
EDAF50 – C++ Programming

12. Recap.

Sven Gestegård Robertz
Computer Science, LTH

2024

Outline

1 Classes and inheritance
Scope
Constructors and copying
const for objects and members
Object slicing

2 function objects and pointers

3 Rules of thumb

4 Advice

12. Recap. 2/1

Inheritance and scope

▶ The scope of a derived class is nested inside the base class
▶ Names in the base class are visible in derived classes
▶ if not hidden by the same name in the derived class

▶ Use the scope operator :: to access hidden names
▶ Name lookup happens at compile-time

▶ static type of a pointer or reference determines which names
are visible (like in Java)

▶ Virtual functions must have the same parameter types in
derived classes.

Classes and inheritance : Scope 12. Recap. 3/47

Function overloading and inheritance

No function overloading between levels in a class hierarchy

struct Base{
virtual void f(int x) {cout << "Base::f(int): " << x << endl;}

};
struct Derived :Base{

void f(double d) {cout << "Derived ::f(double): " << d << endl;}
};

void example () {
Base b;
b.f(2); Base::f(int): 2
b.f(2.5); Base::f(int): 2 (as expected)
Derived d;
d.f(2); Derived::f(double): 2
d.f(2.5); Derived::f(double): 2.5

Base& dr = d;
dr.f(2.5); Base::f(int): 2
dr.f(2); Base::f(int): 2

}

Classes and inheritance : Scope 12. Recap. 4/47

Function overloading and inheritance

Make functions visible using using

struct Base{
virtual void f(int x) {cout << "Base::f(int): " << x << endl;}

};
struct Derived :Base{

using Base::f;
void f(double d) {cout << "Derived ::f(double): " << d << endl;}

};

void example () {
Base b;
b.f(2); Base::f(int): 2
b.f(2.5); Base::f(int): 2

Derived d;
d.f(2); Base::f(int): 2
d.f(2.5); Derived::f(double): 2.5

}

Classes and inheritance : Scope 12. Recap. 5/47

Constructors
Member initialization rules

class Vector {
public:

Vector () =default;
explicit Vector(int s) :size{s},elem{new T[size]} {}
T* begin () {return elem.get ();}
T* end() {return begin ()+ size;}
// functionality for growing ...

private:
std:: unique_ptr <T[]> elem{nullptr };
int size {0};

};

Error! size is uninitialized when used to create the array.

▶ If a member has both default initializer and a member
initializer in the constructor, the constructor is used.

▶ Vector() =default; is necessary to make the compiler
generate a default constructor.

▶ Members are initialized in declaration order. (Compiler
warning if member initializers are in different order.)

Classes and inheritance : Constructors and copying 12. Recap. 6/47

Constructors
Special cases: zero or one argument

class KomplextTal {
public:

KomplextTal ():re{0},im{0} {}
KomplextTal(const KomplextTal& k) :re{k.re},im{k.im} {}
KomplextTal(double x):re{x},im{0} {}
//...

private:
double re;
double im;

};

default constructor copy constructor converting constructor

Classes and inheritance : Constructors and copying 12. Recap. 7/47

Constructors
Implicit conversion

struct Foo{
Foo(int i) :x{i} {cout << "Foo(" << i << ")\n";}
Foo(const Foo& f) :x(f.x) {cout << "Copying Foo(" << f.x << ")\n";}
Foo& operator =(const Foo& f) {cout << "Foo = Foo(" << f.x << ")\n";

x=f.x;
return *this;

}
int x;

};

void example ()
{

int i=10;

Foo f = i; Foo(10) (an optimized away copy(move) construction)

f = 20; Foo(20)
Foo = Foo(20) (would move if operator=(Foo&&) defined)

Foo g = f; Copying Foo(20)

Classes and inheritance : Constructors and copying 12. Recap. 8/47

Constructors
Default constructor

Default constructor
▶ A constructor that can be called without arguments

▶ May have parameters with default values

▶ Automatically defined if no constructor is defined
(in declaration: =default, cannot be called if =delete)

▶ If not defined, the type is not default constructible

Classes and inheritance : Constructors and copying 12. Recap. 9/47

Constructors
Copy constructor

▶ Is called when initializing an object
▶ Is not called on assignment
▶ Can be defined, otherwise a standard copy constructor is

generated (=default, =delete)

▶ default copy constructor
▶ Is automatically generated if not defined in the code

▶ exception: if there are members that cannot be copied
▶ shallow copy of each member

Classes and inheritance : Constructors and copying 12. Recap. 10/47

Classes
Default copy construction: shallow copy

void f(Vector v);

void test()
{

Vector vec (5);
f(vec); // call by value -> copy

}

elem
sz: 5vec:

sz: 5
elem

v:

▶ The parameter v is default copy constructed: the value of each
member variable is copied

▶ When f() returns, the destructor of v is executed:
(delete[] elem;)

▶ The array pointed to by both copies is deleted. Disaster!
Classes and inheritance : Constructors and copying 12. Recap. 11/47

X

“Rule of three”
Canonical construction idiom

If a class implements any of these:
1 Destructor
2 Copy constructor
3 Copy assignment operator

it (quite probably) should implement (or =delete) all three.

If one of the automatically generated does not fit,
the other ones probably won’t either.

Classes and inheritance : Constructors and copying 12. Recap. 12/47

“Rule of three five”
Canonical construction idiom, from C++11

If a class implements any of these:
1 Destructor
2 Copy constructor
3 Copy assignment operator
4 Move constructor
5 Move assignment operator

it (quite probably) should implement (or =delete) all five.

and possibly an overloaded swap function.

Classes and inheritance : Constructors and copying 12. Recap. 13/47

Constant objects

▶ const means “I promise not to change this”

▶ Objects (variables) can be declared const
▶ “I promise not to change the variable”

▶ References can be declared const
▶ “I promise not to change the referenced object”
▶ a const& can refer to a non-const object
▶ common for function parameters

▶ Member functions can be declared const
▶ “I promise that the function does not change the object”
▶ A const member function may not call non-const

member functions
▶ Functions can be overloaded on const

Classes and inheritance : const for objects and members 12. Recap. 14/47

Operator overloading

Operator overloading syntax:

return_type operator⊗ (parameters...)

for an operator ⊗ e.g. == or +

For classes, two possibilities:
▶ as a member function

▶ if the order of operands is suitable
E.g., ostream& operator<<(ostream&, const T&)
cannot be a member of T

▶ as a free function
▶ if the public interface is enough, or
▶ if the function is declared friend

Classes and inheritance : const for objects and members 12. Recap. 15/47

Conversion operators
Exempel: Counter

Conversion to int

struct Counter {
Counter(int c=0) :cnt{c} {};
Counter& inc() {++cnt; return *this;}
Counter inc() const {return Counter(cnt +1);}
int get() const {return cnt;}
operator int() const {return cnt;}

private:
int cnt {0};

};

Note: operator T().
▶ no return type in declaration (must obviously be T)
▶ can be declared explicit

Classes and inheritance : const for objects and members 12. Recap. 16/47

Constructors
Member initialization rules

class Bar {
public:

Bar() =default;
Bar(int v, bool b) :value{v},flag{b} {}

private:
int value {0};
bool flag {true};

};

▶ If a member has both default initializer and a member
initializer in the constructor, the constructor is used.

▶ Members are initialized in declaration order. (Compiler
warning if member initializers are in different order.)

▶ Bar() =default; is necessary to make the compiler generate a
default constructor (as another constructor is defined)
.

Classes and inheritance : const for objects and members 12. Recap. 17/47

Constructors
Special cases: zero or one argument

class KomplextTal {
public:

KomplextTal ():re{0},im{0} {}
KomplextTal(const KomplextTal& k) :re{k.re},im{k.im} {}
KomplextTal(double x):re{x},im{0} {}
//...

private:
double re;
double im;

};

default constructor copy constructor converting constructor

Classes and inheritance : const for objects and members 12. Recap. 18/47

Constructors
Implicit conversion

struct Foo{
Foo(int i) :x{i} {cout << "Foo(" << i << ")\n";}
Foo(const Foo& f) :x(f.x) {cout << "Copying Foo(" << f.x << ")\n";}
Foo& operator =(const Foo& f) {cout << "Foo = Foo(" << f.x << ")\n";

x=f.x;
return *this;

}
int x;

};

void example ()
{

int i=10;

Foo f = i; Foo(10) (conversion + optimized away copy/move)

f = 20; Foo(20)
Foo = Foo(20) (would move if operator=(Foo&&) defined)

Foo g = f; Copying Foo(20)

Classes and inheritance : const for objects and members 12. Recap. 19/47

Conversion operators
Exempel: Counter

Conversion to int

struct Counter {
Counter(int c=0) :cnt{c} {};
Counter& inc() {++cnt; return *this;}
Counter inc() const {return Counter(cnt +1);}
int get() const {return cnt;}
operator int() const {return cnt;}

private:
int cnt {0};

};

Note: operator T().
▶ no return type in declaration (must obviously be T)
▶ can be declared explicit

Classes and inheritance : const for objects and members 12. Recap. 20/47

Constructors
Implicit conversion

struct Foo{
Foo(int i) :x{i} {cout << "Foo(" << i << ")\n";}
Foo(const Foo& f) :x(f.x) {cout << "Copying Foo(" << f.x << ")\n";}
Foo& operator =(const Foo& f) {cout << "Foo = Foo(" << f.x << ")\n";

x=f.x;
return *this;

}
int x;

};

void example ()
{

int i=10;

Foo f = i; Foo(10)

f = 20; Foo(20)
Foo = Foo(20)

Foo g = f; Copying Foo(20)

Classes and inheritance : const for objects and members 12. Recap. 21/47

Example
Factory function

#include <random >
#include <cassert >

Animal* make_animal ()
{

static std:: default_random_engine gen;
static std:: uniform_int_distribution <> dis(1, 4);

switch(dis(gen)){
case 1:

return new Dog();
case 2:

return new Cat();
case 3:

return new Bird ();
case 4:

return new Cow();
};
assert (!"we should not come here");

}

Classes and inheritance : Object slicing 12. Recap. 22/47

Example
Factory function

void test_factory ()
{

cout << "test_factory :\n";
for(int i=0; i != 10; ++i) {

auto a = make_animal ();
a->speak ();
delete a;

}
}

The function returns an owning pointer: caller must delete.

Classes and inheritance : Object slicing 12. Recap. 23/47

Example
Factory with std::unique_ptr

#include <memory >

std::unique_ptr <Animal > make_unique_animal ()
{

static bool d{};
d = !d;

#if __cplusplus >= 201402L
if(d) return std:: make_unique <Dog >();
else return std:: make_unique <Cat >();

#else
if(d) return std::unique_ptr <Animal >(new Dog);
else return std::unique_ptr <Animal >(new Cat);

#endif
}

Classes and inheritance : Object slicing 12. Recap. 24/47

Example
Use of factory-metod with std::unique_ptr

std::unique_ptr <Animal > make_unique_animal ();

void example1 ()
{

for(int i=0; i != 10; ++i) {
auto a = make_unique_animal ();
a->speak ();

}
}

void example2 ()
{

std::vector <std:: unique_ptr <animal >> v(10);
std:: generate(begin(v), end(v), make_unique_animal);
std:: for_each(begin(v), end(v),

[](const std:: unique_ptr <animal >& a) {a->speak ();});
}

Or, simply:
for(const auto& a : v) a->speak ();

Or, from c++14 [](const auto& a) . . .
Classes and inheritance : Object slicing 12. Recap. 25/47

Example
A class hierarchy

struct Foo{
virtual void print() const {cout << "Foo" << endl;}

};

struct Bar :Foo{
void print () const override {cout << "Bar" << endl;}

};

struct Qux :Bar{
void print () const override {cout << "Qux" << endl;}

};

Classes and inheritance : Object slicing 12. Recap. 26/47

Polymorph class
example, object slicing

What is printed?

void print1(const Foo* f)
{

f->print ();
}
void print2(const Foo& f)
{

f.print ();
}
void print3(Foo f)
{

f.print ();
}

void test()
{

Foo* a = new Bar;
Bar& b = *new Qux;
Bar c = *new Qux;

print1(a); Bar
print1 (&b); Qux
print1 (&c); Bar

print2 (*a); Bar
print2(b); Qux
print2(c); Bar

print3 (*a); Foo
print3(b); Foo
print3(c); Foo

}

Classes and inheritance : Object slicing 12. Recap. 27/47

Function pointers

Pointers can also point to functions

int add(int x, int y) {
return x+y;

}

int sub(int a, int b) {
return a-b;

}

int main() {
int (*pf)(int , int);

pf = add;
cout << "add: " << pf(3,4) << endl;

pf = sub;
cout << "sub: " << pf(3,4) << endl;

}

function objects and pointers 12. Recap. 28/47

Function pointers

Function pointers as arguments to functions

double eval(int (*f)(int ,int), int m, int n)
{

return f(m, n);
}

int add(int x, int y)
{

return x + y;
}
int sub(int a, int b)
{

return a - b;
}
int main ()
{

cout << eval(add, 3, 4) << endl;
cout << eval(sub, 3, 4) << endl;

}

function objects and pointers 12. Recap. 29/47

Function objects
the std::function type (in <functional>)

std::function<return_type(args...)> is a type that can wrap
anything you can invoke as a function (with type erasure.)

Example

int eval(std::function <int(int ,int)> f, int x, int y){
return f(x,y);

}

eval can be called with anything callable (int, int) → int:
a function pointer, functor, or lambda expression:

int add(int ,int);

cout << eval(add ,10 ,20) << endl;
cout << eval(std:: multiplies <int >{} ,10 ,20) << endl;
cout << eval ([](int a, int b){ return a+10*b;},10,20) << endl;

function objects and pointers 12. Recap. 30/47

Function objects
the std::function type (in <functional>)

Example: a vector of functions

std::vector <std::function <int(int ,int)>> fs;

fs.emplace_back(add);
fs.emplace_back(std:: multiplies <int >{});
fs.emplace_back ([](int a, int b){ return a+10*b;});

for(const auto& f: fs){
cout << eval(f,10 ,20) << ’\n’;

}

function objects and pointers 12. Recap. 31/47

Function objects
partial application: std::bind (in <functional>)

std::bind() : create a new function object by “partial application”
of a function (object)

Example

std::vector <int > v = {1,3,2,4,3,5,4,6,5,7,6,8,3,9};
std::vector <int > w;

using std:: placeholders ::_1;
auto gt5 = std::bind(std::greater <int >(), _1, 5);

std:: copy_if(v.begin(), v.end(), std:: back_inserter(w), gt5);

or using namespace std::placeholders;

An alternative is to simply use a lambda:
auto gt5 = [](int x) {return x > 5;};

function objects and pointers 12. Recap. 32/47

Function objects
Member function wrapper: std::mem_fn (in <functional>)

std::mem_fn() : create a new function object that is callable as a
free function, with a reference to the object as the first argument.
Example
struct Foo{

void print () const;
void test(int i) const;
Foo(int i=0) :x(i) {}
int x;

};
int main() {

std::vector <Foo > v{1,2,3,4,5,6,7,8,9,10};

std:: for_each(begin(v), end(v), std:: mem_fn (&Foo::print));

auto test = std:: mem_fn (&Foo::test);
const Foo& foo = *v.rbegin ();
test(foo , 123);

}

function objects and pointers 12. Recap. 33/47

An alternative is to simply use a lambda:
auto test = [](const Foo& f, int x) {f.test(x);};

rules of thumb, “defaults”

▶ Iteration, range for
▶ return value optimization
▶ call by value or reference?
▶ reference or pointer parameters? (without transfer of

ownership)
▶ default constructor and initialization
▶ resource management: RAII and rule of three (five)
▶ be careful with type casts. Use named casts

Rules of thumb 12. Recap. 34/47

use range for

for(auto e : collection) { or (const) reference
// ...

}

Use range for for iteration over an entire collection:
▶ safer and more obvious code
▶ no risk of accidentally assigning

▶ the iterator
▶ the loop variable

▶ no pointer arithmetic

Works on any type T that has
▶ member functions T::begin() and T::end(), or
▶ free functions begin(T) and end(T)

▶ with proper const overloads

Rules of thumb 12. Recap. 35/47

return value optimization (RVO)

The compiler may optimize away copies of an object when
returning a value from a function.

▶ return by value often efficient, also for larger objects
▶ RVO allowed even if the copy constructorn or the destructor

has side effects
▶ avoid such side effects to make code portable

Rules of thumb 12. Recap. 36/47

Rules of thumb for function parameters

parameters and return values, “reasonable defaults”
▶ return by value if not very expensive to copy
▶ pass by reference if not very cheap to copy

(Don’t force the compiler to make copies.)
▶ input parameters: const T&
▶ in/out or output parameters: T&

Rules of thumb 12. Recap. 37/47

parameters: reference or pointer?

▶ required parameter: pass reference
▶ optional parameter: pass pointer (can be nullptr)

void f(widget& w)
{

use(w); // required parameter
}

void g(widget* w)
{

if(w) use(w); // optional parameter
}

Rules of thumb 12. Recap. 38/47

Default constructor and initialization

▶ (automatically generated) default constructor (=default) does
not always initialize members
▶ global variables are initialized to 0 (or corresponding)
▶ local variables are not initialized

struct Foo { int x; };

int a; // a is initialized to 0
Foo b; // b.x is initialized to 0

int main() {
int c; // c is not initialized
int d = int(); // d is initialized to 0

Foo e; // e.x is not initialized
Foo f = Foo(); // f.x is initialized to 0
Foo g{}; // g.x is initialized to 0

}

▶ always initialize variables (with value or empty {})
▶ always implement default constructor (or =delete)

Rules of thumb 12. Recap. 39/47

RAII: Resource aquisition is initialization

▶ Allocate resources for an object in the constructor
▶ Release resources in the destructor
▶ Simpler resource management, no naked new and delete

▶ Exception safety: destructors are run when an object goes out
of scope

▶ Resource-handle
▶ The object itself is small
▶ Pointer to larger data on the heap
▶ Example, our Vector class: pointer + size
▶ Utilize move semantics

▶ unique_ptr is a handle to a specific object. Use
if you need an owning pointer, e.g., for polymorph types.

▶ Prefer specific resource handles to smart pointers.

Rules of thumb 12. Recap. 40/47

Smart pointers: unique_ptr

Example

struct Foo {
int i;
Foo(int ii=0) :i{ii} { std::cout << "Foo(" << i <<")\n"; }
~Foo() { std::cout << "~Foo("<<i<<")\n"; }

};
void test_move_unique_ptr ()
{

std:: unique_ptr <Foo > p1(new Foo (1));
{

std:: unique_ptr <Foo > p2(new Foo (2));
std:: unique_ptr <Foo > p3(new Foo (3));
// p1 = p2; // error! cannot copy unique_ptr
std::cout << "Assigning pointer\n";
p1 = std::move(p2);
std::cout << "Leaving inner block ...\n";

}
std::cout << "Leaving program ...\n";

}

Foo(2) survives the inner block
as p1 takes over ownership.

Foo(1)
Foo(2)
Foo(3)
Assigning pointer
~Foo(1)
Leaving inner block ...
~Foo(3)
Leaving program ...
~Foo(2)

Rules of thumb 12. Recap. 41/47

Advice

Resouce management
▶ Resouce management: RAII and rule of three (five)
▶ Avoid “naked” new and delete

▶ Use constructors to establish invariants
▶ throw exception on failure

for polymorph classes
▶ Copying often leads to disaster.
▶ =delete

▶ Copy/Move-constructor
▶ Copy/Move-assignment

▶ If copying is needed, implement a virtual clone() function

Advice 12. Recap. 42/47

Advice

classes
▶ only create member functions for things that require access

to the representation
▶ as default, make constructors with one parameter explicit

▶ only make functions virtual if you want polymorphism

polymorph classes
▶ access through reference or pointer
▶ A class with virtual functions must have a virtual destructor.
▶ use override for readability and to get help from the compiler

in finding mistakes
▶ use dynamic_cast to navigate a class hierarchy

Advice 12. Recap. 43/47

Advice

safer code
▶ initialize all variables
▶ use exceptions instead of returning error codes
▶ use named casts (if you must cast)
▶ only use union as an implementation technique inside a class
▶ avoid pointer arithmetics, except

▶ for trivial array traversal (e.g., ++p)
▶ for getting iterators into built-in arrays (e.g., a+4)
▶ in very specialized code (e.g., memory management)

use compiler warnings (consult your compiler manual)
-Wall -Wextra -Werror -pedantic -pedantic -errors
-Wold -style -cast -Wnon -virtual -dtor -Wconversion -Wshadow
-Wtype -limits -Wtautological -compare -Wduplicated -cond

The compiler manual gives a comprehensive list of dangerous
constructs.

Advice 12. Recap. 44/47

Advice

The standard library
▶ use the standard library when possible

▶ standard containers
▶ standard algorithms

▶ prefer std::string to C-style strings (char[])
▶ prefer containers (e.g., std::vector<T>) to built-in arrays (T[])
▶ consider standard algorithms instead of hand-written loops

Often both
▶ safer and
▶ more efficient

than custom code

Advice 12. Recap. 45/47

Advice

The standard containers
▶ use std::vector by default
▶ use std::forward_list for sequences that are usually empty
▶ be careful with iterator invalidation
▶ use at() instead of [] to get bounds checking
▶ use range for for simple traversal
▶ initialization: use () for sizes/iterators and {} for list of values
▶ use emplace_back instead of push_back of a temporary
▶ use member functions (not algorithms) for std::map and

std::set

Advice 12. Recap. 46/47

Write code that is correct and easily understandable

Good luck on the exam

Questions?

Advice 12. Recap. 47/47

	Classes and inheritance
	Scope
	Constructors and copying
	const for objects and members
	Object slicing

	function objects and pointers
	Rules of thumb
	Advice

