
1(3)
LUND INSTITUTE OF TECHNOLOGY Department of Computer Science

Solutions, C++ Programming examination

2023-03-17

1. a) example1 has UB, as make_person returns a reference to a temporary value

b) example2 has UB, as make_student returns a reference to a local variable

c) example3 is correct, as make_teacher returns a pointer to a dynamically allocated object

d) example4 is correct, as it uses a local variable t

2. An array is not a pointer: it is an object containing all of its elements, and sizeof gives the size of a
type.

arr is an array of 5 ints, and sizeof(arr) gives the size of the array object which is 20 bytes (i.e., on
this machine, sizeof(int) == 4.

&arr is a pointer to the array (i.e., an int*), and on this machine a pointer is 8 bytes.
Regarding “an array is just a pointer to the first element”: When using an array variable, it decays to

a pointer. That is why the first two lines are equivalent: the expression arr gives a pointer to the first
element.

3. The expression pos =! last is probably a typo, and its meaning is clearer if it is formatted pos = !last.
As last is an int, it is implicitly converted to bool, so the value of !last is true or false.

Then, in the assignment pos = !last it is converted back to int as 0 or 1, and finally that is
interpreted as a boolean value. As last gets passed the argument 5, !last is false and the for loop is
not entered.

4. The class Time needs operator<<, operator>>, and operator+, a default constructor, and a suitable
constructor and/or accessors. It would also be a good idea to check that the constructor arguments are
valid, but that is not required by the program in the problem (provided that the error checking is done
in operator>>()).

#include <iomanip>
#include <iostream>
#include <sstream>
#include <string>

class Time {
public:

Time(int hh, int mm) : h(hh), m(mm) {}
Time() = default;
friend std::istream& operator>>(std::istream&, Time&);
int get_h() const { return h; }
int get_m() const { return m; }

private:
int h{};
int m{};

};

std::istream& fail(std::istream& is)
{

is.setstate(std::ios_base::failbit);
return is;

}

2(3)

std::istream& operator>>(std::istream& is, Time& t)
{

int h;
if (!(is >> h)) {

return is;
} else if (h < 0 || h > 23) {

return fail(is);
}

char c;
if (!is.get(c)) {

return is;
} else if (c != ’:’) {

return fail(is);
}

int m;
if (!(is >> m)) {

return is;
} else if (m < 0 || m > 59) {

return fail(is);
}

t.h = h;
t.m = m;
return is;

}
std::ostream& operator<<(std::ostream& os, const Time& t)
{

return os << t.h << ’:’ << std::setfill(’0’) << std::setw(2) << t.m;
}

Time operator+(const Time& a, const Time& b)
{

int h = a.get_h() + b.get_h();
if (h > 23) {

h -= 24;
}
int m = a.get_m() + b.get_m();
if (m > 59) {

h += 1;
m -= 60;

}
return Time(h, m);

}

3(3)

5. A possible solution is:

#include <algorithm>
template <typename Iter, typename T>
class result_iter {

public:
result_iter(Iter first, Iter last, const T& t) : f(first), l(last), val(t)
{

next();
}

result_iter& operator++()
{

++f;
next();
return *this;

}
T& operator*() { return *f; }
bool operator!=(Iter it) const { return f != it; }

private:
void next() { f = std::find(f, l, val); }

Iter f;
Iter l;
T val;

};

template <typename Iter, typename T>
result_iter<Iter, T> find_all(Iter first, Iter last, const T& val)
{

return result_iter<Iter, T>(first, last, val);
}

6. x is captured by reference, and operator()(int) should compare its argument to the captured variable.

class my_less_than {
public:

my_less_than(const int& r) : x(r) {}
bool operator()(int val) { return val < x; }

private:
const int& x;

};

