Resource Allocation Graphs

Roger Henriksson
Department of Computer Science
Lund University

Thepossibilityof deadlockis anundesiregroperty(to saytheleast)of safety-criticalreal-timesystems.
Thereforeamethodto verify thata systemcannotdeadlockor to detectpossibledeadlocksituationsjs

of tremendous value. One such methog$®urce allocation graphs. As stated in Operating System
Concepts by Peterson and Silberschatz [PS85], the occurrence of deadlock requires among other things
that hold-wait situations exist and a circular chain of such hold-waits must exist. A resource allocation
graphattemptgo graphicallyillustrateall the hold-waitsituationsin asystemln this graphit is possible

to search for cases of circular hold-wait.

In their book, PetersorandSilberschat#PS85](Section8.2.2)introducea methodfor drawingresource
allocation graphs. However, in their version the resource allocation graph shows all the hold-wait-states
thatexistatanyonegivenpointin time. Thisis agoodtool for illustratingatransienttatein thesystem,

butin orderto usetheirversionof thegraphdor detectinganypossibledeadlocksituationwe would have

to draw a graph for each and every possible combination of execution state for all threads in the system.
Then, each and every one of these graphs would have to be analysed for cycles indicating circular wait.
This is clearly unpractical.

Instead, we modify the method of drawing resource allocation graphs slightly in order to display a static
view of the systemshowingeveryconceivablénold-waitstateat anytime simultaneouslyThis paperdis-
cusses how to do this.

Graph construction

A resource allocation graph is a directed graph consisting of a set of vertices and a set of edges. The ver-
ticescomein two flavours,resourceverticesandthreadvertices Eachsemaphorer otherresourceused

for achieving mutual exclusion corresponds to a resource vertex in the graph. A thread vertex corre-
sponds tmne possible state fone thread in which a hold-wait situation can occur. There are also two
types of edgesequest edgeandassignment edge# request edge is a directed edge from one thread
vertex to a resource vertex. Edges going in the other direction are denoted assignment edges. A request
edge illustrates that the thread in question at a particular point in its execution tries to achieve a lock on
the resource the edge leads to (e.g. executiqgire() on a semaphore). An assignment edge indicates
thatthe resource from which the edge originates is held by the thread indicated by the edge destination.
Resource vertices are graphically represented by squares labeled with the name of the resource and
thread vertices are represented with circles labeled with the name of the thread. Edges are drawn as
arrows from one vertex to another.

Resource Allocation Graphs 1

Example

Since a deadlock is caused by a circular structure of hold-wait states, we only add possible hold-wait sit-
uations to the graph. A thread that tries to allocate a resource but does not hold any resources previously
cannot cause deadlock. Thread vertices should therefore always have at least one incoming assignment
edgeandoneandonly oneoutgoingrequesedge.Thegraphis constructedy walking throughthecode

of the various threads line for line and when a situation is encountered in which the thread attempts to
lock aresourcavhile alreadyholdingoneore moreresourcea newthreadvertexis addedo theresource
allocation graph illustrating the possible execution state of the thread.

Below, a short code segment and the corresponding resource allocation graph is shown. The example
shows a thread locking two semaphores, A and B. The thread vertex marked “T” is added to the graph
when analysing line 2 in the code. Here, the thread attempts to lock senmBptiute already holding
semaphoré\. Note that theacquire() call at line 1 does not affect the resource allocation graph since no
resources were held previously by the thread.

thread vertex

T
1. A.acquire();

2. B.acquire(); assignment ed request edge
3. A.release();

4. B.release(); A B

resource vertex

The resulting graph is analysed for the occurrence of circular structures. If such a circular structure is
found, it indicates a possible circular wait and thus a situation in which deadlock could occur.

Example

Consider a simple real-time system implemented using two threads, in the following déidatedT2.
The two threads use a total of four semaphores, demgtBdC, andD, in order to achieve mutual exclu-
sion over sensitive pieces of code. The semaphore operations execlfedrm 2 respectively during
each invocation is listed below.

T1 T2

1. A.acquire(); 1. D.acquire();
2. B.acquire(); 2. C.acquire();
3. C.acquire(); 3. B.acquire();
4. Curelease(); 4. B.release();
5. B.release(); 5. Curelease();
6. A.release(); 6. D.release();

Can the system possibly deadlock?
In order to answer the question we have to draw a resource allocation graph for the system. We start by

drawing vertices for the resources (in this case semaphores) involved. Here, this means the semaphores
A, B, C, andD, as depicted below.

A B C D

Resource Allocation Graphs 2

Example

We now walk through the code of each thread in order to find, and mark in the graph, each possible
“hold-wait” state the threads can enter. We start With

T1mightbeblockedwhenit attemptdo acquire the semaphord\ atline 1, butsinceT1 doesnot
previously hold any resource we do not have a hold-wait situation. The thread might Waitehat it
does not hol@gnyresourceAt line 2 ontheotherhand, T1 holdsA andmight haveto wait for B to be
releasedT1 canthusbein ahold-waitstateatline 2. We updateour graphaccordinglywith avertex

showingthe pos-sible hold-wait state. For pedagogical reasons we also augment each vertex in this
example with the lineumber it is associated with in the code.

”nj@‘

A B C D

Continuingto line 3we find thatT1 mightbe blockedvhen it attempts$o acquire C. At this point, T1
holdsboth A and B. We therefore draw a new vertex illustrating the potential hold-wait stdteNifte

thatsince T1 holds two resources, there should be two assignment edges to the new vertex,/one from
and one from B, as shown below.

I
A B C D

At line 4, T1 releasesemaphor€, butwe do notintroduceany new hold-waitsituationsinceexecuting
release() on a semaphore can never block. The same goes for the line 5 and 6.

We now turn our attention to thred@ and walk through its code in the same way adding all hold-wait
situations we find to the resource allocation graph. After doing this we end up with the following graph:

line 2 line 3

A B

C D
.

After havingfinishedthegraphwe searctit for cycles.Looking carefullywe find onecyclegoingfrom B
to T1(line 3) toC to T2(line 3). This shows that the real-time system given in the example can indeed

deadlockThisoccursif T1attemptgo acquire C atline 3 in thecodeatthesametime asT2 attemptdo
acquire B, also at line 3.

Resource Allocation Graphs 3

False cycles

False cycles

Itis important to beware of false cycles when analysing a resource allocation graph. Consider the follow-
ing code and the resulting resource allocation graph:

T1 line 2

A.acquire();
B.acquire();

A.release(); A B

A.acquire();

B.release();

@ o0 w2

A.release();

line 4

Can this system deadlock? Well, obviously not since the system only consists of one thread and it never
tries toacquire an already taken semaphore. Even so, the graph does contain a cycle! How do we
explainthis?

The key to the answer is that each thread vertex (circle with a thread name in it) in the graph represents
one possible statihe indicated thread can be in. Since a thread can onlydme iand only onstate at

any given time, circular wait is not possible in the example above. T1 can be in the upper state in the
graphor in thelower state butnot simultaneouslyn bothwhichwould berequiredfor deadlocko occur.

We should therefore discard any cycle in which every thread vertex does not correspond to a unique
threadinstance Anotherway to putit is thatanyonethreadinstancanustonly occurat mostoncein the

cycle.

Multiple instances of the same thread class

So far, we have considered systems where each thread has a unique implementation. For each thread
instancewe havewalkedthroughthe codeandmarkedeverypotentialhold-waitsituationin theresource
allocation graph. We have learned that a cycle in the graph indicates a potential deadlock, but we have
also been warned about false cycles. But let us return to the previous example which produced a false
cycle for a moment.

Let usassumehatthe codegivenin theexampleis notthe codeexecutedy a singlethreadinstancebut
ratherthe codefoundfor examplen therun() methodof a JavaT hreadclassnamedT. Let usfurthermore
assumehatthemainprogramcreateswo instance®f this class We saythatwe haveonethreadtypebut

two threadnstances.

Oneway of dealingwith this situationwould beto treatthe two threadinstancesstwo completelysepa-
ratethreadsvhendrawingthe allocationgraph.This solvesthe problem but we risk clutteringthegraph
with a large number of identical thread vertices.

Resource Allocation Graphs 4

Reference

An alternative method is to draw the resource allocation graph as if we only had one thread (of each
type), but to take special care when analysing the resulting graph. In our example, we then get the same
resource allocation graph as earlier:

T
1. class T extends Thread {

2. ..

3. void run() {

4 A.acquire();)

5. B.acquire(); Main program

6. Arelease(); 1. Thread t1 = new T(); A B
7 A.acquire(); 2. tl.start();

8. Burelease(); 3. Thread t2 = new T();

0. A.release(); 4. t2.start();

10. }

1.}

In this case we have a true cycle in the graph. This is due to the two instances of T. It is quite conceivable
that one instance of the thread is in the state indicated by the upper thread vertex at the same time as the
other thread instance is in the state corresponding to the lower thread vertex with deadlock as a result.

The rule when drawing resource allocation graphs in this way is that a cycle indicating deadlock may
include duplicate thread verticdsjt only as many as there are thread instances of the corresponding
thread type.

Conclusion

When drawing a resource allocation graph it is thus important to differentiate between thread instances
(Java objects) and thread types (Java classes) and treat them accordingly. Do not confuse thread instances
with thread types!

Reference

[PS85] J. L. Peterson and A. Silberschatz, “Operating System Concepts”, second edition, Addi-
son-Wesley, 1985.

Resource Allocation Graphs 5

	Resource Allocation Graphs
	Graph construction
	T

	Example
	T1
	T2

	False cycles
	T1

	Multiple instances of the same thread class
	T
	Conclusion

	Reference

