Assignment 4 — Water Shader

Lund University Graphics Group

EDAF80: Assignment 4

Figure 1: The end result once you have completed everything.

In this assignment you will utilise previously learnt shader
techniques to create a water shader. Though fluid mechan-
ics can be simulated accurately by particle systems or FE-
analysis, cheap water-like effects can be achieved in real-time
using vertex displacements and mapping techniques. Here,
you will use trigonometric functions to simulate waves, ani-
mated normal mapping for ripples, reflection and refraction
etc.

Unlike previous assignments, you will now create the code
yourself; you should start from the skeleton code found in
src» EDAF80» assignment4.cpp, but you can refer to src»
EDAF80» assignment3. cpp if needed.

1 Quad tessellation

Before trying to simulate any waves, a higher triangle count
than the two currently making up the quad will be needed to
create more detailed waves. So the first step will be to tes-
sellate the quad from parametric_shapes: :createQuad()
in src»EDAF80» parametric_shapes.cpp.
Exercise 1:

1. Create the quad in the x, z-plane rather than the z, y-

plane

2. Tessellate it, and generate texture coordinates for it
Note: normals, tangents and binormals are not needed
as those will be computed directly in the shader.

3. Create a quad with a size of 100 x 100 and a tessellation
of 1000 x 1000 in src»EDAF80»assignment4.cpp

2 Custom functions in GLSL

You can define custom functions in GLSL similar to C or
C++. For example,

void myFunction(in float a, out float b,
inout float c) {

// b = 222
b=a+c;
c=17.7;

a = 42.0;

}

void main() {
float a = 2.2, b = 3.3, ¢c = 4.4;
myFunction(a, b, c);
// a=2.2,b=6.6,c="77

}

As you can see, it is very similar to C or Java but with a
few additional constraints:

e there are no pointers or references, instead there are
three different parameter qualifiers:

in a copy of the argument is passed to the function;
this is the default if no qualifier is used;

out the variable has undefined content when entering
the function, but whatever was written to it by
the function will be visible to the caller;

inout the argument is passed by reference to the func-
tion, i.e. the function sees whatever was stored in

EDAF80 — Introduction to Computer Graphics

2021

the variable before being called, and all modifica-
tions by the function will be visible to the caller.

e they can not be recursive.
More details can be found in the OpenGL Wiki.
3 Water shader

Implement the features of the water using the theoretical
background provided in the seminar and the GPU Gems
article.

The equations for a single wave and its derivatives:

y = Gi(z,z,t) = Aiozf (1a)
aGl = O.5kifiAiaf_1
ox (1b)
X cos ((Dzwx + D;.2)fi + tpi)Di,w
8GZ = O.5kifiAiOtf_1
0z (]_C)

X COS ((Dlzx +D;.2)fi + tpi)Di,z

with o = sin ((Dma: +D;.2)fi + tpi)0.5 + 0.5, t the time,

<}gf Zl) the position on the plane of the water surface and
the following wave attributes:

A; the amplitude;

D; = (Diq,Ds;,:), the direction of travel;

fi the frequency;

p; the phase;

k; the sharpness.

To combine multiple waves together, the following applies:

H(z,2,t) = Y Gi(,2,t) (2a)
6_H _ 0G;
ox ox

OH 0G;
9z Z 0z

(2b)

(2¢)

Exercise 2:
1. Create a new shader program; you can use the different
diffuse shaders as a starting point.

2. Send the elapsed time (stored in ellapsed_time_s) in
seconds since the program start to the water shader.

3. In the vertex shader, displace the vertices in the y-
direction using Equation (2a) for two superimposed
waves with the following attributes:

Attribute Wave 1 Wave 2
Amplitude, A; 1.0 0.5
Direction, D; (=1 0) (=0.7 0.7)
Frequency, f; 0.2 0.4
Phase, p; 0.5 1.3
Sharpness, k; 2.0 2.0

Note: we recommend defining your wave equation and
its derivative as one (as they share quite a few compu-
tations) or multiple equations rather than performing
the computations directly in the main() function and
duplicating the code for each wave evaluated.

4. Compute the basic water colour based on the surface
orientation relative to the camera (see Figure 2).

5. Add reflection mapping (see Figure 3); you can use the
NissiBeach2 cubemap set.

6. Add wave ripples through the animated normal map-
ping (see Figure 4); use res»textures»waves.png as
the normal map.

7. Add a Fresnel factor to the reflection lighting.

Figure 2: Waves with basic water colour.

Figure 4: Waves with normal-mapped reflections.

EDAF80: Assignment 4

Figure 5: Camera looking straight down the —y-axis, with
only refractions turned on.

https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)#Functions
https://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch01.html
https://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch01.html

EDAF80 — Introduction to Computer Graphics

2021

Figure 6: Camera looking straight down the —y-axis, once
passed the water geometry.

8. Add refraction mapping using an appropriate refrac-
tion index. Use the same cubemap set as in Step 5 and
take the Fresnel factor into consideration. You should
have something resembling Figure 1.

It can be hard to tell if refraction is working prop-
erly, with all the other effects on. So check by setting
the final colour to only the results of the refraction
mapping, and have the camera look straight down at
the water plane. Move the camera close to the wa-
ter surface, and what you see there (the overall shapes
and colours) should match what you see if the cam-
era pushes through the water and looks underneath
(still looking straight down the y-axis). For example,
Figure 5 showing only the refraction compared to Fig-
ure 6 showing the bottom face of the cube map from
the same z, z camera position.

4 Suggestions and Thing to ponder

e What do you need to change in order to make the
shader work when the camera is below the water? You
can use the GLSL variable
gl_FrontFacing to know whether the current fragment
is front- or back-facing.

o Attempt, by tweaking the various coefficients and pa-
rameters, to improve the visual appearance of the water
even further.

e What would it take to apply this shader to one one
of the objects from your previous lab code? If time
permits, try it out.

A Framework controls

The framework uses standard key bindings for movement,
such as (W], (A, [S], and [D]. But there are also custom
key bindings for moving up and down, as well as controlling
the UIL. All those key bindings are listed in Table 1.

There is only one action currently bound to the mouse,
and that is rotating the camera. To do so, move the mouse
while holding the left mouse button.

GUI elements can be toggled being a collapsed and ex-
panded state by double clicking on their title bar. And they
can be moved around the window by dragging their title bar
wherever desired (within the window).

B IDE key bindings

To help with getting certain tasks done more efficiently, Ta-
ble 2 lists key bindings of different IDEs for several common
actions.

Table 1: Various controls when running an assign-
ment.“Reload the shaders” is not available in assignments
1 and 2 of EDAF80, while “Toggle fullscreen mode” is miss-
ing from assignment 2 of EDAN35.

Action Shortcut

Move forward
Move backward
Strafe to the left
Strafe to the right
Move downward
Move upward

“Walk” modifier
“Sprint” modifier
Reload the shaders

Hide the whole UI
Hide the log Ul
Toggle fullscreen mode

J& = 2 (eER-E

m
[y
—=

EDAF80 — Introduction to Computer Graphics

2021

Table 2: Various keyboard shortcuts for Visual Studio 2019 and 2017, and Xcode.

Action Shortcut
Visual Studio Xcode

Build G (8])-(5]
Run (with the debugger) (s2]+(R)
Run (without the debugger) (Ctrl)+[Fs5]

Toggle breakpoint at current line
Stop debugging

Continue (while in break mode)
Step Over (while in break mode)
Step Into (while in break mode)
Step Out (while in break mode)

Comment selection
Uncomment selection
Delete entire row

	Quad tessellation
	Custom functions in GLSL
	Water shader
	Suggestions and Thing to ponder
	Framework controls
	IDE key bindings

