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Project, News

▶ 2–4 people per group. Use slack to find project partners.
▶ Develop a news server (two versions) and a text-based client.
▶ Write a report, hand in the report and your programs no later

than Monday, May 6
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A News Server and News Clients

The server keeps a database of newsgroups, containing articles.
The clients connect to the server. Sample conversation:
news > list
1. comp.lang.java
2. comp.lang.c++
news > list comp.lang.c++
1. What is C++? From: xxx
2. Why C++? From: yyy
news > read 2
Why C++? From: xxx
... text ...
news >

A client can also create and delete newsgroups, and create and
delete articles in newsgroups.

The project 10. The project. Templates and the standard library. 4/28



The Project: Write Server and Client

▶ You are to develop two versions of the server:
▶ one in-memory server that forgets the data about newsgroups

and articles between invocations (use the standard library
containers for this database), and

▶ one disk-based server that remembers the data between
invocations (use files for this database)

These versions should implement a common interface — the
rest of the system should be independent of, and agnostic to,
the database implementation. Avoid duplicated code.

▶ A single-threaded server is ok.
▶ You are to develop a client with a text-based interface. It shall

read commands from the keyboard and present the replies
from the server as text.

▶ Think about how to handle entry of multi-line articles.
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System Overview

The classes Server and Connection are pre-written.

Database

YourServer

Server
Connection

AnotherClient

YourClient

Connection

Connection

Connection
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Communication Protocol

A message is a sequence of bytes. Messages must follow a specified
protocol, which specifies the message format. The general form is:

MSG_TYPE_BYTE <data > END_BYTE

The protocol contains commands and answers:
COMMAND_TYPE <data > COM_END
ANSWER_TYPE <data > ANS_END
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Communication Protocol
Example: List Newsgroups

List newsgroups (message to server and reply from server):
COM_LIST_NG COM_END
ANS_LIST_NG 2 13 comp.lang.java 15 comp.lang.c++ ANS_END

2 is the number of newsgroups, 13 and 15 are the unique
identification numbers of the newsgroups comp.lang.java and
comp.lang.c++.
Numbers and strings are coded according to the protocol:
string_p: PAR_STRING N char1 char2 ... charN // N is an int , sent as
num_p: PAR_NUM N // 4 bytes , big endian

Hint:
Factor out the functionality for communication on the “low protocol
level” (encoding and decoding of numbers and strings).

Don’t repeat yourselves.
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Class Connection

struct ConnectionClosedException {};

/* A Connection object represents a socket */
class Connection {

friend class Server;
public:

Connection(const char* host , int port);

Connection ();

virtual ~Connection ();

bool isConnected () const;

void write(unsigned char ch) const;

unsigned char read() const;
protected:

void initConnection(int socket );

//...
};
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Class Server

/* A server listens to a port and handles multiple connections */
class Server {
public:

explicit Server(int port);

virtual ~Server ();

bool isReady () const;

std:: shared_ptr <Connection > waitForActivity () const;

void registerConnection(const shared_ptr <Connection >& conn);

void deregisterConnection(const shared_ptr <Connection >& conn);
};
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Server Usage

while (true) {
auto conn = server.waitForActivity ();
if (conn != nullptr) {

try {
/*
* Communicate with a client , conn ->read()
* and conn ->write(c)
*/

} catch (ConnectionClosedException &) {
server.deregisterConnection(conn);
cout << "Client closed connection" << endl;

}
} else {

conn = make_shared <Connection >();
server.registerConnection(conn);
cout << "New client connects" << endl;

}
}
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Provided material

On the course web page, you will find
▶ Classes for creating connections, including an example

application.
▶ Test clients written in Java

▶ An interactive, graphical client
▶ An automated test client that runs a series of operations.

Please note that this is an aid during development and not a
complete acceptance test.
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Report and submission

▶ Write the report, preferably in English, follow the instructions.
▶ Create a directory with your programs (only the source code –

don’t include any generated files) and a Makefile.
▶ Write a README file (text) with instructions on how to build

and test your system.
▶ Submission:

1 The report in PDF format.
2 The README file.
3 The program directory, as a tar, tar.gz or .zip archive.

▶ Make sure that executables or object files are not included.
▶ Avoid swedish characters, spaces, and special characters

(+,*,?, . . . ) in file and directory names.
4 Submission instructions will be published on the course web,

under Project.
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the <filesystem> header

▶ standardised interface to the filesystem
▶ introduced in C++-17

path current_path
directory_entry absolute
directory_iterator relative
recursive_directory_iterator exists
file_status status
file_type permissions
perms copy

remove
rename
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Variadic templates
A function template can take a variable number of arguments

void println () { base case: no argument
cout << endl;

}

template <typename T, typename ... Tail >
void println(const T& head , const Tail &... tail)
{

cout << head << " "; Print the first element
println(tail ...); recursion: print the rest

}

void test_variadic ()
{

string a{"Hello"};
int b{10};
double c{17.42};
long d{100};

println(a,b,c,d);

}
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Template metaprogramming

▶ Write code that is executed by the compiler, at compile-time
▶ Common in the standard library

▶ As optimization: move computations from run-time to
compile-time

▶ As utilities: e.g., type_traits, iterator_traits

▶ Metafunction: a class template containing the result
▶ Standard library conventions:

▶ Type results: type member named type
▶ Value results: value member named value
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Template metaprogramming
Example of compile-time computation

template <int N>
struct Factorial{

static constexpr int value = N * Factorial <N-1>:: value;
};

template <>
struct Factorial <0>{

static constexpr int value = 1;
};

void example ()
{

Show <int , Factorial <5>:: value >{};
}

Result of the meta-function call as a compiler error:
error: invalid use of incomplete type ’struct Show <int , 120 >’

Show < int , Factorial <5>:: value >{};
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Template metaprogramming
Example of templates for getting values as compiler errors

▶ Trick: use a template that doesn’t compile to get information
about the template parameters through a compiler error.

▶ Can be useful for debugging templates.
▶ To get the type parameter T:

template <typename T>
struct ShowType;

▶ To get a value (N) of type T:
template <typename T, T N>
struct Show;

Templates : Template metaprogramming 10. The project. Templates and the standard library. 18/28



What is a value

The semantics of a value often include
▶ a quantity
▶ a number
▶ a unit

E.g int length = 2;

▶ two meters?
▶ two millimeters?

Including quantity and unit in the type helps avoid mistakes.
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Time representation

▶ A “time value” can be either
▶ A duration – a time interval
▶ A point in time

▶ relative to a particular clock
▶ Different units

▶ seconds
▶ milliseconds
▶ nanoseconds
▶ manual conversion error prone

▶ Different semantics
▶ duration + duration = duration
▶ duration - duration = duration
▶ time_point + duration = time_point
▶ time_point - duration = time_point
▶ time_point - time_point = duration
▶ time_point + time_point = error
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Time representation
<chrono>

▶ Uses the type system to denote
▶ if a value is a duration or a point in time
▶ the unit used (seconds, milliseconds, etc.)
▶ which clock a point in time is relative to

▶ system_clock – wall clock time
▶ steady_clock – stopwatch

▶ Uses compile-time computations for
▶ conversions between units

▶ implicit conversions when safe
▶ explicit conversions when loosing information
▶ E.g. duration_cast<seconds>(milliseconds)
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Time representation
<chrono>

A duration is
▶ an integer value and
▶ a ratio (the number of seconds between two values).

std:: chrono :: nanoseconds duration </* signed int , at least 64 bits*/,
std::nano >

std:: chrono :: microseconds duration </* signed int , at least 55 bits*/,
std::micro >

std:: chrono :: milliseconds duration </* signed int , at least 45 bits*/,
std::milli >

std:: chrono :: seconds duration </* signed integer , at least 35 bits*/>
std:: chrono :: minutes duration </* signed integer , at least 29 bits*/,

std::ratio <60>>
std:: chrono :: hours duration </* signed integer , at least 23 bits*/,

std::ratio <3600>>

std::ratio provides compile-time rational arithmetic
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Demo
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Algorithms and references

The standard algorithms take function objects by value:
template < class InputIt , class UnaryFunction >
UnaryFunction for_each(InputIt first , InputIt last , UnaryFunction f);

template < class InputIt , class UnaryPredicate >
InputIt find_if(InputIt first , InputIt last , UnaryPredicate p);

How to handle stateful function objects?
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Demo
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std::ref

<functional> defines helper functions std::ref and std::cref:
template < class T >
std:: reference_wrapper <T> ref(T& t) noexcept;

template < class T >
std:: reference_wrapper <const T> cref( const T& t ) noexcept;

that return a CopyConstructible and CopyAssignable wrapper
around a reference:
template < class T >
class reference_wrapper {
public:

reference_wrapper& operator=(const reference_wrapper &) noexcept;
operator T&() const noexcept;
T& get() const noexcept;

template < class ... ArgTypes >
typename std::result_of <T&( ArgTypes &&...) >:: type
operator () ( ArgTypes &&... args ) const;

};
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Suggested reading

References to sections in Lippman
Overloading and templates 16.4
Variadic templates 16.4
Template specialization 16.5
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