg400-1 400 1.0 =]
B Arty Z7-7020 digilentinc.com A.0 i wc72020dg400-1 400 1.0 140
B Arty digilentinc.com C.0 5 xc7a35tcsg324-10 324 1.1 50
@ Basys3 digilentinc.com C.0 i xc7a35tpg236-1 236 Ll 50
digilentinc.com B.0 & xc7alStepg236-1 236 1.1 25

Lz]

B Mexys Video digilentinc.com A.0 & xc7a200isbo454-1 454 1.1 385
B 7adbaaed R Sy ER—— - B s T WA nADA A ATA 4 n 4.An
4| i |
[< Bark][Next> | Ersh | [Cancel

Figure 4: Select the Nexys-4 Board as Target.

¢ Create Block Design | = ‘
Please specfy name of block design. '
Design name: ‘design_l |
Directory: ‘ & <local to Project= - |
Spedfy source set: ‘ () Design Sources hd |
B (o]
4

Figure 5: Name Block Design

This design is empty. Press the ﬁ button to add IP.

Figure 6: Add IP

IP Details Y
Search: micr (3 matches)
Name: MicroBlaze

{F MicroBlaze Debug Module {(MDM) CSEI 10.0 Rev. 1)
{F MicroBlaze MCS Interfaces: AXI4, AXI4-Stream

Description: The MicroBlaze 32 bit soft processor core, providing an instruction -
set optimized for embedded applications with many I
user-configurable options. MicroBlaze has many advanced
architecture features like Instruction and Data-side cache with AXI
interfaces, Floating-Point unit {FPU), Memory Management Unit
(MnaU), and fault tolerance support. Itis highly recommended to
create MicroBlaze systems within Vivada IP Integrator, to enable
export to the Xilinx Software Development Kit (SDK) for software L
development.

m

Status: Production

License: Induded
Change Log: View Change Log
EMTER to select, ESC to cancel, Ctrl+Q) for IP details | Vendor: Xilin, Inc. -

Figure 7: Search Field

Use the Board Tab to Connect to Board Interfaces

There are several ways to use an existing interface in IP Integrator. Use the Board tab to instantiate some of the interfaces
that are present on the Nexys-4 board.

1. Click the Board tab. You can see as in Figure [8| that there are several components listed in that tab. These
components are present on the Nexys-4 board. They are listed under different categories in the Board window.

Board T 0O =
A = S |[E] D pF p*
& Mexys4
=+ 7 Segment Display (0 out of 2 connected)
7 Segments
3 Anodes
=& Clock (0 out of 1 connected)
: L(r System Clock
== Ethernet (0 out of 2 connected)

Ethernet MDIO MDC
Ethernet RMII
External Memory {0 cut o
Block RAM

Onboard Micro 50 Slot
QSPI Flash

GPIO | tof 4
2RGB LEDs
5 Push Buttons
16 LEDs

16 Switches

1 Peripherals (0
Accelerometer

Temp Sensor

1 Pmod (0 out of 5 connected)
Connectar JA
Connector 18
Connector 1C
Connector 1D
Connectar JXADC

-5 Reset {0 out of 1 connected)
i Or Reset
E-{E UART (0 out o

0 USB UART

Figure 8: Using the Board Part Interfaces

2. From the Board window, select System Clock from the Clock folder and drag and drop it into the block design
canvas. This will allow you to use the 100MHz clock generated on board and add clocking logic to your design.
(Since our designs are all synchronous, clocks will always be required!) Click OK in the Auto Connect dialog box.

3. From the Board window, select 16 LEDs from GPIO folder and drag and drop it into the block design canvas.
This will allow you control the 16 on/leds on the board. Click OK in the Auto Connect dialog box.

4. From the Board window, select Reset and drag and drop it into the block design canvas. This will allow you to
use the Reset push button on the board to reset your system. Click OK in the Auto Connect dialog box.

5. From the Board window, select USB UART and drag and drop it into the block design canvas (see Figure E[)
This will allow you to communicate via the UART interface of the board with your design. This will be used to
display simple text messages from your software running on your board, in a console connected with the board via
a serial. Click OK in the Auto Connect dialog box.

Board T 0O 0r
A I =(|E|® vt »*
& Mexys4
=X 1 7 Segment Display (0 out of 2 connected
¥ 7 Segments
-#0) 8 Anodes
B Clock (1 out of 1 con

L@ System Clock
| Ethernet (0 out of 2 connected)
i) Ethernet MDIO MDC

“40) Ethernet RMII

) External Memory (0 out of 3 connected)
Block RAM

Onboard Micro 50 Slot

) Q5SPI Flash

) GPIO (1 out of 4 connected)

2 RGE LEDs

5 Push Buttons

16 LEDs

L) 16 Switches

) Peripherals (0 out of 2 connected)
-+ Accelerometer

Temp Sensar

mod (0 out of 5§ connected)
Connector JA

Connector JB

Connector JC

Connector 1D

Connector JXADC

Figure 9: Selected Board Interfaces

6. The block design should now look like in Figure

Run Block Automation

1. Click Run Automation, displayed in Figure

2. The Block Automation dialog box opens as shown in Figure[I2} Here we recommend you set the following parameters
(for your MicroBlaze processor):

a.
b.

C.

set Local Memory to 64KB.
leave the Local Memory ECC to its default value of None.

leave the Cache Configuration to its default value of None. Our design will not use cache for now, but for
designs using off-chip memory this is a must, or the system will be too slow.

change the Debug Module option to None. To simplify the design we will not use debug, but if you want to
run your program step-by-step on the board, a debug module will be needed. Refer to the UG940 document
Lab 8 for more details on how to set up a debug module and also an integrated logic analyser ILA used to
monitor design signals.

leave the Peripheral AXI Port option to its default value of Enabled.

make sure the Clock Connection option is set to the 100MHz clock output of the clock wizard:
/clk_wiz_0/clk_outl (100MHz).

3. Click OK.

This generates a basic MicroBlaze system in the IP Integrator diagram as shown in Figure

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug940-vivado-tutorial-embedded-design.pdf

J:—- Diagram X Iﬂ Address Editor %

[# design_1

M

i| E Designer Assistance available. Run Block Automation

o

CRSQuPi IEH P & m|E

s
-

dk_wiz_0

reset [> et clk_outl
sys_clock [» ch_inl locked

Clocking Wizard
axi_gpio_0

[> led_16bits

AXI GPIO
axi_uartlite_0

[usb_uart

AXT Uartlite

microblaze_0

||| INTERRUPT

== Micro3laze el

Reset

MicroBlaze

Figure 10: Block Design after Connecting the UART

Io Diagram X lﬂ, Address Editor %
#[] % design_1
Q:| (% Designer Assistance avaiable. Run Block Automation

Qg

Figure 11: Run Block Automation

~

¢ Run Block Automation S

Automatically make connections in your design by chedking the boxes of the blocks to connect. Select a blodk on the |eft to display its
configuration options on the right. ‘

Q, =1-{¥] Al Automation (1 out of 1 selected) Torer
MicroBlaze connection automation generates local memory of selected size, and caches can
be configured. MicroBlaze Debug Module, Peripheral AXT interconnect, Interrupt Controller, a
dock source, Processor System Reset are also added and connected as needed.

ik 4

Instance: /microblaze_0

Options
Local Memory: a¥E -
Local Memory ECC: Mone -

Cache Configuration: |Mome

Debug Maodule: Mane -
Peripheral AXI Port: | Enabled
Interrupt Controller: [

Clock Connection: Jdk_wiz_0/dk_outl (100 MHz)

oK] [Cancel

Figure 12: Run Block Automation Dialog Box

Use Connection Automation

Vivado also helps you connecting the blocks present in your design. Run Connection Automation provides several options
that you can select to make connections.

1. Click Run Connection Automation as shown in Figure [T4]

2. The Run Connection Automation dialog box opens, as in Figure Check all the interfaces in the left pane as
in the figure. You may leave unchecked interfaces, if you plan to connect them at a later time. You should also
inspect the options you have for the items you select in the left pane. However, at this point there is no need to
change anything.

3. Once you click OK the blocks in your design will be connected.

You may use Run Connection Automation every time you add new IPs to your design, which need to be connected to
the rest of the system.

Adding More IPs

Some designs require more IPs than the one we introduced until now. These can be added the same way you added the
MicroBlaze processor, by clicking the Add IP button, as in the text referring to Figure [f] Let us add a timer, which
will be needed to record the performance of our algorithms in the later labs.

1. Select Add IP button in the left side of the Diagram tab, Block Design area.
2. As shown in Figure[I0] type time in the Search field, select AXI Timer and press the Enter key.

3. You should now Run Connection Automation again.

Lo

4. Finally, you may also have Vivado redraw the block diagram by clicking the Regenerate Layout button ?:
found in the same toolbar with the Add IP button.

At this point your block diagram should look similar to the one in Figure[I7] The relative placement of your IPs might
be slightly different.

J:'“ Diagram X lﬂ Address Editor X I S R Eap
3] 2 design_1 »
Q_;,| E Designer Assistance available. Fun Connection Automation
Q\. clk_wiz_0
Y
[oy] reset [etk outl
— sys_dock[> di_inl locked
H .
%‘ Clocking Wizard
'I':.F axi_gpio_0
L)
Q, {>led_16bits
=
==
e AXT GPIO
o axi_uartiite_0
-K Dusb_uart
E 9 AXT Uartiite
: ﬁ microblaze_0
2 [|[-pInTERRUPT . . o]
o Micro3laze -l
M_AXI DP-afi:
4+
- MicroBlaze
microblaze_0 local_memory
rst_clk_wiz_0_100M
E 1_sync_ck mb_reset
Qext_reset_in bus_struct_resst{0: 0]
Qlaux_reset_in peripheral_reset{0:0]
= mb_debug_sys_rst interconnect_aresetn{0:0
dem_locked peripheral_aresetn{0:0
Processor System Reset
] [L
Figure 13: MicroBlaze System
E= Diagram X lﬂ Address Editor X]
#] 4 design_1 »
il G Designer Assistance available. Run Connection Automation
Figure 14: Run Connection Automation
i -
¢ Run Connection Automation - - | %
Automatically make connections in your design by checking the boxes of the interfaces to connect, Select an interface on the left to display its
configuration options on the right. '

Q, ERFIRAI Automation (3 out of 3 selected)
{F axi_gpio_0

{I} 5_AxI

4F axi_vartlite_0

ﬂ S_AXI

{F rst_ck_wiz_0_100M

= ext_reset_in

& B

Select an interface pin on the left panel to view its options

Figure 15: Run Connection Automation Dialog Box

—

| Name: AXI Timer
Version: 2.0 (Rev. 13)
Interfaces: AXI4

Description: The AXI Timer/Counter is a 32/64-bit timer module that attaches to the
AXI4lite interface

Status: Production r
License: Induded
Change Log: View Changs Log
Vendor: Xilin, Inc.

VLNV: xilinx.com:ip:axi_timer: 2.0 L
Repository: C:/Software/Vivado,/20 16.4/data/p

[ENTER to select, ESC to cancel, Ctrl+Q for IP details |

Figure 16: Adding a timer IP

%
X

Jg-n Diagram X lﬂ, Address Editor X ? 0O

#[] i design_1 »

microblaze_0_axi_periph

L1l
:

AXT Interconnect

microblaze_0_local_memory

microblaze_0

CeOQAW G BH AL DT

*
c

R INTERRUPT Il 1l

— Microslaze’ | =)

rst_dk_wiz_0_100M __|—— o
siowest_sync_ck mb_resat MicroBlaze I

Processor System Reset

‘Oocking Wizard

Figure 17: MicroBlaze Connected to UART, GPIO, and AXI Timer

10

Inspecting and Manually Changing a Design

There are ways to individually alter connections and IPs without appealing to the automatic Vivado features for connec-
tions and block automation. We will illustrate some of these capabilities next.

In particular there is a design flaw in our system, which will be identified later on during synthesis and generation of
the FPGA configuration by the design rules checking (DRC), but is not obvious at this point. In particular, the Reset
input for the system comes from a button, meaning it’s driven low (logic 0) when pushed. However, as it is right now
the clock logic requires a reset active high (logic 1). A fully implemented system will be thus always reset. .. unless we
push the reset button! Let us make sure the two signals have the same polarity:

1. Select the reset input by clicking on it in the block design Diagram. Information about the selected item will be
displayed as in Figure [I8] Notice that the Polarity is Active Low.

External Port Properties T_ 0O = “am

PN

Cr reset

Mame: reset
sys_chock inl

Direction: Input

Net

Clodk Port: -

Polarity: Active Low *

General | Properties

Figure 18: Reset Input Port Properties

2. Now let us examine the clocking logic. Double click on the Clocking Wizard block. This should bring up the
Re-customize IP dialog block for the Clocking Wizard, as shown in Figure The parameters for all IPs can be
inspected and changed via this dialog box, invoked in a similar way.

3. In the Clocking Output tab, notice the Reset Type section, which is Active High. Change this to Active Low,
as shown in Figure

4. Click OK. Notice the change in the depiction of the Clocking Wizard — the reset port is now called resetn and has
a circle at the input (see Figure . Both of these are conventions indicating that the signal is active low (when
0).

5. Notice that the reset input port and the Clocking Wizard input are no longer connected. Connect the via the mouse
by dragging a line from the reset input port to the input of the Clocking Wizard. Once connected your design
should look like in Figure

The hardware architecture is now complete.

3 Memory-Mapping the Peripherals in IP Integrator

The processor (MicroBlaze) sees its memory and peripherals at different addresses in the address space. Accessing a
specific address may access the memory or a peripheral, depending on what is mapped at that specific address. To
examine the address map (what is mapped where in the address space) select the Address Editor tab, located beside
the Diagram tab in the Block Design window. The memory map should look similar to the one in Figure 23] You may
change any of the mappings here, but Vivado is usually very good at selecting a map that minimizes the address decoding
complexity, so there is no need to change anything here.

4 Validate Block Design

To run design rule checks on the design:
1. Click Validate Design button on the toolbar, or select Tools—Validate Design.
2. The Validate Design dialog box informs you that there are no critical warnings or errors in the design. Click OK.

3. Save your design using Ctrl4S or File—Save Block Design.

11

.
g Re-customize IP

Clocking Wizard (5.3)

@ Documentation @ IP Location

-~ IP Symbel | Resource

Component Name | design_1_dk_wiz_0_0
[Show disabled ports Board rCchdng Options rDutput Clocks rMMCM Settings rSummary
Assodate IP interface with board interface
1P Interface Board Interface
CLK_IN1 sys dock -
CLK_INZ Custom -
EXT_RESET_IN set i
Clear Board Parameters

Figure 19: Re-Customize IP Dialog Box

12

" Board | Clocking Opno@s/"output(bcks rMMCM Settings rsummary

The phase is calculated relative to the active input dodk,

Qutput Freg (MHz) Phase (degrees)

Output Clock Port Name

Requested Actual Requested Actu

dk_out1 dk_out1 100,000 100.000 0,000 0,001
[elk_out2 dk_out2 100,000 0.000
dk_out3 dk_out3 100.000 0.000
dk_out4 dk_out4 100,000 0.000
dk_outs dk_outs 100,000 0,000
dk_outs dk_outs 100,000 0.000
dk_out? dk_out? 100,000 0,000

USE CLOCK SEQUENCING Hladmghecbads
Source Sit

Qutput Clock Seguence Number :
@ Automatic Control On-Chip

1

B () Automatic Control Off-Chip
1 () User-Controlled On-Chip

1 (7) User-Controlled Off-Chip

1

1

1

Enable Optional Inputs { Outputs for MMCM/PLL Reset Type

reset [power_down [input_dk_stopped © ActiveHigh @ Active Low
locked [dkfbstopped

Figure 20: Change Reset Polarity for Clocking Wizard

reset [> %
dk_wiz_0

-gresetn clk_outl

sys _clock[>——=clk_inl locked|

Clocking Wizard
Figure 21: Clocking Wizard Now with Active Low Reset

#

reset [_>—s
Lr&etn clk_out1

sys_clock[»>——=clk_in1 locked|

Clocking Wizard

Figure 22: Clocking Wizard Resetn Connected to the Reset Input Port

o Diagram X | [Address Editor X |

A cel
% E-IF microblaze_0
- B Data (32 address bits : 4G)

Slave Interface Base Mame Offset Address

(=]
S i~ == microblaze_0_local_memory/dimb_bram_if_cntr SLMB Mem 0x0000_0000
E i um axi_gpio_0 5_AXI Reg 0x4000_0000
~um gxi_uartlite_0 5_AXI Reg 0x4060_0000
¢ femm axi_timer_0 5_AXI Reg 0x41C0_0000
=B Instruction {32 address bits : 4G)
‘- mm microblaze_0_local_memory fiimb_bram_if_cntr SLMB Mem 0x0000_0000

Figure 23: System Address Space Map

13

Range

5518
64K
64K
64K

64K

High Address

0x0000_FFFF
0x4000_FFFF
0x4060_FFFF
0x41CO0_FFFF

0x0000_FFFF

5 Generate Output Products

1. In the Sources window (see Figure , select the block design, right-click it and select Generate Output Prod-

ucts. Alternatively click Generate Block Design in the Flow Navigator. The Generate Output Products dialog
box opens (see Figure [25).

Sources ? [R Ead
A= 2 R
1+ Design Sources (1)
¥ Nmldesion_1 (design_1.bd) (12)
-1 Constraints
9--1.-j Simulation Sources (1)
- sim_1 (1)

Hierarchy | IP Sources | Libraries | Compile Order
4 Sources | [Design | [Signals | B Board
Figure 24: Sources Window

¢ Generate Qutput Products %

The following output products will be generated.

p

Preview

Q| B[design_1.bd {0CC per IF)
[l Synthesis
[l Implementation

----- il Simulation

Synthesis Options

(@) Global

() Qut of context per IP

() Out of context per Block Design
Run Settings

Mumber of jobs: | 4

[ty] (oo [o]

Figure 25: Generate Output Products Dialog Box

2. Select Global in Synthesis Options, and click Generate.

3. Click OK in the Generate Output Products dialog box.

6 Create Top-level HDL Wrapper

1. Under Sources, right-click your design and click Create HDL Wrapper

14

2. In the Create HDL Wrapper dialog box, select Let Vivado manage wrapper and auto-update, as in Figure
26l Click OK.

¢ Create HDL Wrapper &

You can either add or copy the HOL wrapper file to the project. Use copy option if you would
like to modify this file.

Options
(7 Copy generated wrapper to allow user edits

(@) Let Vivado manage wrapper and auto-update

[oK] [Cancel

Figure 26: Creating an HDL Wrapper

7 Synthesize Design

1. In the Flow Navigator, click on Run Synthesis. This will take some time, but you can check the progress and the
output messages in the lower right window, Synthesis Log tab (see Figure [27)).

Log

11 Parameter C_DISABLE WARN BHV COLL bound to: 0 - type: integer

CE?J Parameter C EN SLEEF PIN bound to: 0 - type: integer
Parameter C USE URAM bound to: 0 - type: integer

Ej Parameter C _EN RDADDRA CHG bound to: 0 - type: integer

Parameter C_EN RDADDRE CHG bound to: 0 - type: integer
Parameter C EN DEEPSLEEF PIN bound to: 0 - type: integer
Parameter C EN SHUIDOWN_FIN bound to: 0 - type: integer
Parameter C EN SAFETY CKI bound to: 0 - type: integer
Parameter C DISABLE WARN BHV RANGE bound to: 0 - type: integer
Parameter C COUNT_36K BRAM bound to: 16 - type: string

Parameter C COUNI_18K BRAM bound to: 0 - type: string

Parameter C _EST_POWER_SUMMARY bound to: Estimated Fower for IF : 20.388 mW - type: string

INFC: [Synth 8-3491] module 'blk mem gen v3_3_5"' declared at 'c:/Users/flagr/Work/VIvado/project_4/project_4.srcs,

~
~
~

] 1
Synthesis | Implementation | Simulation
= Td Console | (& Messages-. [sl Log | [Reports | 3» Design Runs

Figure 27: Following the Synthesis Log

2. After synthesis finishes, you can choose to have a look at the synthesised design, but finally you should Run
Implementation in the Synthesis Completed dialog box (see Figure . While the synthesis step refers to
refining the design to a generic format (e.g. similar to software being compiled to an intermediate format), the
implementation step generates a design for the specific FPGA on your board (e.g. generating the assembly code
from the intermediate format). Click OK.

8 Take the Design through Implementation

The final result of the hardware design step is a bitstream - which is the low level configuration for the target FPGA.
In principle choosing Generate Bitstream in Flow Navigator will run through all the steps needed to generate this
configuration. If you are running through the process as mentioned in the previous section, and you chose to run
implementation directly, a new dialog box will open, as in Figure Choose Generate Bitstream and click OK. To
make an analogy with a software flow, if the implementation step generates the assembly code, the generate bitstream
step creates the machine code. Note that this is still only the hardware to be emulated, but has no software to be run on

15

,

Synthesis Completed

Mext
(@ Run Implementation
() Open Synthesized Design

() View Reports

[] Don't show this dialog again

S
@ Synthesis successfully completed.
e 1 4

[o

] [Cancel]

Figque 28: Synthesis Completed DialogJ Box

I

Implementation Completed

|1

Mext
() Open Implemented Design
@ Generate Bitstream

() View Reports

[Don't show this dialeg again

@ Implementation successfully completed.
L ¥ 4

[o

” Cancel]

Figuré 29: Implementation Completed Dial(;g Box

it; this will be created later via SDK and incorporated in the bitstream as memory contents (if it’s located in the on-chip

memory).

Throughout the whole process, you may also check the different sort of reports from the different steps, available in
the lower window, Reports tab, as in Figure [30]

Reports

I'é‘l
g
=1

&

C\ Mame

= Synthesis

Modified

= synﬂﬂ i

----- -2 Vivado Synthesis Report

----- —_“| Utilization Repart
Implementation
= Design Initialization (init_design)
----- B Timing Summary Report
= Dpt Design (opt_design)
----- - [2) Post opt_design DRC Report
----- . Post opt_design Methodolog. ..
----- . Timing Summary Report
I'_'I Power Opt Demgn pnf\'er |:||:|t _design)

2/20/17 4:46 PM
2/20/17 4:46 PM

Tl

2/20/17 4:47 PM

Size GUI Report

367.2KB
F.0KB

2.2KB

- .

Figure 30: Reports

Once the implementation is done, it is easy to check all sorts of parameters for the design, by selecting the right report
in Flow Navigator, Implementation section, as in Figure

16

Flow Navigator 7

M A opg
N oo =2

> Project Manager

IP Integrator

Simulation

RTL Analysis

Synthesis

4 Implementation
ﬁ. Implementation Settings
[» Run Implementation
Fl Implemented Design
Constraints Wizard
Edit Timing Constraints
Report Timing Summary

Report Clock Metworks

B &R

Report Clock Interaction

b

Report Methodology
Report DRC
Report Noise

Report Utilization

eEHE

Report Power

Figure 31: Implementation in Flow Navigator

8.1 Timing

You can check, for instance, that the timing constraints have been fulfilled (e.g. the logic can keep up with the specified
clock frequency) by selecting the Report Timing Summary. This will display detailed information in the lower window,
as in Figure 32} Do inspect the different details of the summary.

Timing - Timing Summary - impl_1 T 0O’ X
Q, Z % == ? 4 Design Timing Summary
() Thisisa saved report x| Setup Hold Pulse Width
~General Information = Worst Negative Slack (WNS): 2,706 ns Waorst Hold Slack (WHS): 0,079 ns Warst Pulse Width Slack (WPWS): 3,000 ns
Total Negative Slack (TMS): 0,000 ns Total Hold Slack (THS): 0,000 ns Total Pulse Width Negative Slack (TPWS): 0,000 ns
L Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 1]
Total Mumber of Endpoints: 4500 Total Mumber of Endpoints: 4500 Total Mumber of Endpoints: 1445

All user specified timing constraints are met.

~Other Path Groups
=er Tnnored Paths

Timing Summary - impl_1 4+ B
=) Td Console |) Messages | i Log | 2 Reports | 5 Package Pins | 3» Design Runs | £ Power (3 Timing | [Methodology | @& DRC

Figure 32: Timing Summary. All timing constraints are met in this case.

8.2 Utilization

You can also get an idea about how much of the FPGA resources your design is using by selecting Report Utilization.
This will display detailed information in the lower window, as in Figure Do inspect the different details of the
summary, as you will need to report these figures.

8.3 Power

Finally, you can also get an estimate for the power consumption of the design by selecting Report Power. This will
display detailed information in the lower window, as in Figure[34 Do inspect the different details of the summary, as you
will need to report this figure and use it to compute the energy consumption for the different algorithms implemented in
future labs.

17

|Utilization - utilization_1

A T == 4 Summary
N
- . E Resource Utilization Available Utilization %
a--sl!ce Logic LuT 1428 63400 225
[=t-Slice LUTs (2%) LUTRAM 114 19000 0.50
[E-LUT &5 Memory (1%%) FF 1190 126800 0.94
LUT as Shift Registe BRAM 16 135 11.85
LUT as Distributed f 10 0 210 9,52
: -LUT as Logic (29:) MMM 1 [16.67
o peF8 Muxes (0%) -
P —— b

utilization_1

Td Console LD Messages LBQ Log L—_=°‘| Reports LD Package Pins Lﬂ} Design Runs Lélj Power LQ ﬂming\h Utilization L [s Methodology LO DRC ‘
Figure 33: Utilization Summary

Power - impl_1
AT « summary
- 2
| @ Thisis a saved report e Power analysis from Implemented netlist. Activity On-Chip Power
ettings - derived from constraints files, simulation files or
ummary (0,244 W) || | wectorless analysis. [Dynamic: 0146 W (60%)
-Power Supply) 5% |
=-Utilization Details Total On-Chip Power: 0.244 W 7% | [Clocks: 0.008W (5%)
~Hierarchical (0. 145 W) i Junction Temperature: 26,1 °C 50% il D signals: 0.010W (7%)
~Clocks {0,008 W) Thermal Margin: 58,9 "C (12,8 W) [Logic: 0.006W (4%
=H-Signals (0,01 W)) Effective B1A: a6 L
-Data (0,01 W) Ve LA 16 "L WERAM: 0.005W (3%)
Clock Enable {<0.001 v/ Power supplied to off-chip devices: 0'W EMMCM: 0.106 W {73%)
5----SetfReset (=0.001W) Confidence level: Low O 1io: 0.011W (3%)
~Logic (0,006 W) 0%
BRAM (0,005 W) W Launch Power Constraint Advisor to find and fix
LSl s - - . - .-
Clock Manager (0. 105 W) = | | "valid switdhing activity [l Device Static: ~ 0.098 W (20%)

1]] »

Td Console LD Messages LEQ Log L'_='“| Reports LD Package Pins Lﬂ} Design P.un}\ £l Power L(Ei Timing L Utilization L [Methodology LQ DRC J

Figure 34: Power Summary

18

Creating The Software

Once the bitstream is generated, the hardware architecture is done, but it’s a blank slate, with no software to run on
it. To create the software, you will use another tool Xilinx SDK, based on Eclipse. For these labs you will work in
C, although using C++ is also possible. The compiled software will be merged with the hardware to form the complete
FPGA configuration.

9 Exporting the Design to SDK

The software development kit needs to know about the underlying hardware architecture. If you just built your hardware,
you can export it to SDK.

1. Select File—Export—Export Hardware.

2. In Export Hardware dialog box, select Include bitstream check box, shown in Figure B5] Make sure that the
Export to field is set to <Local to Project>.

¢ Export Hardware

Export hardware platform for software development

tools, ‘
Indude bitstream
Export to: | B <Local to Project> -

o) (e]

k Figure 35: Export Hardware Dialog Box

3. Click OK.

4. Select File — Launch SDK. In the Launch SDK dialog box, make sure that both Exported location and
Workspace drop-down lists are set to <Local to Project>.

¢ Launch SDK

Launch software development toaol.

Exported location: | &0 <Local to Project=

Workspace: | G <Local to Project:> -

[oK ” Cancel]

LFigure 36: Launch SDK Dialog Box

5. Click OK. SDK launches in a separate window.

Take some time to examine the directory structure and the files residing in your project directory. You will notice a
folder ending in .sdk, which is an SDK workspace. This also contains one .hdf file, the full description of the target
hardware architecture.

note It is also possible to launch SDK without building a hardware platform, if this is already provided as a .hdf file.
Then you will need to start SDK from the menu or command line, Create Application Project and specify
New... Target Hardware. A New Hardware Project dialog box opens, where you should Browse... after the
Target Hardware Specification, namely the .hdf file mentioned above. Some of the future labs may provide an
.hdf file with the hardware, in order to save you some time. For more detailed information on how to use SDK
with the .hdf please read EIT(070 Labl Instructions| pages 5-9.

19

http://www.eit.lth.se/fileadmin/eit/courses/eit070/Laborationer/EIT070Lab01-2017.pdf

10 Create a ”Peripheral Test” Application

As with most of the steps in this tutorial, there are several ways to get the same result, since the same commands can
be issued in the user interface in different places. The following shows one of the ways to create a new application.

1. In SDK, right-click mb_subsystem_wrapper_hw_platform_0 in the Project Explorer and select New—Project,
as shown in Figure

-

@ C/C++ - design_1_wrapper_hw_platform_0/system.hdf - Xilinx SDK

File Edit Mavigate Search Project Run Xilinx Tools Window Help
3~ (8- 4- w PD&EPEE %-0-
[Project Explorer 22 = <;==‘g>| ¥ ¥ 2 O | |gpsystemhdf 52

4 B design_1_wrapper_hw_platform_0

=| design_1_wrapper.bit

=

|Z| design_1_wrapper.mmi

design_1 wrapp

term b Design Information
|5 system, -

Taraet FPGA Device:
Figure 37: SDK New Project Selection

2. In the New Project dialog box, select Xilinx Application Project (Figure .

m MNew Project = %

Select a wizard —

Wizards:
type filter text

> = General

b 2 CIC++

> = Java

> [= Tracing

a (= Kilinx
@ Application Project
@ ARM Trusted Firmware Project
Il Board Support Package
|77 Hardware Platform Specification
@ Library Project
[SPM Project

@ < Back Next > Finish

Figure 38: SDK New Project Wizard

Click Next.
Type a name (such as peri_test) for your project and choose standalone as OS platform, as shown in Figure

Click Next.

&S vk

Select the Peripheral Tests application template as in Figure [0} and click Finish. Note that there are other
templates you could choose, providing support for various kinds of applications. It is very common to start with
one such application (e.g. "Hello World”) and develop it into the application you actually want to implement.

SDK creates a new ”peri_test” application (see Figure . Note that there are three open projects: one is the
hardware description, one is your new application, and the third is the BSP, board support package, which contains
the libraries needed to program with the IPs in your architecture. Open peri_text_bsp, then BSP Documentation, and
further tmrctr_v4_2 to examine the documentation for the AXI Timer API. Often this documentation contains example
code in the File List. For future labs with the AXI Timer, the xtmrctr_polled_example.c is relevant.

20

m New Project | Gl %

Application Project

Create a managed make application project. @

Project name: perni_test

Use default location

Location: | ChUsers\flagriWerk\VIvado\p roject_4\pr0ject_4.sdk\peri_tes| |

Browse...
Choose file systern: | default
QS Platform: [standaione ']
Target Hardware
Hardware Platform: ’dﬁign_l_wrappel_hw_platform_l} v] lNew]
Processor: ’ microblaze_0 - l
Target Software
Language: @C O C++
Compiler 32-bit ~|
Board Support Package: @ Create New peri_test_bsp
Use existing | -
@ <Back || MNet> |[Finish || Cancel |

Figure 39: New Project: Application Project Wizard

m New Project | = P3

Templates

Create one of the available templates to generate a fully-functioning @
application project.

Available Templates:

Dhrystone Simple test routines for all peripherals in -~ «
Empty Application the hardware,

Hello World

IwIP Echo Server

Memory Tests

SREC Bootloader
SREC SPIBootloader

@ [<Back | met- [Fnish [Cancel

Figure 40: New Project: Template Wizard

21

1 m C/C++ - peri_test_bsp/system.mss - Xilinx SDK

File Edit Mavigate Search Project Run Xilinx Toc
L=ﬁ' |®"%'.m L1 E%’i

[7 Project Explorer 52 = <;=='g>| ¥ ¥ = 0
4 B design_1_wrapper_hw_platform_0

l |=| design_1_wrapper.bit
Z| design_1_wrapper.mmi
|5 system.hdf
4 [peri_test
> ﬁb Binaries
> [Includes
» (= Debug
4 [src
> [n gpic_header.h
» [testperiph.c
> [h] tmrctr_header.h
+] xgpio_tapp_example.c
» g stmirctr_selftest_example.c
] Iscript.id

» (Hl peri_test_bsp

Figure 41: Project Explorer with the new peri_test application

11 Executing the Application on Nexys-4

Finally it is time to run the software on the hardware architecture designed earlier, which is emulated on the FPGA.
This means that the FPGA will be configured with the hardware and software you produced in this tutorial.
Make sure that you have connected the target board to the host computer (USB — PROG/UART pin), and the board

is turned on.

1. Select Xilinx Tools—Program FPGA to open the Program FPGA dialog box.

2. In the Program FPGA dialog box, make sure to change the bootloop (does nothing / used in debugging) in Software

Configuration to point to the right executable, as shown in Figure Click Program.

-
@ Program FPGA

Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

Hardware Configuration

Hardware Platform: [design_1_wrapper_hw_platform_0 -]
Connection: ’Local

Device: Auto Detect

Bitstream: design_1_wrapper.bit

[Partial Bitstream

Software Configuration
Processor ELF/MEM File to Initialize in Block RAM
microblaze 0 ChUsers\flagr\Work\VIvado\project_&'\project_4 .sdk\peri_test\Debug'\peri_test.elf

BMM,/MMI File: design_1_wrapper.mmi

Q) (Cegen] |

Cancel

Figure 42: Project Explorer with the new peri_test application

3. Although the system is up and running (check the LEDs), there is no way to see printouts unless we connect to
the board via a Terminal. This can be done in SDK. Select SDK Terminal tab in the lower/Console region, as

shown in Figure then click on 4 to connect to a serial port.

22

* Problems | Tasks & Conscle [] Properties [El SDK Terminal 53 = B
P

Click on + button to add a port to the terminal,

Figure 43: SDK Terminal Tab

4. In the Connect to serial port dialog box, select the right COM port (may vary on your system) and make sure the
parameters are set up similar to Figure Click OK.

m Connect to serial port ﬁ

Basic Settings
Port: comiz

4

4

Baud Rate: ’9600

= Advance Settings

Data Bits:
Stop Bits:
Flow Control:

Timeout (sec):

[ok || cancel |

Figure 44: Connect to Serial Port Dialog Box

5. Your terminal window should now receive text from the board, similar to Figure Try pushing the red CPU
RESET button on the Nexys-4 board and examine both the LEDs and the terminal output.

[*] Problems J=| Tasks [Console [T Properties | B SDK Terminal 52 o= X L = 8

Connected to: Serial (COMIL2, 9

---Entering main--- ~

Running GpioOutputExample() for axi_gpic_0...
GpioOutputExample PASSED,

Running TrarCtrSefTestExample() for axi_timer_0...
TrarCtrSelfTestExample PASSED
---Exiting main---

|.m

1

Figure 45: Terminal Output via the Serial Connection

12 Summary

At the end of this tutorial you should be able now to:

create a simple, single MicroBlaze hardware architecture in Vivado

gather statistics about your design timing, device utilization and power consumption in Vivado

export the hardware architecture into SDK
e create a simple application using your architecture in SDK
e run the full system on the Nexys-4 board

Most of these skills will be used in the lab assignments, and can be further develop to allow you to be more efficient. A
couple of good documents to get further information (e.g. on debugging) are:

23

e Xilinx Embedded Processor Hardware Design, UG940 (v2016.3) October 19, 2016
e EIT070 Labl Instructions

24

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug940-vivado-tutorial-embedded-design.pdf
http://www.eit.lth.se/fileadmin/eit/courses/eit070/Laborationer/EIT070Lab01-2017.pdf

	Invoke the Vivado IDE and Create a Project
	Create an IP Integrator Design
	Memory-Mapping the Peripherals in IP Integrator
	Validate Block Design
	Generate Output Products
	Create Top-level HDL Wrapper
	Synthesize Design
	Take the Design through Implementation
	Timing
	Utilization
	Power

	Exporting the Design to SDK
	Create a "Peripheral Test" Application
	Executing the Application on Nexys-4
	Summary

