
Resource Allocation Graphs

Roger Henriksson
Department of Computer Science
Lund University
r things
tion

states

ystem.
r wait.

 static

The ver-

e-
o

d
equest
ck on
s
ation.
nd

 as
The possibility of deadlock is an undesired property (to say the least) of safety-critical real-time systems.
Therefore, a method to verify that a system cannot deadlock, or to detect possible deadlock situations, is
of tremendous value. One such method is resource allocation graphs. As stated in Operating System
Concepts by Peterson and Silberschatz [PS85], the occurrence of deadlock requires among othe
that hold-wait situations exist and a circular chain of such hold-waits must exist. A resource alloca
graph attempts to graphically illustrate all the hold-wait situations in a system. In this graph it is possible
to search for cases of circular hold-wait.

In their book, Peterson and Silberschatz [PS85] (Section 8.2.2) introduce a method for drawing resource
allocation graphs. However, in their version the resource allocation graph shows all the hold-wait-
that exist at any one given point in time. This is a good tool for illustrating a transient state in the system,
but in order to use their version of the graphs for detecting any possible deadlock situation we would have
to draw a graph for each and every possible combination of execution state for all threads in the s
Then, each and every one of these graphs would have to be analysed for cycles indicating circula
This is clearly unpractical.

Instead, we modify the method of drawing resource allocation graphs slightly in order to display a
view of the system showing every conceivable hold-wait state at any time simultaneously. This paper dis-
cusses how to do this.

Graph construction

A resource allocation graph is a directed graph consisting of a set of vertices and a set of edges.
tices come in two flavours, resource vertices and thread vertices. Each semaphore or other resource used
for achieving mutual exclusion corresponds to a resource vertex in the graph. A thread vertex corr
sponds to one possible state for one thread in which a hold-wait situation can occur. There are also tw
types of edges, request edges and assignment edges. A request edge is a directed edge from one threa
vertex to a resource vertex. Edges going in the other direction are denoted assignment edges. A r
edge illustrates that the thread in question at a particular point in its execution tries to achieve a lo
the resource the edge leads to (e.g. executing acquire() on a semaphore). An assignment edge indicate
that the resource from which the edge originates is held by the thread indicated by the edge destin
Resource vertices are graphically represented by squares labeled with the name of the resource a
thread vertices are represented with circles labeled with the name of the thread. Edges are drawn
arrows from one vertex to another.
Resource Allocation Graphs 1

Example

ait sit-
viously
nment

ts to

mple
raph

 no

e is

tart by
phores
Since a deadlock is caused by a circular structure of hold-wait states, we only add possible hold-w
uations to the graph. A thread that tries to allocate a resource but does not hold any resources pre
cannot cause deadlock. Thread vertices should therefore always have at least one incoming assig
edge and one and only one outgoing request edge. The graph is constructed by walking through the code
of the various threads line for line and when a situation is encountered in which the thread attemp
lock a resource while already holding one ore more resource a new thread vertex is added to the resource
allocation graph illustrating the possible execution state of the thread.

Below, a short code segment and the corresponding resource allocation graph is shown. The exa
shows a thread T locking two semaphores, A and B. The thread vertex marked “T” is added to the g
when analysing line 2 in the code. Here, the thread attempts to lock semaphore B while already holding
semaphore A. Note that the acquire() call at line 1 does not affect the resource allocation graph since
resources were held previously by the thread.

The resulting graph is analysed for the occurrence of circular structures. If such a circular structur
found, it indicates a possible circular wait and thus a situation in which deadlock could occur.

Example

Consider a simple real-time system implemented using two threads, in the following denotedT1andT2.
The two threads use a total of four semaphores, denotedA, B, C, andD, in order to achieve mutual exclu-
sion over sensitive pieces of code. The semaphore operations executed byT1 andT2 respectively during
each invocation is listed below.

Can the system possibly deadlock?

In order to answer the question we have to draw a resource allocation graph for the system. We s
drawing vertices for the resources (in this case semaphores) involved. Here, this means the sema
A, B, C, andD, as depicted below.

A B

T
T

1. A.acquire();
2. B.acquire();
3. A.release();
4. B.release();

assignment edge request edge

resource vertex

thread vertex

T1

1. A.acquire();
2. B.acquire();
3. C.acquire();
4. C.release();
5. B.release();
6. A.release();

T2

1. D.acquire();
2. C.acquire();
3. B.acquire();
4. B.release();
5. C.release();
6. D.release();

A B C D
Resource Allocation Graphs 2

Example

le

is

rom

it
aph:

ed
We now walk through the code of each thread in order to find, and mark in the graph, each possib
“hold-wait” state the threads can enter. We start with T1.

T1 might be blocked when it attempts to acquire the semaphore A at line 1, but since T1 does not
previously hold any resource we do not have a hold-wait situation. The thread might have to wait, but it
does not hold any resource. At line 2 on the other hand, T1 holds A and might have to wait for B to be
released. T1 can thus be in a hold-wait state at line 2. We update our graph accordingly with a vertex
showing the pos-sible hold-wait state. For pedagogical reasons we also augment each vertex in th
example with the line number it is associated with in the code.

Continuing to line 3 we find that T1 might be blocked when it attempts to acquire C. At this point, T1
holds both A and B. We therefore draw a new vertex illustrating the potential hold-wait state of T1. Note
that since T1 holds two resources, there should be two assignment edges to the new vertex, one f A
and one from B, as shown below.

At line 4, T1 releases semaphore C, but we do not introduce any new hold-wait situation since executing
release() on a semaphore can never block. The same goes for the line 5 and 6.

We now turn our attention to thread T2 and walk through its code in the same way adding all hold-wa
situations we find to the resource allocation graph. After doing this we end up with the following gr

After having finished the graph we search it for cycles. Looking carefully we find one cycle going from B
to T1(line 3) to C to T2(line 3). This shows that the real-time system given in the example can inde
deadlock. This occurs if T1 attempts to acquire C at line 3 in the code at the same time as T2 attempts to
acquire B, also at line 3.

A B C D

T1
line 2

A B C D

T1
line 2

T1
line 3

A B C D

T1
line 2

T1
line 3

T2
line 3

T2
line 2
Resource Allocation Graphs 3

False cycles

ollow-

t never

esents

the

ue

read

 have
false
False cycles

It is important to beware of false cycles when analysing a resource allocation graph. Consider the f
ing code and the resulting resource allocation graph:

Can this system deadlock? Well, obviously not since the system only consists of one thread and i
tries to acquire an already taken semaphore. Even so, the graph does contain a cycle! How do we
explain this?

The key to the answer is that each thread vertex (circle with a thread name in it) in the graph repr
one possible state the indicated thread can be in. Since a thread can only be in one and only one state at
any given time, circular wait is not possible in the example above. T1 can be in the upper state in
graph or in the lower state, but not simultaneously in both which would be required for deadlock to occur.
We should therefore discard any cycle in which every thread vertex does not correspond to a uniq
thread instance. Another way to put it is that any one thread instance must only occur at most once in the
cycle.

Multiple instances of the same thread class

So far, we have considered systems where each thread has a unique implementation. For each th
instance we have walked through the code and marked every potential hold-wait situation in the resource
allocation graph. We have learned that a cycle in the graph indicates a potential deadlock, but we
also been warned about false cycles. But let us return to the previous example which produced a
cycle for a moment.

Let us assume that the code given in the example is not the code executed by a single thread instance but
rather the code found for example in the run() method of a Java Thread class named T. Let us furthermore
assume that the main program creates two instances of this class. We say that we have one thread type but
two thread instances.

One way of dealing with this situation would be to treat the two thread instances as two completely sepa-
rate threads when drawing the allocation graph. This solves the problem, but we risk cluttering the graph
with a large number of identical thread vertices.

T1

1. A.acquire();
2. B.acquire();
3. A.release();
4. A.acquire();
5. B.release();
6. A.release();

A B

T1

T1

line 2

line 4
Resource Allocation Graphs 4

Reference

ch
 same

ivable
e as the
esult.

ay
g

nces
stances

ddi-
An alternative method is to draw the resource allocation graph as if we only had one thread (of ea
type), but to take special care when analysing the resulting graph. In our example, we then get the
resource allocation graph as earlier:

In this case we have a true cycle in the graph. This is due to the two instances of T. It is quite conce
that one instance of the thread is in the state indicated by the upper thread vertex at the same tim
other thread instance is in the state corresponding to the lower thread vertex with deadlock as a r

The rule when drawing resource allocation graphs in this way is that a cycle indicating deadlock m
include duplicate thread vertices,but only as many as there are thread instances of the correspondin
thread type.

Conclusion

When drawing a resource allocation graph it is thus important to differentiate between thread insta
(Java objects) and thread types (Java classes) and treat them accordingly. Do not confuse thread in
with thread types!

Reference

[PS85] J. L. Peterson and A. Silberschatz, “Operating System Concepts”, second edition, A
son-Wesley, 1985.

T

1. class T extends Thread {

2. ...

3. void run() {

4. A.acquire();
5. B.acquire();
6. A.release();
7. A.acquire();
8. B.release();
9. A.release();
10. }

11. }

A B

T

T

Main program

1. Thread t1 = new T();

2. t1.start();

3. Thread t2 = new T();

4. t2.start();
Resource Allocation Graphs 5

	Resource Allocation Graphs
	Graph construction
	T

	Example
	T1
	T2

	False cycles
	T1

	Multiple instances of the same thread class
	T
	Conclusion

	Reference

