
EDAF50 – C++ Programming

10. The project. Templates and the standard library.

Sven Gestegård Robertz
Computer Science, LTH

2024

Outline

1 The project

2 Templates
Variadic templates
Template metaprogramming

3 The standard library
Time representation
Algorithms

10. The project. Templates and the standard library. 2/1

Project, News

▶ 2–4 people per group. Use slack to find project partners.
▶ Develop a news server (two versions) and a text-based client.
▶ Write a report, hand in the report and your programs no later

than Monday, May 6

The project 10. The project. Templates and the standard library. 3/28

A News Server and News Clients

The server keeps a database of newsgroups, containing articles.
The clients connect to the server. Sample conversation:
news > list
1. comp.lang.java
2. comp.lang.c++
news > list comp.lang.c++
1. What is C++? From: xxx
2. Why C++? From: yyy
news > read 2
Why C++? From: xxx
... text ...
news >

A client can also create and delete newsgroups, and create and
delete articles in newsgroups.

The project 10. The project. Templates and the standard library. 4/28

The Project: Write Server and Client

▶ You are to develop two versions of the server:
▶ one in-memory server that forgets the data about newsgroups

and articles between invocations (use the standard library
containers for this database), and

▶ one disk-based server that remembers the data between
invocations (use files for this database)

These versions should implement a common interface — the
rest of the system should be independent of, and agnostic to,
the database implementation. Avoid duplicated code.

▶ A single-threaded server is ok.
▶ You are to develop a client with a text-based interface. It shall

read commands from the keyboard and present the replies
from the server as text.

▶ Think about how to handle entry of multi-line articles.

The project 10. The project. Templates and the standard library. 5/28

System Overview

The classes Server and Connection are pre-written.

Database

YourServer

Server
Connection

AnotherClient

YourClient

Connection

Connection

Connection

The project 10. The project. Templates and the standard library. 6/28

Communication Protocol

A message is a sequence of bytes. Messages must follow a specified
protocol, which specifies the message format. The general form is:

MSG_TYPE_BYTE <data > END_BYTE

The protocol contains commands and answers:
COMMAND_TYPE <data > COM_END
ANSWER_TYPE <data > ANS_END

The project 10. The project. Templates and the standard library. 7/28

Communication Protocol
Example: List Newsgroups

List newsgroups (message to server and reply from server):
COM_LIST_NG COM_END
ANS_LIST_NG 2 13 comp.lang.java 15 comp.lang.c++ ANS_END

2 is the number of newsgroups, 13 and 15 are the unique
identification numbers of the newsgroups comp.lang.java and
comp.lang.c++.
Numbers and strings are coded according to the protocol:
string_p: PAR_STRING N char1 char2 ... charN // N is an int , sent as
num_p: PAR_NUM N // 4 bytes , big endian

Hint:
Factor out the functionality for communication on the “low protocol
level” (encoding and decoding of numbers and strings).

Don’t repeat yourselves.

The project 10. The project. Templates and the standard library. 8/28

Class Connection

struct ConnectionClosedException {};

/* A Connection object represents a socket */
class Connection {

friend class Server;
public:

Connection(const char* host , int port);

Connection ();

virtual ~Connection ();

bool isConnected () const;

void write(unsigned char ch) const;

unsigned char read() const;
protected:

void initConnection(int socket);

//...
};

The project 10. The project. Templates and the standard library. 9/28

Class Server

/* A server listens to a port and handles multiple connections */
class Server {
public:

explicit Server(int port);

virtual ~Server ();

bool isReady () const;

std:: shared_ptr <Connection > waitForActivity () const;

void registerConnection(const shared_ptr <Connection >& conn);

void deregisterConnection(const shared_ptr <Connection >& conn);
};

The project 10. The project. Templates and the standard library. 10/28

Server Usage

while (true) {
auto conn = server.waitForActivity ();
if (conn != nullptr) {

try {
/*
* Communicate with a client , conn ->read()
* and conn ->write(c)
*/

} catch (ConnectionClosedException &) {
server.deregisterConnection(conn);
cout << "Client closed connection" << endl;

}
} else {

conn = make_shared <Connection >();
server.registerConnection(conn);
cout << "New client connects" << endl;

}
}

The project 10. The project. Templates and the standard library. 11/28

Provided material

On the course web page, you will find
▶ Classes for creating connections, including an example

application.
▶ Test clients written in Java

▶ An interactive, graphical client
▶ An automated test client that runs a series of operations.

Please note that this is an aid during development and not a
complete acceptance test.

The project 10. The project. Templates and the standard library. 12/28

Report and submission

▶ Write the report, preferably in English, follow the instructions.
▶ Create a directory with your programs (only the source code –

don’t include any generated files) and a Makefile.
▶ Write a README file (text) with instructions on how to build

and test your system.
▶ Submission:

1 The report in PDF format.
2 The README file.
3 The program directory, as a tar, tar.gz or .zip archive.

▶ Make sure that executables or object files are not included.
▶ Avoid swedish characters, spaces, and special characters

(+,*,?, . . .) in file and directory names.
4 Submission instructions will be published on the course web,

under Project.

The project 10. The project. Templates and the standard library. 13/28

the <filesystem> header

▶ standardised interface to the filesystem
▶ introduced in C++-17

path current_path
directory_entry absolute
directory_iterator relative
recursive_directory_iterator exists
file_status status
file_type permissions
perms copy

remove
rename

The project 10. The project. Templates and the standard library. 14/28

Variadic templates
A function template can take a variable number of arguments

void println () { base case: no argument
cout << endl;

}

template <typename T, typename ... Tail >
void println(const T& head , const Tail &... tail)
{

cout << head << " "; Print the first element
println(tail ...); recursion: print the rest

}

void test_variadic ()
{

string a{"Hello"};
int b{10};
double c{17.42};
long d{100};

println(a,b,c,d);

}

Templates : Variadic templates 10. The project. Templates and the standard library. 15/28

Template metaprogramming

▶ Write code that is executed by the compiler, at compile-time
▶ Common in the standard library

▶ As optimization: move computations from run-time to
compile-time

▶ As utilities: e.g., type_traits, iterator_traits

▶ Metafunction: a class template containing the result
▶ Standard library conventions:

▶ Type results: type member named type
▶ Value results: value member named value

Templates : Template metaprogramming 10. The project. Templates and the standard library. 16/28

Template metaprogramming
Example of compile-time computation

template <int N>
struct Factorial{

static constexpr int value = N * Factorial <N-1>:: value;
};

template <>
struct Factorial <0>{

static constexpr int value = 1;
};

void example ()
{

Show <int , Factorial <5>:: value >{};
}

Result of the meta-function call as a compiler error:
error: invalid use of incomplete type ’struct Show <int , 120 >’

Show < int , Factorial <5>:: value >{};

Templates : Template metaprogramming 10. The project. Templates and the standard library. 17/28

Template metaprogramming
Example of templates for getting values as compiler errors

▶ Trick: use a template that doesn’t compile to get information
about the template parameters through a compiler error.

▶ Can be useful for debugging templates.
▶ To get the type parameter T:

template <typename T>
struct ShowType;

▶ To get a value (N) of type T:
template <typename T, T N>
struct Show;

Templates : Template metaprogramming 10. The project. Templates and the standard library. 18/28

What is a value

The semantics of a value often include
▶ a quantity
▶ a number
▶ a unit

E.g int length = 2;

▶ two meters?
▶ two millimeters?

Including quantity and unit in the type helps avoid mistakes.

The standard library : Time representation 10. The project. Templates and the standard library. 19/28

Time representation

▶ A “time value” can be either
▶ A duration – a time interval
▶ A point in time

▶ relative to a particular clock
▶ Different units

▶ seconds
▶ milliseconds
▶ nanoseconds
▶ manual conversion error prone

▶ Different semantics
▶ duration + duration = duration
▶ duration - duration = duration
▶ time_point + duration = time_point
▶ time_point - duration = time_point
▶ time_point - time_point = duration
▶ time_point + time_point = error

The standard library : Time representation 10. The project. Templates and the standard library. 20/28

Time representation
<chrono>

▶ Uses the type system to denote
▶ if a value is a duration or a point in time
▶ the unit used (seconds, milliseconds, etc.)
▶ which clock a point in time is relative to

▶ system_clock – wall clock time
▶ steady_clock – stopwatch

▶ Uses compile-time computations for
▶ conversions between units

▶ implicit conversions when safe
▶ explicit conversions when loosing information
▶ E.g. duration_cast<seconds>(milliseconds)

The standard library : Time representation 10. The project. Templates and the standard library. 21/28

Time representation
<chrono>

A duration is
▶ an integer value and
▶ a ratio (the number of seconds between two values).

std:: chrono :: nanoseconds duration </* signed int , at least 64 bits*/,
std::nano >

std:: chrono :: microseconds duration </* signed int , at least 55 bits*/,
std::micro >

std:: chrono :: milliseconds duration </* signed int , at least 45 bits*/,
std::milli >

std:: chrono :: seconds duration </* signed integer , at least 35 bits*/>
std:: chrono :: minutes duration </* signed integer , at least 29 bits*/,

std::ratio <60>>
std:: chrono :: hours duration </* signed integer , at least 23 bits*/,

std::ratio <3600>>

std::ratio provides compile-time rational arithmetic

The standard library : Time representation 10. The project. Templates and the standard library. 22/28

Demo

The standard library : Time representation 10. The project. Templates and the standard library. 23/28

Algorithms and references

The standard algorithms take function objects by value:
template < class InputIt , class UnaryFunction >
UnaryFunction for_each(InputIt first , InputIt last , UnaryFunction f);

template < class InputIt , class UnaryPredicate >
InputIt find_if(InputIt first , InputIt last , UnaryPredicate p);

How to handle stateful function objects?

The standard library : Algorithms 10. The project. Templates and the standard library. 24/28

Demo

The standard library : Algorithms 10. The project. Templates and the standard library. 25/28

std::ref

<functional> defines helper functions std::ref and std::cref:
template < class T >
std:: reference_wrapper <T> ref(T& t) noexcept;

template < class T >
std:: reference_wrapper <const T> cref(const T& t) noexcept;

that return a CopyConstructible and CopyAssignable wrapper
around a reference:
template < class T >
class reference_wrapper {
public:

reference_wrapper& operator=(const reference_wrapper &) noexcept;
operator T&() const noexcept;
T& get() const noexcept;

template < class ... ArgTypes >
typename std::result_of <T&(ArgTypes &&...) >:: type
operator () (ArgTypes &&... args) const;

};

The standard library : Algorithms 10. The project. Templates and the standard library. 26/28

Suggested reading

References to sections in Lippman
Overloading and templates 16.4
Variadic templates 16.4
Template specialization 16.5

The standard library : Algorithms 10. The project. Templates and the standard library. 27/28

	The project
	Templates
	Variadic templates
	Template metaprogramming

	The standard library
	Time representation
	Algorithms

