
Basics of Constraint Program-
ming

KRZYSZTOF KUCHCINSKI

DEPT. OF COMPUTER SCIENCE, LTH



Finite Domain Constraints

“God made the integers, all else is the work of man.”

Leopold Kronecker (1823-1891),

Jahresberichte der Deutschen Mathematiker Vereinigung.

K. Kuchcinski CP Basics 1(48)



Outline

Constraint Satisfaction Problem

Constraint Graph

Constraint Entailment

Consistency Techniques

Node and Arc Consistency

Path Consistency

Bounds Consistency

Generalized Consistency

Solver Implementation

Conclusions

K. Kuchcinski CP Basics 2(48)



Constraint Satisfaction Problem



Constraint Satisfaction Problem

Definition

CSP is a 3-tuple S = (V ,D, C) where

V = {x1, x2, . . . , xn} is a finite set of variables, also called finite domain variables

(FDVs),

D = {D1,D2, . . . ,Dn} is a finite set of domains, and

C is a set of constraints restricting the values that the variables can simultaneously

take.

K. Kuchcinski CP Basics 3(48)



Constraint Satisfaction Problem (cont’d)

• variable xi has a finite set Di ∈ P(Z) \∅ of possible values, called a finite domain
(FD).

– example – x :: {1..10},
– example – y :: {23, 56}.

• A constraint c(x1, x2, . . . , xn) ∈ C between variables of V is a subset of the

Cartesian product D1 ×D2 × · · · × Dn that specifies which values of the variables

are compatible with each other.

K. Kuchcinski CP Basics 4(48)



Constraint Satisfaction Problem – Example

Example

• constraint x < y ,

• finite domain varibales x :: {0..2} and y :: {0..2},

• the constraint is defined by the following 2-tuples of 〈x , y〉 values

– {〈0, 1〉, 〈0, 2〉, 〈1, 2〉}

Comments

• pruning of the domain of x and y

• pruning is achieved by executing consistency procedure.

K. Kuchcinski CP Basics 5(48)



Constraint Satisfaction Problem (cont’d)

A solution s to a CSP S , denoted by S |= s, is an assignment to all variables V , such

that it satisfies all the constraints.

• this assignment is often called label or compound label

• the process of finding a label is called labeling.

• single solution, all solutions or an optimal solution.

• an optimal solution s to a CSP S is a solution (S |= s) which minimizes or

maximizes a value v assigned to a selected variable xi (cost function).

K. Kuchcinski CP Basics 6(48)



Constraint Programming

• the enumeration of all possible combinations of values which are compatible with

each other is difficult or impossible in practice,

• constraints are defined using equations, inequalities, combinatorial constraints, or

programs defining compatible values,

• constraints define restrictions on the values which can be assigned to the constraint

variables simultaneously,

• unary, binary and n-ary constraints,

• binary constraint problems – problems with unary and binary constraints only,

• all CSPs can be transformed to binary constraint problems.

K. Kuchcinski CP Basics 7(48)



Transformation to Binary CSP

• assume a constraint on k FDVs (k > 2) with variables x1, x2, . . . , xn.

• the transformation introduces a new encapsulated variable v and replaces the

constraint on k variables by k binary constraints on v and xi .

• the new variable v domain captures a Cartesian product of the domains of

individual variables.

• each of the newly created binary constraints connects v and one of the k FDVs.

K. Kuchcinski CP Basics 8(48)



Transformation to Binary CSP (cont’d)

Example

• constraint x + y = z with x :: {1..2}, y :: {1..2}, z :: {2..3}.

K. Kuchcinski CP Basics 9(48)



Transformation to Binary CSP (cont’d)

Example

• constraint x + y = z with x :: {1..2}, y :: {1..2}, z :: {2..3}.

• defined by 3-tuples of 〈x , y , z〉 values.

– {〈1, 1, 2〉, 〈1, 2, 3〉, 〈2, 1, 3〉}

K. Kuchcinski CP Basics 9(48)



Transformation to Binary CSP (cont’d)

Example

• constraint x + y = z with x :: {1..2}, y :: {1..2}, z :: {2..3}.

• defined by 3-tuples of 〈x , y , z〉 values.

– {〈1, 1, 2〉, 〈1, 2, 3〉, 〈2, 1, 3〉}

• new variable v with domain {112, 123, 213}.

K. Kuchcinski CP Basics 9(48)



Transformation to Binary CSP (cont’d)

Example

• constraint x + y = z with x :: {1..2}, y :: {1..2}, z :: {2..3}.

• defined by 3-tuples of 〈x , y , z〉 values.

– {〈1, 1, 2〉, 〈1, 2, 3〉, 〈2, 1, 3〉}

• new variable v with domain {112, 123, 213}.

• new constraints

– for (v , x) {〈112, 1〉, 〈123, 1〉, 〈213, 2〉}
– for (v , y) {〈112, 1〉, 〈123, 2〉, 〈213, 1〉}
– for (v , z) {〈112, 2〉, 〈123, 3〉, 〈213, 3〉}

K. Kuchcinski CP Basics 9(48)



Constraint Graph



Constraint Graph

• A binary constraint satisfaction problem can be depicted by a constraint graph (or

constraint network).

• each node in this graph represents a finite domain variable,

• each arc represents a constraint between these variables,

• unary constraints have arcs originating and terminating at the same node (called

self connecting arcs).

K. Kuchcinski CP Basics 10(48)



Constraint Graph (cont’d)

Example

Consider two constraints x < y and x > 0, i.e., one binary constraint and one unary

constraint.

x y

x > 0

x < y

Constraint graph

• an extension of constraint graphs are constraint hypergraphs,

• a constraint hypergraph has nodes representing FDVs and hyperedges correspond

to constraints of n variables,

• constraint hypergrahs can represent general CSP problems.

K. Kuchcinski CP Basics 11(48)



Constraint Entailment



Constraint Entailment

The most basic question one can ask about a constraint is whether it is or it is not

entailed or also called satisfied.

• each constraint can be in one of three states:

– satisfied,

– not satisfied ,

– ‘unknown’.

• If the constraint is in the ‘unknow’ state a consistency algorithm for this constraint

can be applied.

K. Kuchcinski CP Basics 12(48)



Constraint Entailment (cont’d)

Example

Consider constraint x < y with different domains.

x :: {1..5}, y :: {6..10} x < y satisfied

x :: {6..10}, y :: {1..5} x < y not satisfied

x :: {1..10}, y :: {1..10} x < y unknow

after application of propagation rules

x :: {1..9}, y :: {2..10} (still unknown)

K. Kuchcinski CP Basics 13(48)



Consistency Techniques



Consistency Techniques

• used to remove these values from the domain of FDV that are incompatible with

values of domains of other FDVs in a given constraint.

• consistency methods are implemented using propagation rules or propagators.

• propagators implement constraints.

K. Kuchcinski CP Basics 14(48)



Properties of Propagators

• correct– no solution of a constraint is removed,

K. Kuchcinski CP Basics 15(48)



Properties of Propagators

• correct– no solution of a constraint is removed,

• assignment complete– failure of a constraint is signaled at latest for the final

assignments of values to FDVs,

K. Kuchcinski CP Basics 15(48)



Properties of Propagators

• correct– no solution of a constraint is removed,

• assignment complete– failure of a constraint is signaled at latest for the final

assignments of values to FDVs,

• contracting– domains of variables does not become larger after applying a given

propagator (in practice we would like them to be narrowed), i.e., p(Dx ) ⊆ Dx ,

K. Kuchcinski CP Basics 15(48)



Properties of Propagators

• correct– no solution of a constraint is removed,

• assignment complete– failure of a constraint is signaled at latest for the final

assignments of values to FDVs,

• contracting– domains of variables does not become larger after applying a given

propagator (in practice we would like them to be narrowed), i.e., p(Dx ) ⊆ Dx ,

• monotonic– propagator application to smaller domains will result in smaller domains

than application to larger domains, i.e., Dx ⊆ Dy → p(Dx ) ⊆ p(Dy ).

K. Kuchcinski CP Basics 15(48)



Properties of Propagators

• correct– no solution of a constraint is removed,

• assignment complete– failure of a constraint is signaled at latest for the final

assignments of values to FDVs,

• contracting– domains of variables does not become larger after applying a given

propagator (in practice we would like them to be narrowed), i.e., p(Dx ) ⊆ Dx ,

• monotonic– propagator application to smaller domains will result in smaller domains

than application to larger domains, i.e., Dx ⊆ Dy → p(Dx ) ⊆ p(Dy ).

The propagator may also be

• idempotent– always computes the fixpoint, i.e., several applications of the same

propagator produces always the same result, i.e., p(p(Dx ) = p(Dx ).

K. Kuchcinski CP Basics 15(48)



Node Consistency

The node consistency is applied to unary constraints and removes values from the

domain of FDV that are incompatible.

Node consistency algorithm

void NodeConsistency()

for each N ∈ nodes(G) do

for each v ∈ DN do

if the unary constraint on N is inconsistent with v

DN ← DN \ {v}

K. Kuchcinski CP Basics 16(48)



Node Consistency Example

Example

x y

x > 0

x < y

• x :: {0..10} and y :: {0..10},

• node consistency algorithm narrows x to {1..10},

• the self connecting arc can be removed from the constraint graph.

K. Kuchcinski CP Basics 17(48)



Arc Consistency

• arc consistency is applied to the binary constraints of the constraint graph, i.e.,

constraints of two variables xi and xj ,

• the constraint graph is arc consistent if it is arc consistent for every arc (xi , xj ) in

this graph,

• different algorithms exist, e.g., AC-1, AC-3.

K. Kuchcinski CP Basics 18(48)



Arc Consistency

• arc consistency is applied to the binary constraints of the constraint graph, i.e.,

constraints of two variables xi and xj ,

• the constraint graph is arc consistent if it is arc consistent for every arc (xi , xj ) in

this graph,

• different algorithms exist, e.g., AC-1, AC-3.

Definition (Arc consistency)

A variable xi is arc consistent relative to variable xj if and only if for every value vi ∈ Di

there exist a value vj ∈ Dj that is a consistent assignment 〈vi , vj 〉, i.e., it is a solution for

constraint c(xi , xj).

K. Kuchcinski CP Basics 18(48)



AC-1 algorithm

boolean revise(x , y)

reduced ← false

for each u ∈ Dx do

if there is no such v ∈ Dy that (u, v) is consistent

Dx ← Dx \ {u}
reduced ← true

return reduced

void AC-1()

for each 〈x , y〉 ∈ arcs(G)∧ x 6= y

Q ← Q ∪ {〈x , y〉, 〈y , x〉}
do

changed ← false

for each (x , y) ∈ Q do

changed ← revise(x , y) ∨ changed

while changed

K. Kuchcinski CP Basics 19(48)



AC-3 algorithm

void AC-3()

for each 〈x , y〉 ∈ arcs(G) ∧ x 6= y

Q ← Q ∪ {〈x , y〉, 〈y , x〉}
while Q 6= ∅

Q ← Q \ (x , y)
if revise(x , y)

Q ← Q ∪ {〈z, x〉|(z, x) ∈ arcs(G) ∧ z 6= x ∧ z 6= y}

K. Kuchcinski CP Basics 20(48)



Complexity of Arc Consistency

• AC-1 algorithm– worst case time complexity O(d3ne), where d is domain size, n

the number of nodes in the constraint graph (FDVs) and e is the number of edges

with binary constraints,

• AC-3 has worst time complexity is O(d3e),

• more advanced arc consistency algorithms, such as, AC-4 has worst case time

complexity O(d2e).

• AC-4 algorithm does not test many pairs (u, v) which are already known from

previous iterations to be consistent; it needs additional data structure to make it

efficient.

K. Kuchcinski CP Basics 21(48)



Arc Consistency Example

Example

x y

x > 0

x < y

• x :: {1..10} and y :: {0..10}.

• arc consistency algorithm pruning – x :: {1..9} and y :: {2..10}.

K. Kuchcinski CP Basics 22(48)



Arc Consistency Example

Example

(a) arc consistency does not affect the domains of x0, x1 and x2,

(b) FDVs cannot be pruned for the same reason.

x1 :: {1..2}

x0 :: {1..2} x2 :: {1..2}

6= 6=

6=

x1 :: {1..2}

x0 :: {1..2} x2 :: {2..3}

6= 6=

6=

(a) inconsistent constraint graph (b) not pruned constraint graph

K. Kuchcinski CP Basics 23(48)



Path Consistency

• path consistency, in addition to check arcs of the constraint graph between

variables xi and xj , further checks consistency of variables xi , xk , xj that form a path.

Definition (Path Consistency)

A two variable set {xi , xj} is path consistent relative to variable xk if and only if for every

consistent assignment 〈vi , vj〉, vi ∈ Di , vj ∈ Dj there is a value vk ∈ Dk such that the

assignment 〈vi , vk 〉 is consistent and 〈vk , vj〉 is consistent.

The constraint graph is path consistent if and only if for every binary constraint c(xi , xj )
and for every k (k 6= i, k 6= j), c(xi , xj ) is path consistent relative to xk .

K. Kuchcinski CP Basics 24(48)



PC-1 algorithm

boolean revise((x , y), z)
for each (u, v) ∈ Dx × Dy do

if there is no such q ∈ Dz that (u, q) and (q, v) are

consistent delete (u, v) from constraint c(x , y)

void PC-1()

do

for k = 1..n

for i = 1..n

for j = 1..n

revise((xi , xj ), xk)

while there are changed constraints

• worst case time complexity of this algorithm is O(d5n5)

K. Kuchcinski CP Basics 25(48)



Path Consistency Example

Example

(a) constraints are inconsistent since there is no assignment for x2 when

x0 = 1, x1 = 2 or x0 = 2, x1 = 1 (the only allowed assignments of x0 and x1),

(b) it can prune domain of x2 since the only allowed value for x2 for two valid

assignments to x0 and x1 is 3.

x1 :: {1..2}

x0 :: {1..2} x2 :: {1..2}

6= 6=

6=

x1 :: {1..2}

x0 :: {1..2} x2 :: {2..3}

6= 6=

6=

(a) (b)

K. Kuchcinski CP Basics 26(48)



Path Consistency Example

Example

• consider three constraints x ≤ y , y ≤ z and x ≥ z with domains of x , y and z

{0..2},

• Arc consistency is not able to deduce that variables must be equal and have value

0, 1 or 2,

• Path consistency can find out that y = z and z = x .

K. Kuchcinski CP Basics 27(48)



k-consistency

• a constraint graph is k-consistent if and only if given any consistent instantiation of

any k − 1 distinct variables, there exist an instantiation of any k th variable such that

the k values taken together satisfy all of constraints among the k variables.

• arc consistency is equivalent to 2-consistency and path consistency to

3-consistency (if there exist non-binary constraints we need to extend path

consistency to test ternary constraints as well),

• constraint graph is strongly k-consistent if and only if it is j-consistent for all j ≤ k .

K. Kuchcinski CP Basics 28(48)



Bounds Consistency

• arithmetical constraints, defined using equalities, inequalities and arithmetical

operators, have well defined properties and can be implemented using efficient

consistency methods,

• bounds consistency uses interval arithmetic to derive which values are consistent

instead of considering all combinations of values which are allowed by a given

constraint.

• in bounds consistency the FDV domain is approximated using a lower and upper

bound,

• we use real number consistency of primitive constraints rather than integer

consistency.

• the limitation of considering a lower and upper bounds is quite acceptable and it is

often true in practice.

We denote a minimal and a maximal value in the domain of FDV x as min(x) and

max(x) respectively.

K. Kuchcinski CP Basics 29(48)



Bounds Consistency

Definition

An arithmetic constraint c is bounds consistent if for each variable x of this constraint,

there is:

• an assignment of real numbers, say v1, v2, . . . , vk to remaining variables in c, say

x1, x2, . . . , xk , such that min(xj ) ≤ vj ≤ max(xj) for each vj and

x = min(x), x1 = v1, . . . , xk = vk is a solution of c, and

• an assignment of real numbers, say v ′1, v
′
2, . . . , v ′k to x1, x2, . . . , xk , such that

min(xj) ≤ v ′j ≤ max(xj) for each v ′j and x = max(x), x1 = v ′1, . . . , xk = v ′k is a

solution of c.

K. Kuchcinski CP Basics 30(48)



Bounds Consistency

• bounds consistency are built using a functional rule of the form

x in {min .. max}

• it restricts the domain of variable x to interval {min .. max}.

• this rule can be defined using set intersection between min/max domain and the

original domain of FDV

Dx ← {min .. max} ∩ Dx

• the rule detects creation of an empty domain for Dx and notifies its propagator or a

solver.

K. Kuchcinski CP Basics 31(48)



Bounds Consistency (cont’d)

• the consistency for primitive arithmetic constraints can be defined using the defined

functional rule and intervals computed using lower and upper bounds of FDVs’

domains,

• a typical definition of a propagator for a constraint of three FDVs x1, x2 and x3 is of

the form

x1 in {min1 .. max1}

x2 in {min2 .. max2}

x3 in {min3 .. max3}

where values mini and maxi are new allowed minimal and maximal values for

respective variables,

• the new values for all variables involved in bounds consistency computation are

computed using fixpoint iteration, i.e., the computation is iterated until no further

changes of FDVs domains occur.

K. Kuchcinski CP Basics 32(48)



Bounds Consistency (cont’d)

Example

• the propagation rules for constraint x < y are as follows.

x in {− inf .. max(y)− 1}

y in {min(x) + 1 .. inf}

• applied to x :: {0..10} and y :: {0..10} (assuming that the minimal and maximal

integers allowed in our solver, denoted by -inf and inf, are -100000 and 100000

respectively).

x in {−100000 .. 9}

y in {1 .. 100000}

• result – x :: {0..9} and y :: {1..10}.

K. Kuchcinski CP Basics 33(48)



Bounds Consistency (cont’d)

Example

• the propagation rules for constraint x + y = z

x in {min(z)−max(y) .. max(z)−min(y)}

y in {min(z)−max(x) .. max(z)−min(x)}

z in {min(x) +min(y) .. max(x) +max(y)}

• When rules are applied to x :: {1..10}, y :: {1..10} and z :: {1..10} the result is

obtained

x :: {1..9}, y :: {1..9} and z :: {2..10}.

K. Kuchcinski CP Basics 34(48)



Bounds Consistency Limitations

• bounds consistency has problems when numerical intervals contain “holes”, i.e., not

all integers between minimal and maximal values are present in the domain.

Example

• constraint x + 3 = y with domains x :: {1..3, 7..10} and y :: {1..10},

• propagation rules:

x in {min(y)− 3 .. max(y)− 3}

y in {min(x) + 3 .. max(x) + 3}

• produces x :: {1..3, 7} and y :: {4..10}

• arc consistency produces y :: {4..6, 10}.

K. Kuchcinski CP Basics 35(48)



Domain Consistency

• instead of using minimum and maximum values in the domain we can apply the

required operation on the sub intervals.

• extention to functional rule to operate on domains and not only on intervals.

x in {Dy − Const}

y in {Dx + Const}

• operations “+” and “–” are defined to operate on an interval and a constant as

explained in the algorithm

domain out = ∅;

for interval i ∈ Dx

out ← out ∪ {min(i) + Const .. max(i) + Const}

• similar solutions can be used for other primitive constraints, such as x + y = z.

K. Kuchcinski CP Basics 36(48)



Generalized Consistency

• consistency methods can be implemented as specialized algorithms that are able to

efficiently prune the domains of its FDVs.

• these algorithms can implement specific reasoning methods coming from different

areas, such as operation research, geometry and combinatorics.

• solver can implement non-linear constraints (e.g., x · y = z) as well as specialized

combinatorial constraints (e.g., cumulative constraint).

• combinatorial constraints are specially interesting since we can build specific

algorithms around them and obtain efficient pruning of the involved FDVs.

K. Kuchcinski CP Basics 37(48)



Alldifferent Constraint

Example

alldifferent constraint is equivalent in pruning ability to imposing
n·(n−1)

2
constraints

of the form xi 6= xj , i 6= j .

FDV[] V;

for (FDV v ∈ V)

if v has changed and has a single value

for (FDV w ∈ V ∧ v 6= w)

w in {value(v)}′

where {value(v)}′ denotes a complement of a set containing a single value assigned to

v .

K. Kuchcinski CP Basics 38(48)



Solver Implementation



Solver Implementation

• all FDVs and constraints are kept in a so called constraint store.

• the constraint store maintains all necessary data structures for the solver and

provides access to all constraints consistency (propagators) and satisfiability

procedures as well as access to FDVs and their actual domains,

• it also maintains solver state during search and makes it possible to organize an

efficient backtracking.

• the solver implements a procedure that enforces consistency of all constraints

registered in the constrained store – propagation loop.

K. Kuchcinski CP Basics 39(48)



Propagation Loop

boolean solver.consistency()

while (Q 6= ∅)

c ← fetch constraint from Q;

try

c.consistency();

modifiedFDVs ← {x | modified by c.consistency()}
constraintsToEvaluate← {c|x ∈ var(c), x ∈ modifiedFDVs}
Q ← Q ∪ constraintsToEvaluate

if (c.satisfied())

remove c from constraint store;

catch (Fail exception)

return false;

return true;

K. Kuchcinski CP Basics 40(48)



Propagation Loop (cont’d)

• queue of constraints is usually organized. as FIFO; the priority queue can be a

complex implementation structure but offers a lot of flexibility for constraint

scheduling for evaluation.

• constraints are added to queue Q when their domains changed; the solver can add

all constraints with variables that were changed or a more selective strategy can be

used.

• the solver assigns to each changed variable an event that indicates a reason for
variable’s change; typical events are:

– value– the variable get a single value assigned,

– min– the minimum value of a variable has been changed,

– max– the maximum value of a variable has been changed,

– minmax– the minimum and the maximum value of a variable has been changed, and

– all– any change of a variable has occurred, e.g., removing a value from inside an

interval.

K. Kuchcinski CP Basics 41(48)



Search

• the propagation loop cannot, in general, deliver a solution for the constraint problem.

• the solver need to search for a solution or solutions.

• search is usually implemented using an algorithm based on the

constraint-and-generate method– it assigns a new value to a selected FDV and

calls propagation loop.

• if at some point inconsistency is detected (by obtaining an empty FD) the algorithm

need to backtrack,

• backtracking annuls the results of the last decision by removing all values changed

by this assignment and a new assignment is then performed.

• a simple depth-first-search algorithm is therefore well suited for this solving

technique (in CLP community this method is called labeling).

K. Kuchcinski CP Basics 42(48)



Backtracking

• backtracking search requires a method to restore the previous state of the

constraint store, i.e., the state which we need to backtrack.

• three approaches to solve this problem:

– trailing– the solver records only changes in the state and, if needed, undo this

changes,

– copying– the solver always copy the whole state (basically the constraint store) and, if

needed, removes the old state and returns to the old one, and

– recomputing– the solver always recomputes needed information from already made

decisions.

• by far dominating approach is trailing.

K. Kuchcinski CP Basics 43(48)



Organizing Backtracking

• search organizes the search space as a search tree,

• in every node of this tree a value is assigned to a variable and a decision whether

the node will be extended or the search will be cut in this node is made,

• each node of this tree has assigned the search level – when the tree is extended

the level is incremented and when the tree is cut the level is decremented.

K. Kuchcinski CP Basics 44(48)



Organizing Backtracking (cont’d)

• each FDV points to the list of domains; the first element on this list is the current

domain; the domain captures its actual domain, actual set of assigned constraints,

and the stamp when the FDV has been assigned a new domain.

• when during the search a domain is pruned it is updated using a procedure that

takes into account the stamp and the current level.

• if the level and the stamp are the same, the domain is updated directly, if the level is

higher than the stamp a new domain with the new stamp is put at the top of the list.

• In case of backtracking, all domains with the with stamp equal to current level are

removed.

K. Kuchcinski CP Basics 45(48)



Search Example

• three FDVs x :: 0..4, y :: 2..9, z :: 1..5 and constraints x < z, y ≥ z,

x y z

0, 0..4 0, 2..9 0, 1..5

(a) initial state

K. Kuchcinski CP Basics 46(48)



Search Example

• three FDVs x :: 0..4, y :: 2..9, z :: 1..5 and constraints x < z, y ≥ z,

x y z

0, 0..4 0, 2..9 0, 1..5

x y z

1, 0 0, 2..9 0, 1..5

0, 0..4

(a) initial state (b) assignment x = 0

K. Kuchcinski CP Basics 46(48)



Search Example

• three FDVs x :: 0..4, y :: 2..9, z :: 1..5 and constraints x < z, y ≥ z,

x y z

0, 0..4 0, 2..9 0, 1..5

x y z

1, 0 0, 2..9 0, 1..5

0, 0..4

x y z

1, 0 2, 2 2, 1..2

0, 0..4 0, 2..9 0, 1..5

(a) initial state (b) assignment x = 0 (c) assignment y = 2

K. Kuchcinski CP Basics 46(48)



Search Example

• three FDVs x :: 0..4, y :: 2..9, z :: 1..5 and constraints x < z, y ≥ z,

x y z

0, 0..4 0, 2..9 0, 1..5

x y z

1, 0 0, 2..9 0, 1..5

0, 0..4

x y z

1, 0 2, 2 2, 1..2

0, 0..4 0, 2..9 0, 1..5

(a) initial state (b) assignment x = 0 (c) assignment y = 2

x y z

1, 0 2, 2 3, 1

0, 0..4 0, 2..9 2, 1..2

0, 1..5

(d) assignment z = 1

K. Kuchcinski CP Basics 46(48)



Search Example

• three FDVs x :: 0..4, y :: 2..9, z :: 1..5 and constraints x < z, y ≥ z,

x y z

0, 0..4 0, 2..9 0, 1..5

x y z

1, 0 0, 2..9 0, 1..5

0, 0..4

x y z

1, 0 2, 2 2, 1..2

0, 0..4 0, 2..9 0, 1..5

(a) initial state (b) assignment x = 0 (c) assignment y = 2

x y z

1, 0 2, 2 3, 1

0, 0..4 0, 2..9 2, 1..2

0, 1..5

x y z

1, 0 2, 2 2, 1..2

0, 0..4 0, 2..9 0, 1..5

(d) assignment z = 1 (e) backtrack

K. Kuchcinski CP Basics 46(48)



Search Example

• three FDVs x :: 0..4, y :: 2..9, z :: 1..5 and constraints x < z, y ≥ z,

x y z

0, 0..4 0, 2..9 0, 1..5

x y z

1, 0 0, 2..9 0, 1..5

0, 0..4

x y z

1, 0 2, 2 2, 1..2

0, 0..4 0, 2..9 0, 1..5

(a) initial state (b) assignment x = 0 (c) assignment y = 2

x y z

1, 0 2, 2 3, 1

0, 0..4 0, 2..9 2, 1..2

0, 1..5

x y z

1, 0 2, 2 2, 1..2

0, 0..4 0, 2..9 0, 1..5

x y z

1, 0 2, 2 3, 2

0, 0..4 0, 2..9 2, 1..2

0, 1..5

(d) assignment z = 1 (e) backtrack (f) assignment z = 2

K. Kuchcinski CP Basics 46(48)



Simple Search

boolean solver.search(level, V)
if solver.consistency()

if V 6= ∅

pick one variable var from V
for each v ∈ Dvar

impose var = v

if solver.search(level+1, V \ var)

return true

else // backtrack

remove FDVs on trail with stamp=level

return false // no more values to assign for var

else

return true // assignment for all FDVs found

else

return false // inconsistent constraints

K. Kuchcinski CP Basics 47(48)



Conclusions



Conclusions

• there exist different methods to define constraints consistency,

• bounds consistency is usually used because it offers low complexity and good

enough precision for most applications,

• solvers offer efficient methods for handling backtracking.

K. Kuchcinski CP Basics 48(48)


	Constraint Satisfaction Problem
	Constraint Graph
	Constraint Entailment
	Consistency Techniques
	Node and Arc Consistency
	Path Consistency
	Bounds Consistency
	Generalized Consistency

	Solver Implementation
	Conclusions

