
Seminar 3

Seminar 3 – Deadlock analysis

Semaphores
Consider the following two thread classes S and T referring to the shared resources A, B,
C, D, and E which are allocated using semaphores.

class S extends Thread {
public void run() {

//
A. acquire();
B. acquire();
useAB ();
A.release();
C.acquiree();
useBC ();
B. release();
C. release();
//

}
}

class T extends Thread {
public void run() {

//
C. acquire();
D. acquire();
useCD ();
A.acquire();
useACD ();
A.release();
D. release();
E. acquire();
useCE ();
C.release();
E.release();
//

}
}

1. Draw a resource allocation graph. Is the system safe concerning deadlock, that is,
can we conclude that there is no risk for a deadlock?

2. Review the program and the graph from 1 again. Assume there is exactly one thread
of type S and one thread of type T. Explain why the system cannot deadlock!

3. Assume that there are two threads of type S, and still one T thread. Can deadlock
occur in this case?

4. Change one of the threads in such a way that there will be no risk for deadlock no
matter how many threads there are of each type. Note that the same computations
should be carried out and still with full synchronization. In case of several solutions,
can any solution be considered to be more e�cient than others? In what sense?

Monitors
A Java program consists of three concurrently executing threads T1, T2, and T3. They
communicate with each other using four shared objects A, B, C, and D. The shared objects
contain methods declared synchronized as well as other, non-synchronized, methods (such
as A.s()). Relevant parts of the program and the design of the monitors are shown below
(subset of the total program only). Each thread and shared object is assumed to know
references to the (other) shared objects A, B, C, and D named a, b, c, and d, respectively.

17

Multi-Threaded Programming in Java

class T1
extends Thread {
void run() {

b.z();
a.x();

}
}

class T2
extends Thread {
void run() {

b.r();
c.y();
b.w();

}
}

class T3
extends Thread {
void run() {

d.u();
}

}

class A {
synchronized void x() {

c.y();
}

void s() { // NOT SYNCHRONIZED
// ...

}

synchronized void t() {
// ...

}
}

class B {
synchronized void z() {

// ...
}

synchronized void r() {
a.s();

}

synchronized void w() {
d.v();

}
}

class C {
synchronized void y() {

b.z();
}

}

class D {
synchronized void u() {

a.t();
}

synchronized void v() {
// ...

}
}

Hint: Entering a synchronized method can be interpreted as acquire, leaving as release.

1. Draw a resource allocation graph for the system above.

2. Can the system experience deadlock?

