LTH

LUND FACULTY OF

UNIVERSITY ENGINEERING

Basics of Constraint Program-
ming

KRzYSZTOF KUCHCINSKI
DEPT. OF COMPUTER SCIENCE, LTH

Finite Domain Constraints

“God made the integers, all else is the work of man.”

Leopold Kronecker (1823-1891),

Jahresberichte der Deutschen Mathematiker Vereinigung.

K. Kuchcinski CP Basics

1(48)

LUND

UNIVERSITY

Outline

Constraint Satisfaction Problem
Constraint Graph
Constraint Entailment

Consistency Techniques
Node and Arc Consistency
Path Consistency
Bounds Consistency
Generalized Consistency

Solver Implementation

Conclusions

K. Kuchcinski CP Basics

2(48)

LUND

UNIVERSITY

Constraint Satisfaction Problem

Constraint Satisfaction Problem

Definition
CSP is a 3-tuple S = (V, D, C) where

V ={x1, %, ..., Xy} is a finite set of variables, also called finite domain variables
(FDVs),

D ={D;,D,,..., Dy} is afinite set of domains, and
C is a set of constraints restricting the values that the variables can simultaneously
take.

K. Kuchcinski CP Basics 3(48) uLNWF_Rs.]T)v

Constraint Satisfaction Problem (cont’d)

o variable x; has a finite set D; € P(Z) \ @ of possible values, called a finite domain
(FD).
— example — x :: {1..10},
— example — y :: {23,56}.
e A constraint ¢(xq, X2, . .., Xp) € C between variables of) is a subset of the
Cartesian product D1 x D, x - - - x D, that specifies which values of the variables
are compatible with each other.

K. Kuchcinski CP Basics 4(48) LIJ‘AHERS.PV

Constraint Satisfaction Problem — Example

Example

e constraint x < y,

« finite domain varibales x :: {0..2} and y :: {0..2},
« the constraint is defined by the following 2-tuples of (x, y) values

- {{0,1),{0.2),(1.2)}

Comments
e pruning of the domain of x and y
e pruning is achieved by executing consistency procedure.

K. Kuchcinski CP Basics 5(48) uLNWF_Rs.]T)v

Constraint Satisfaction Problem (cont’d)

A solution s to a CSP S, denoted by S |= s, is an assignment to all variables), such
that it satisfies all the constraints.

e this assignment is often called label or compound label

the process of finding a label is called /abeling.

single solution, all solutions or an optimal solution.

an optimal solution s to a CSP S is a solution (S |= s) which minimizes or
maximizes a value v assigned to a selected variable x; (cost function).

K. Kuchcinski CP Basics 6(48)

Constraint Programming

e the enumeration of all possible combinations of values which are compatible with
each other is difficult or impossible in practice,

e constraints are defined using equations, inequalities, combinatorial constraints, or
programs defining compatible values,

e constraints define restrictions on the values which can be assigned to the constraint
variables simultaneously,

e unary, binary and n-ary constraints,
e binary constraint problems — problems with unary and binary constraints only,
e all CSPs can be transformed to binary constraint problems.

K. Kuchcinski CP Basics 7(a8) LUND

UNIVERSITY

Transformation to Binary CSP

e assume a constraint on k FDVs (k > 2) with variables xy, X2, ..., X.

¢ the transformation introduces a new encapsulated variable v and replaces the
constraint on k variables by k binary constraints on v and x;.

¢ the new variable v domain captures a Cartesian product of the domains of
individual variables.

e each of the newly created binary constraints connects v and one of the k FDVs.

K. Kuchcinski CP Basics sg) LUND

Transformation to Binary CSP (cont’d)

e constraint x + y = zwith x :: {1..2},y = {1..2},z:: {2..3}.

K. Kuchcinski CP Basics

Transformation to Binary CSP (cont’d)

e constraint x + y = zwith x :: {1..2},y = {1..2},z:: {2..3}.
« defined by 3-tuples of (x, y, z) values.
- {(1,1,2),(1,2,3),(2,1,3)}

K. Kuchcinski CP Basics

Transformation to Binary CSP (cont’d)

e constraint x + y = zwith x :: {1..2},y = {1..2},z:: {2..3}.
« defined by 3-tuples of (x, y, z) values.

- {(1,1,2),(1,2,3),(2,1,3)}
 new variable v with domain {112, 123,213}.

K. Kuchcinski CP Basics 9(48) uLN%EIR\]s.]T)v

Transformation to Binary CSP (cont’d)

constraint x + y = z with x :: {1..2},y = {1..2},z:: {2..3}.
defined by 3-tuples of (x, y, z) values.
- {(1,1,2),(1,2,3),(2,1,3)}
new variable v with domain {112, 123,213},
new constraints
— for (v,x) {(112,1),(123,1),

— for (v,y) {(112,1),(123,25,
— for (v,z) {(112,2),()

K. Kuchcinski CP Basics 9(48)

Constraint Graph

Constraint Graph

A binary constraint satisfaction problem can be depicted by a constraint graph (or
constraint network).

each node in this graph represents a finite domain variable,

each arc represents a constraint between these variables,

unary constraints have arcs originating and terminating at the same node (called
self connecting arcs).

K. Kuchcinski CP Basics 10(48) LUND

UNIVERSITY

Constraint Graph (cont’d)

Example

Consider two constraints x < y and x > 0, i.e., one binary constraint and one unary
constraint.

x>0

@G—0

x<y
Constraint graph

e an extension of constraint graphs are constraint hypergraphs,

e a constraint hypergraph has nodes representing FDVs and hyperedges correspond
to constraints of n variables,

e constraint hypergrahs can represent general CSP problems.

K. Kuchcinski CP Basics 11(48) LIJ‘NWEIR\IS.]T)V

Constraint Entailment

Constraint Entailment

The most basic question one can ask about a constraint is whether it is or it is not
entailed or also called satisfied.

e each constraint can be in one of three states:
— satisfied,
— not satisfied ,
— ‘unknown’.
o If the constraint is in the ‘unknow’ state a consistency algorithm for this constraint
can be applied.

K. Kuchcinski CP Basics 12(48) LUND

UNIVERSITY

Constraint Entailment (cont’d)

Example

Consider constraint x < y with different domains.

x::{1.5}, y::{6..10} x < y satisfied

x : {6..10}, y = {1..5} x < y not satisfied

x ::{1.10}, y :: {1..10} x < y unknow
after application of propagation rules
x ::{1..9}, y :: {2..10} (still unknown)

K. Kuchcinski CP Basics 13(48) uLN%ERs.]T)v

Consistency Techniques

Consistency Techniques

¢ used to remove these values from the domain of FDV that are incompatible with
values of domains of other FDVs in a given constraint.

e consistency methods are implemented using propagation rules or propagators.
e propagators implement constraints.

K. Kuchcinski CP Basics 14(48) LUND

Properties of Propagators

e correct— no solution of a constraint is removed,

K. Kuchcinski CP Basics 15(48) uLNWF_Rs.Tv

Properties of Propagators

e correct— no solution of a constraint is removed,

e assignment complete— failure of a constraint is signaled at latest for the final
assignments of values to FDVs,

K. Kuchcinski CP Basics 15(48) LIJ‘NLIJEIR\IS.]T)V

Properties of Propagators

e correct— no solution of a constraint is removed,
e assignment complete— failure of a constraint is signaled at latest for the final
assignments of values to FDVs,

e contracting— domains of variables does not become larger after applying a given
propagator (in practice we would like them to be narrowed), i.e., p(Dy) C Dy,

K. Kuchcinski CP Basics 15(48) LUND

Properties of Propagators

e correct— no solution of a constraint is removed,

e assignment complete— failure of a constraint is signaled at latest for the final
assignments of values to FDVs,

e contracting— domains of variables does not become larger after applying a given
propagator (in practice we would like them to be narrowed), i.e., p(Dy) C Dy,

e monotonic— propagator application to smaller domains will result in smaller domains
than application to larger domains, i.e., Dy C D, — p(Dx) C p(Dy).

K. Kuchcinski CP Basics 15(48) LUND

Properties of Propagators

correct— no solution of a constraint is removed,

assignment complete— failure of a constraint is signaled at latest for the final
assignments of values to FDVs,

contracting— domains of variables does not become larger after applying a given
propagator (in practice we would like them to be narrowed), i.e., p(Dy) C Dy,

monotonic— propagator application to smaller domains will result in smaller domains
than application to larger domains, i.e., Dy C D, — p(Dx) C p(Dy).

The propagator may also be

e idempotent— always computes the fixpoint, i.e., several applications of the same
propagator produces always the same result, i.e., p(p(Dx) = p(Dx).

K. Kuchcinski CP Basics 15(48) LUND

Node Consistency

The node consistency is applied to unary constraints and removes values from the
domain of FDV that are incompatible.

Node consistency algorithm

void NodeConsistency()
for each N € nodes(G) do
for each v € Dy do
if the unary constraint on N is inconsistent with v

DN — DN\{V}

K. Kuchcinski CP Basics 16(48) uLNWF_IR\Is.]T)v

Node Consistency Example

x>0

x<y

e x::{0..10} and y :: {0..10},
* node consistency algorithm narrows x to {1..10},
¢ the self connecting arc can be removed from the constraint graph.

K. Kuchcinski CP Basics 1748y LUND

Arc Consistency

e arc consistency is applied to the binary constraints of the constraint graph, i.e.,
constraints of two variables x; and Xx;,

« the constraint graph is arc consistent if it is arc consistent for every arc (x;, X;) in
this graph,

o different algorithms exist, e.g., AC-1, AC-3.

K. Kuchcinski CP Basics 18(48) LUND

Arc Consistency

e arc consistency is applied to the binary constraints of the constraint graph, i.e.,
constraints of two variables x; and x;,

« the constraint graph is arc consistent if it is arc consistent for every arc (x;, X;) in
this graph,

o different algorithms exist, e.g., AC-1, AC-3.

Definition (Arc consistency)

A variable x; is arc consistent relative to variable x; if and only if for every value v; € D;
there exist a value v; € D; that is a consistent assignment (v;, v;), i.e., it is a solution for

constraint c(x;, xj).

18(48) LUND

K. Kuchcinski CP Basics

AC-1 algorithm

boolean revise(x,y)
reduced < false
for each u € Dy do
if there is no such v € D, that (u,v) is consistent
Dy < Dy \ {u}
reduced < true
return reduced

void AC-1()

for each (x,y) € arcs(G)Ax #y

Q<+ QU{(x,y).(y.x)}
do

changed < false

for each (x,y) € Q do

changed < revise(x,y) V changed

while changed

K. Kuchcinski CP Basics 19(48) LUND

AC-3 algorithm

void AC-3()
for each (x,y) € arcs(G) Ax #y
Q< QU{(xy). (y.x)}
while Q £ @
Q< Q\(xy)
if revise(x,y)
Q<+ QU{{(z,x)|(z,x) € arcs(G)Nz# xNz# y}

K. Kuchcinski CP Basics

20(48)

LUND

UNIVERSITY

Complexity of Arc Consistency

« AC-1 algorithm— worst case time complexity O(d®ne), where d is domain size, n
the number of nodes in the constraint graph (FDVs) and e is the number of edges
with binary constraints,

 AC-3 has worst time complexity is O(d®%e),

e more advanced arc consistency algorithms, such as, AC-4 has worst case time
complexity O(d?e).

o AC-4 algorithm does not test many pairs (u, v) which are already known from

previous iterations to be consistent; it needs additional data structure to make it
efficient.

K. Kuchcinski CP Basics 21(48) LUND

Arc Consistency Example

x>0

x<y

e x::{1..10} and y :: {0..10}.
e arc consistency algorithm pruning — x :: {1..9} and y :: {2..10}.

K. Kuchcinski CP Basics oo(48) LUND

Arc Consistency Example

Example

(a) arc consistency does not affect the domains of xp, x; and xo,
(b) FDVs cannot be pruned for the same reason.

(a) inconsistent constraint graph (b) not pruned constraint graph

K. Kuchcinski CP Basics 23(48) uLN%ERs.]T)v

Path Consistency

e path consistency, in addition to check arcs of the constraint graph between
variables x; and x;, further checks consistency of variables x;, xx, X; that form a path.

Definition (Path Consistency)

A two variable set {x;, x;} is path consistent relative to variable x, if and only if for every
consistent assignment (v;, v,-), vi € D;, v; € D there is a value vk € Dk such that the
assignment (v;, vx) is consistent and (v, v;) is consistent.

The constraint graph is path consistent if and only if for every binary constraint c(x;, X;)
and for every k (k # i, k # j), c(x;, x;) is path consistent relative to x.

K. Kuchcinski CP Basics 24(48) LIJ‘NWEIR\IS.]T)V

PC-1 algorithm

boolean revise((x,y),z)
for each (u,v) € Dy x D, do
if there is no such g € D, that (u,q) and (q,v) are
consistent delete (u,v) from constraint c(x,y)

void PC-1()
do
for k =
for i
for j = 1..n
revise((x;, Xj), Xk)
while there are changed constraints

I
[EE

- S
S

« worst case time complexity of this algorithm is O (d®n®)

LUND

UNIVERSITY

K. Kuchcinski CP Basics 25(48)

Path Consistency Example

Example

(a) constraints are inconsistent since there is no assignment for x» when
Xo=1,x1 =2o0r xp =2, x; = 1 (the only allowed assignments of x; and x1),

(b) it can prune domain of x» since the only allowed value for x, for two valid
assignments to xp and x; is 3.

K. Kuchcinski CP Basics 26(48) uLN%EIR\Is.]T)v

Path Consistency Example

Example

e consider three constraints x < y, y < zand x > z with domains of x, y and z
{0.2},

e Arc consistency is not able to deduce that variables must be equal and have value
0,1or2,

e Path consistency can find out that y = z and z = x.

K. Kuchcinski CP Basics o748y LU

UNIVERSITY

K-consistency

e a constraint graph is k-consistent if and only if given any consistent instantiation of
any k — 1 distinct variables, there exist an instantiation of any kth variable such that
the k values taken together satisfy all of constraints among the k variables.

e arc consistency is equivalent to 2-consistency and path consistency to
3-consistency (if there exist non-binary constraints we need to extend path
consistency to test ternary constraints as well),

e constraint graph is strongly k-consistent if and only if it is j-consistent for all j < k.

o848) LUND

UNIVERSITY

K. Kuchcinski CP Basics

Bounds Consistency

e arithmetical constraints, defined using equalities, inequalities and arithmetical
operators, have well defined properties and can be implemented using efficient
consistency methods,

e bounds consistency uses interval arithmetic to derive which values are consistent
instead of considering all combinations of values which are allowed by a given
constraint.

e in bounds consistency the FDV domain is approximated using a lower and upper
bound,

e we use real number consistency of primitive constraints rather than integer
consistency.

¢ the limitation of considering a lower and upper bounds is quite acceptable and it is
often true in practice.

We denote a minimal and a maximal value in the domain of FDV x as min(x) and
max(x) respectively.

K. Kuchcinski CP Basics 29(48) LUND

Bounds Consistency

Definition
An arithmetic constraint ¢ is bounds consistent if for each variable x of this constraint,
there is:

e an assignment of real numbers, say vy, v», ..., vk to remaining variables in ¢, say
X1, X2, ..., Xk, such that min(x;) < v; < max(x;) for each v; and
x =min(x),x; = vy, ..., Xk = V is a solution of ¢, and
* an assignment of real numbers, say v;, v3, ..., v, t0 X1, X2, . .., Xk, such that
H / / _ — — o T
min(x) < v/ < max(x;) for each v/ and x = max(x),x; = v{,..., X% = v is a
solution of c.

K. Kuchcinski CP Basics 30(48) LUND

Bounds Consistency

e bounds consistency are built using a functional rule of the form
x in {min .. max}

o it restricts the domain of variable x to interval {min .. max}.

e this rule can be defined using set intersection between min/max domain and the
original domain of FDV
Dy < {min .. max} N Dy

o the rule detects creation of an empty domain for D, and notifies its propagator or a
solver.

K. Kuchcinski CP Basics 3145) LUND

Bounds Consistency (cont’d)

e the consistency for primitive arithmetic constraints can be defined using the defined
functional rule and intervals computed using lower and upper bounds of FDVs’
domains,

e atypical definition of a propagator for a constraint of three FDVs x4, xo and x3 is of
the form

x1 in {miny .. max; }
X in {min .. max,}
x3 in {mins .. maxs}
where values min; and max; are new allowed minimal and maximal values for
respective variables,
e the new values for all variables involved in bounds consistency computation are

computed using fixpoint iteration, i.e., the computation is iterated until no further
changes of FDVs domains occur. "

K. Kuchcinski CP Basics 3248) LUND

Bounds Consistency (cont’d)

Example
e the propagation rules for constraint x < y are as follows.

x in {—inf .. max(y) — 1}
y in {min(x) +1 .. inf}
e appliedto x :: {0..10} and y :: {0..10} (assuming that the minimal and maximal

integers allowed in our solver, denoted by -inf and inf, are -100000 and 100000
respectively).

x in {—100000 .. 9}
y in {1..100000}

e result—x :: {0..9} and y :: {1..10}.
K. Kuchcinski CP Basics 33(48) UNIVERSITY

S

Bounds Consistency (cont’d)

Example
o the propagation rules for constraint x + y = z
x in {min(z) — max(y) .. max(z) —min(y)}
)

y in {min(z) — max(x) .. max(z) — min(x)}
z in {min(x) 4+ min(y) .. max(x) + max(y)}
e When rules are applied to x :: {1..10}, y :: {1..10} and z :: {1..10} the result is

obtained
x::{1.9}, y:{1.9}and z :: {2..10}.

K. Kuchcinski CP Basics 34(48) uLN%EIR\Is.]T)v

Bounds Consistency Limitations

e bounds consistency has problems when numerical intervals contain “holes”, i.e., not
all integers between minimal and maximal values are present in the domain.

e constraint x + 3 = y with domains x :: {1..3,7..10} and y :: {1..10},
e propagation rules:

x in {min(y) — 3 .. max(y) — 3}
y in {min(x) +3 .. max(x) + 3}

e produces x :: {1..3,7} and y :: {4..10}
e arc consistency produces y :: {4..6,10}.

K. Kuchcinski CP Basics 35(48) LUND

Domain Consistency

e instead of using minimum and maximum values in the domain we can apply the
required operation on the sub intervals.

e extention to functional rule to operate on domains and not only on intervals.

x in {D, — Const}
y in {Dy + Const}

“w

e operations “+” and “—” are defined to operate on an interval and a constant as
explained in the algorithm

domain out = @;
for interval i € D,
out < out U {min(i) + Const .. max(i) + Const}

e similar solutions can be used for other primitive constraints, such as x + y = z.

K. Kuchcinski CP Basics 36(48) LUND

Generalized Consistency

e consistency methods can be implemented as specialized algorithms that are able to
efficiently prune the domains of its FDVs.

e these algorithms can implement specific reasoning methods coming from different
areas, such as operation research, geometry and combinatorics.

e solver can implement non-linear constraints (e.g., x - y = z) as well as specialized
combinatorial constraints (e.g., cumulative constraint).

e combinatorial constraints are specially interesting since we can build specific
algorithms around them and obtain efficient pruning of the involved FDVs.

K. Kuchcinski CP Basics 37(48) LUND

Alldifferent Constraint

Example

alldifferent constraint is equivalent in pruning ability to imposing @ constraints
of the form x; # X;, i # J.

FDV[] V;
for (FDV v € V)
if v has changed and has a single value
for (FDV w € VAV # w)
w in {value(v)}

where {value(v)}’ denotes a complement of a set containing a single value assigned to
v.

K. Kuchcinski CP Basics 38(48) uLNw.:_IR\Is.]T)v

Solver Implementation

Solver Implementation

¢ all FDVs and constraints are kept in a so called constraint store.

¢ the constraint store maintains all necessary data structures for the solver and
provides access to all constraints consistency (propagators) and satisfiability
procedures as well as access to FDVs and their actual domains,

e it also maintains solver state during search and makes it possible to organize an
efficient backtracking.

o the solver implements a procedure that enforces consistency of all constraints
registered in the constrained store — propagation loop.

K. Kuchcinski CP Basics 39(4) LUND

Propagation Loop

boolean solver.consistency()
while (Q # @)
c < fetch constraint from Q;
try
c.consistency();
modifiedFDVs <— {x| modified by c.consistency()}
constraintsToEvaluate < {c|x € var(c), x € modifiedFDVs}
Q < QU constraintsToEvaluate
if (c.satisfied())
remove ¢ from constraint store;
catch (Fail exception)
return false;
return true;

s048) LUND

K. Kuchcinski CP Basics

Propagation Loop (cont’d)

e queue of constraints is usually organized. as FIFO; the priority queue can be a
complex implementation structure but offers a lot of flexibility for constraint
scheduling for evaluation.

e constraints are added to queue Q when their domains changed; the solver can add
all constraints with variables that were changed or a more selective strategy can be
used.

o the solver assigns to each changed variable an event that indicates a reason for
variable’s change; typical events are:
— value- the variable get a single value assigned,
— min-the minimum value of a variable has been changed,
— max-the maximum value of a variable has been changed,
— minmax—the minimum and the maximum value of a variable has been changed, and
— all- any change of a variable has occurred, e.g., removing a value from inside an
interval.

s1(ag) LUND

UNIVERSITY

K. Kuchcinski CP Basics

Search

¢ the propagation loop cannot, in general, deliver a solution for the constraint problem.
¢ the solver need to search for a solution or solutions.

e search is usually implemented using an algorithm based on the
constraint-and-generate method- it assigns a new value to a selected FDV and
calls propagation loop.

e if at some point inconsistency is detected (by obtaining an empty FD) the algorithm
need to backtrack,

e backtracking annuls the results of the last decision by removing all values changed
by this assignment and a new assignment is then performed.

e a simple depth-first-search algorithm is therefore well suited for this solving
technique (in CLP community this method is called /abeling).

K. Kuchcinski CP Basics 42(4g) LUND

UNIVERSITY

Backtracking

e backtracking search requires a method to restore the previous state of the
constraint store, i.e., the state which we need to backtrack.
o three approaches to solve this problem:
— trailing— the solver records only changes in the state and, if needed, undo this
changes,
— copying— the solver always copy the whole state (basically the constraint store) and, if
needed, removes the old state and returns to the old one, and
— recomputing— the solver always recomputes needed information from already made
decisions.

e by far dominating approach is trailing.

K. Kuchcinski CP Basics 4348) LUND

Organizing Backtracking

e search organizes the search space as a search tree,

e in every node of this tree a value is assigned to a variable and a decision whether
the node will be extended or the search will be cut in this node is made,

e each node of this tree has assigned the search level — when the tree is extended
the level is incremented and when the tree is cut the level is decremented.

K. Kuchcinski CP Basics a4(48) LUND

Organizing Backtracking (cont’d)

e each FDV points to the list of domains; the first element on this list is the current
domain; the domain captures its actual domain, actual set of assigned constraints,
and the stamp when the FDV has been assigned a new domain.

e when during the search a domain is pruned it is updated using a procedure that
takes into account the stamp and the current level.

e if the level and the stamp are the same, the domain is updated directly, if the level is
higher than the stamp a new domain with the new stamp is put at the top of the list.

¢ In case of backtracking, all domains with the with stamp equal to current level are
removed.

K. Kuchcinski CP Basics 4548) LUND

Search Example

e three FDVs x :: 0.4,y :: 2.9,z :: 1..5 and constraints x < z,y > 2z,

|o,o.A4 ||o,2A.9 ||o,1A.5 |

(a) initial state

K. Kuchcinski CP Basics 46(48) ULN%ERS.]T)V

Search Example

e three FDVs x :: 0.4,y :: 2.9,z :: 1..5 and constraints x < z,y > 2z,

0,0..4
[00.4 |[o29 |[o1s | | 10 [[oz29 |[o1s5 |
(a) initial state (b) assignment x = 0

K. Kuchcinski CP Basics 46(48) ULN%EIR\IS.]T)V

Search Example

e three FDVs x :: 0.4,y :: 2.9,z :: 1..5 and constraints x < z,y > 2z,

0,0.4 |0, 0.4 | |0,2.49 | |o, 1.5 |
|o,o.A4 | |o,2A.9 | |0,1A.5 | | 1,0 | |o,2.A9 | |o,1.A5 | | 1,0 | | 2,2 | |2,1.A2 |
(a) initial state (b) assignment x = 0 (c) assignment y = 2

K. Kuchcinski CP Basics 46(48) ULN%EIR\IS.]T)V

Search Example

o three FDVs x :: 0.4,y :: 2.9,z :: 1.5 and constraints x < z,y > z,

|o,o..4 ||0,2..9 ||o,1..5 |

|oo4||029||o15| |10||o,2..9||o,1..5| |10||22||212|
(a) initial state b) assignment x = 0 (c) assignment y = 2
0,1.5

|o,o..4 ||o,2..9 ||2,1..2 |

o[22][50]

(d) assignment z = 1

K. Kuchcinski CP Basics 46(48) uLNWF_IR\Is.]T)v

Search Example

o three FDVs x :: 0.4,y :: 2.9,z :: 1.5 and constraints x < z,y > z,

|o,o..4 ||0,2..9 ||o,1..5 |

|oo4||029||o15| |10||o,2..9||o,1..5| |10||22||212|
(a) initial state b) assignment x = 0 (c) assignment y = 2
0,1.5
|o,o..4 | |o,2..9 | |2,1..2 | |o,o..4 | |o,2..9 | |o,1..5 |
| 1,0 || 2,2 || 3,1 | | 1,0 || 2,2 ||2,1..2|
d) assignment z = 1 (e) backtrack

K. Kuchcmskl CP Basics 46(48) uLNWF_IR\Is.]T)v

Search Example

o three FDVs x :: 0.4,y :: 2.9,z :: 1.5 and constraints x < z,y > z,

|o,o..4 ||0,2..9 ||o,1..5 |

[o04 |[o29 |[o1s | | 1o [[oz9 [[o1ts | | 10 || 22 |[212 |
(a) initial state b) assignment x = 0 (c) assignment y = 2

| 0,0..4 | | 0,2.9 | | 2,1.2 | | 0,0..4 | | 0,2.9 | | 0,1.5 | | 0,0..4 | | 0,2.9 | | 2,1.2 |
|1o||22||3,1| |10||22||212| |1,0||2,2||3,2|
d) assignment z = 1 (e) backtrack (f) assignment z = 2

K. Kuchcmskl CP Basics 46(48) uLNWF.IR\Is.]T)v

Simple Search

boolean solver.search(level, V)
if solver.consistency()
if V£O
pick one variable var from V
for each v € Dy
impose var =v
if solver.search(level+l, 17\ var)
return true
else // backtrack
remove FDVs on trail with stamp=Llevel
return false // no more values to assign for var

else
return true // assignment for all FDVs found
else
return false // inconsistent constraints

K. Kuchcinski CP Basics 47(48) LUND

Conclusions

Conclusions

o there exist different methods to define constraints consistency,

e bounds consistency is usually used because it offers low complexity and good
enough precision for most applications,

¢ solvers offer efficient methods for handling backtracking.

LUND

UNIVERSITY

K. Kuchcinski CP Basics 48(48)

	Constraint Satisfaction Problem
	Constraint Graph
	Constraint Entailment
	Consistency Techniques
	Node and Arc Consistency
	Path Consistency
	Bounds Consistency
	Generalized Consistency

	Solver Implementation
	Conclusions

