
EDAF50 – C++ Programming

9. More about resource management and the standard library.

Sven Gestegård Robertz
Computer Science, LTH

2024

Outline

1 The standard library
Sequences
Insertion
Container adapters

2 std::tie
tuples and std::tie()

3 Templates

4 CRTP

9. More about resource management and the standard library. 2/1

Standard containers

Sequences (homogeneous)
▶ vector<T>

▶ deque<T>

▶ list<T>

Associative containers (also unordered)
▶ map<K,V>, multimap<K,V>
▶ set<T>, multiset<T>

Heterogeneous sequences (not “containers”)
▶ tuple<T1, T2, ...>

▶ pair<T1,T2>

The standard library 9. More about resource management and the standard library. 3/49

The classes vector and deque

The standard library has two main sequence data types
std::vector your default sequence type

▶ Contigous in memory
▶ Grows at the back

std::deque Double ended queue
▶ Piecewise contigous in memory
▶ Grows at front and back

The standard library : Sequences 9. More about resource management and the standard library. 4/49

The classes vector and deque

Operations in the class vector

v.clear(), v.size(), v.empty()
v.push_back (), v.pop_back(), v.emplace_back ()
v.front(), v.back(), v.at(i), v[i]
v.assign(), v.insert(), v.emplace ()
v.resize(), v.reserve ()

Additional operations in deque

d.push_front (), d.pop_front (), d.emplace_front ()

The standard library : Sequences 9. More about resource management and the standard library. 5/49

The classes vector and deque

Constructors and the function assign

Constructors and assign have three overloads:
▶ fill: n elements with the same value

void assign (size_type n, const value_type& val);

▶ initializer list
void assign (initializer_list <value_type > il);

▶ range: copies the elements in the interval [first, last) (i.e.,
from first to last, excl. last)

template <class InputIterator >
void assign (InputIterator first , InputIterator last);

Use () for ctor arguments (e.g., sizes), and {} for list of elements.

The standard library : Sequences 9. More about resource management and the standard library. 6/49

The classes vector and deque

The member function assign, example

vector <int > v{3 ,4};
print_seq(v);

v.assign (3,4);
print_seq(v);

int a[]{0,1,2,3,4,5,6,7,8,9};

v.assign(a, a+5);
print_seq(v);

std::deque <int > d;
d.assign(v.begin(), v.end());
print_seq(d);

length = 2: [3][4]

length = 3: [4][4][4]

length = 5: [0][1][2][3][4]

length = 5: [0][1][2][3][4]

Examples of iterators

The standard library : Sequences 9. More about resource management and the standard library. 7/49

The classes vector and deque

Member functions push and pop

push adds an element, increasing size
pop removes an element, decreasing size

front, back get a reference to the first (last) element

*_back operates at the end, available in both

void push_back (const value_type& val); //copy
void pop_back ();
reference front ();
reference back ();

only in deque: *_front

void push_front (const value_type& val); //copy
void pop_front ();

The standard library : Sequences 9. More about resource management and the standard library. 8/49

pop_X(), front() and back()

NB! The return type of pop_back() is void.

auto val = v.back ();
v.pop_back ();

Why separate functions?
▶ Don’t pay for what you don’t need.

▶ A non-void pop() has to return by value (copy).
▶ front()/back() can return a reference.
▶ Let the caller decide if it wants a copy.

The standard library : Sequences 9. More about resource management and the standard library. 9/49

Growing a vector
Size and capacity

A container has a size and a capacity.

On a push_back, if size == capacity the vector grows
▶ New storage is allocated
▶ The elements are copied

If you know how many push_back calls you will make,
▶ first use reserve() to (at least) the expected final size.
▶ then do a series of push_back

The standard library : Sequences 9. More about resource management and the standard library. 10/49

Container and resource management

▶ Containers have value semantics
▶ Elements are copied into the container

The standard library : Sequences 9. More about resource management and the standard library. 11/49

The classes vector and deque

Insertion with insert/push_back and emplace(back)

insert: copying (or moving)

iterator insert (const_iterator pos , const value_type& val);
iterator insert (const_iterator pos , size_type n,

const value_type& val);
template <class InputIterator >
iterator insert (const_iterator pos , InputIterator first ,

InputIterator last);
iterator insert (const_iterator pos ,

initializer_list <value_type > il);

and push_back.

emplace: construction “in-place”

template <class ... Args >
iterator emplace (const_iterator position , Args &&... args);

template <class ... Args >
void emplace_back (Args &&... args);

The standard library : Insertion 9. More about resource management and the standard library. 12/49

The classes vector and deque

Example with insert and emplace

struct Foo {
int x;
int y;
Foo(int a=0,int b=0) :x{a},y{b} {cout <<*this <<"\n";}
Foo(const Foo& f) :x{f.x},y{f.y} {cout <<"** Copying Foo\n";}

};
std:: ostream& operator <<(std:: ostream& os, const Foo& f)
{

return os << "Foo("<< f.x << ","<<f.y<<")";
}
vector <Foo > v;
v.reserve (4);
v.insert(v.begin(), Foo (17 ,42));

print_seq(v);
v.insert(v.end(), Foo (7 ,2));

print_seq(v);
v.emplace_back ();
print_seq(v);
v.emplace_back (10);
print_seq(v);

Foo (17 ,42)
** Copying Foo

length = 1: [Foo (17 ,42)]
Foo(7,2)
** Copying Foo

length = 2: [Foo (17 ,42)][Foo(7 ,2)]
Foo(0,0)

length = 3: [Foo (17 ,42)][Foo (7 ,2)][Foo(0,0)]
Foo(10,0)

length = 4: [Foo (17 ,42)][Foo (7 ,2)][Foo (0 ,0)][Foo (10 ,0)]

The standard library : Insertion 9. More about resource management and the standard library. 13/49

Container and resource management

▶ Containers have value semantics
▶ Elements are copied into the container
▶ When an element is removed, it is destroyed
▶ The destructor of a container destroys all elements
▶ Usually a bad idea to store owning raw pointers in a container

▶ Requires explicit destruction of the elements
▶ Prefer smart pointers

The standard library : Insertion 9. More about resource management and the standard library. 14/49

Queues and stacks

▶ adapter classes, providing a limited interface to one of the
standard containers: stack, queue, priority_queue

▶ fewer operations
▶ do not have iterators

Has a default underlying container. E.g., for stack:
template <

class T,
class Container = std::deque <T>

> class stack;

but stack can be instantiated with any class that has push_back(),
pop_back() and back().

The standard library : Container adapters 9. More about resource management and the standard library. 15/49

Queues and stacks

▶ Stack: LIFO queue (Last In First Out)
▶ Operations: push, pop, top, size and empty

top

push pop

The standard library : Container adapters 9. More about resource management and the standard library. 16/49

Queues and stacks

▶ Queue: FIFO-queue (First In First Out)
▶ Operations: push, pop, front, back, size and empty

front

back

push

pop

The standard library : Container adapters 9. More about resource management and the standard library. 17/49

Queues and stacks

▶ Priority queue: sorted queue. The element highest priority is
first in the queue.

▶ Operations: push, pop, top, size and empty

largest value top

push

pop

Compares elements with std::less<T> by default.
A custom comparator can be used. E.g., using std::greater<T>

would cause the smallest element to be first.
The standard library : Container adapters 9. More about resource management and the standard library. 18/49

Sets and maps

Associative containers

map<Key,Value> Unique keys
multimap<Key,Value> Can contain duplicate keys
set<Key> Unique keys
multiset<Key> Can contain duplicate keys

set is in principle a map without values.

▶ By default orders elements with operator<

template <class Key , class Compare = std::less <Key >>
class set{

explicit set(const Compare& comp = Compare ());
...

};

▶ A custom comparator can be provided

The standard library : Container adapters 9. More about resource management and the standard library. 19/49

Sets and maps

A std::set is in principle a std::map without values

Operations on std::map

insert , emplace , [], at , erase , clear ,
size , empty ,
find , count , lower_bound , upper_bound , equal_range

Operations on std::set

insert , emplace , erase , clear ,
size , empty ,
find , count , lower_bound , upper_bound , equal_range

Use the member functions, not algorithms like std::find()
(It may work, but is more complicated and less efficient – linear time complexity

instead of logarithmic.)
The standard library : Container adapters 9. More about resource management and the standard library. 20/49

Sets and maps
<set>: std::set

void test_set ()
{

std::set <int > ints {1,3,7};

ints.insert (5);

for(auto x : ints) {
cout << x << " ";

}
cout << endl;

auto has_one = ints.find (1);

if(has_one != ints.end ()){
cout << "one is in the set\n";

} else {
cout << "one is not in the set\n";

}
}

1 3 5 7
one is in the set

Or
if(ints.count (1))

The standard library : Container adapters 9. More about resource management and the standard library. 21/49

Sets and maps
<map>: std::map

map <string , int > msi;
msi.insert(make_pair("Kalle", 1));
msi.emplace("Lisa", 2);
msi["Kim"]= 5;

for(const auto& a: msi) {
cout << a.first << " : " << a.second << endl;

}

cout << "Lisa --> " << msi.at("Lisa") << endl;
cout << "Hasse --> " << msi["Hasse"] << endl;

auto nisse = msi.find("Nisse");
if(nisse != msi.end ()) {

cout << "Nisse : " << nisse ->second << endl;
} else {

cout << "Nisse not found\n";
}

Kalle : 1
Kim : 5
Lisa : 2
Lisa --> 2
Hasse --> 0 NB! operator[] default constructs values for new keys
Nisse not found

The standard library : Container adapters 9. More about resource management and the standard library. 22/49

Sets and maps
The return value of insert

insert() returns a pair

std::pair <iterator ,bool > insert(const value_type& value);

The insert member function returns two things:
▶ An iterator to the inserted value

▶ or to the element that prevented insertion

▶ A bool: true if the element was inserted

insert() in multiset and multimap just returns an iterator.

Getting the result of an insert

auto result = set.insert(value);
bool inserted = result.second;

The standard library : Container adapters 9. More about resource management and the standard library. 23/49

Sets and maps
The return value of insert

insert() returns a pair

std::pair <iterator ,bool > insert(const value_type& value);

The insert member function returns two things:
▶ An iterator to the inserted value

▶ or to the element that prevented insertion

▶ A bool: true if the element was inserted

Using std::tie to unpack a pair (or tuple)

bool inserted;
std::tie(std::ignore , inserted) = set.insert(value);

std::tie 9. More about resource management and the standard library. 24/49

pairs and std::tie
Example: explicit element access

Getting the elements of a pair

void example1 ()
{

auto t = std:: make_pair (10, "Hello");

int i = t.first;
string s = t.second;

cout << "i: " << i << ", s: " << s << endl;
}

std::tie : tuples and std::tie() 9. More about resource management and the standard library. 25/49

pairs and std::tie
Example: using std::tie

Getting the elements of a pair

void example1b ()
{

auto t = std:: make_pair (10, "Hello");

int i;
string s;

std::tie(i,s) = t;

cout << "i: " << i << ", s: " << s << endl;
}

std::tie : tuples and std::tie() 9. More about resource management and the standard library. 26/49

tuples and std::tie
Example: using std::get(std::tuple)

Getting the elements of a tuple

void example2 ()
{

auto t = std:: make_tuple (10, "Hello" ,4.2);

int i;
string s;
double d;

i = std::get <0>(t);
s = std::get <1>(t);
d = std::get <2>(t);

cout << "i: " << i << ", s: " << s << ", d: " << d << endl;
}

NB! std::get(std:tuple) takes the index as a template parameter.

std::tie : tuples and std::tie() 9. More about resource management and the standard library. 27/49

tuples and std::tie
Example: using std::tie

Getting the elements of a tuple

void example2b ()
{

auto t = std:: make_tuple (10, "Hello" ,4.2);

int i;
string s;
double d;

std::tie(i,s,d) = t;

cout << "i: " << i << ", s: " << s << ", d: " << d << endl;
}

std::tie : tuples and std::tie() 9. More about resource management and the standard library. 28/49

std::tie
Example: ignoring values with std::ignore

Getting the elements of a tuple

void example2c ()
{

auto t = std:: make_tuple (10, "Hello" ,4.2);

int i;
double d;

std::tie(i,std::ignore ,d) = t;

cout << "i: " << i << ", d: " << d << endl;
}

std::ignore is an object of unspecified type such that assigning
any value to it has no effect.

std::tie : tuples and std::tie() 9. More about resource management and the standard library. 29/49

std::tie
Example: implementation sketch

tie for a pair<int, string>

std::pair <int&, string&> mytie(int& x, string& y)
{

return std::pair <int&, string&>(x,y);
}

▶ returns a temporary pair of lvalue references
▶ the assignment operator of pair assigns each member
▶ the references are aliases for the variables passed as arguments
▶ assigning to the references is the same as assigning to the

variables
int i;
string s;

mytie(i,s) = t;

std::tie : tuples and std::tie() 9. More about resource management and the standard library. 30/49

std::tuple

less than for a Person class

#include <tuple >

struct Person
{

std:: string fname;
std:: string lname;

/* Order Persons by lname , fname */
bool operator <(const Person& p) const {

return std::tie(lname , fname) < std::tie(p.lname , p.fname);
}

};

Tuple has an operator<.

std::tie : tuples and std::tie() 9. More about resource management and the standard library. 31/49

std::tuple

get of type

auto t = std:: make_tuple <17, 42.1, "Hello">;

auto i = std::get <int >(t);
auto d = std::get <double >(t);

std::tie : tuples and std::tie() 9. More about resource management and the standard library. 32/49

std::tie
Comments

possible implementation

template <typename ... Args >
std::tuple <Args &...> tie(Args &... args)
{

return std::tuple <Args &...>(args ...);
}

▶ std::tie can be used on both std::pair and std::tuple, as a
tuple has an implicit conversion from pair.

▶ The variables used with std::tie must have been declared.
▶ C++17 introduces structured bindings that lets you write code

like const auto& [i,s,d] = some_tuple;
▶ No need to declare variables before
▶ Cannot use std::ignore: compiler warning if you don’t use all

variables.

std::tie : tuples and std::tie() 9. More about resource management and the standard library. 33/49

Iterator traits
Exempel: find

template <class InIt , class T>
InIt find (InIt first , InIt last , const T& val);

Alternative: the compiler knows the actual value type.

With std::iterator_traits from <Iterator>

template <class InIt >
InIt find (InIt first , InIt last ,

const typename iterator_traits <InIt >:: value_type& val);

NB! This is more restrictive on the value type

Templates 9. More about resource management and the standard library. 34/49

type traits

<type_traits> contains metafunctions for working with types. E.g.:

Type categories

is_void is_scalar is_array is_class is_function

Type properties

is_const is_empty is_signed is_reference is_pointer

Type relations

is_same is_convertible is_base_of

Modifiers

add_const remove_const remove_reference add_lvalue_reference
make_signed make_unsigned remove_extent

Templates 9. More about resource management and the standard library. 35/49

The Curiously Recurring Template Pattern
Static polymorphism

▶ Polymorphism without the run-time overhead
▶ Common functionality in base class

▶ E.g., compute value
▶ Specific functionality in derived classes

▶ E.g., output to different devices (console, file, socket)
▶ Reuse of generic functionality in unrelated classes

▶ Related to Mixin classes
▶ E.g., counting allocations and instances

CRTP 9. More about resource management and the standard library. 36/49

The Curiously Recurring Template Pattern
Dyanamic polymorphism

Normal abstract class

class Base{
public:

virtual void method () =0;
};

class Derived1 :public Base{
public:

void method () override{
cout << "Derived1 :: method\n";

}
};

CRTP 9. More about resource management and the standard library. 37/49

The Curiously Recurring Template Pattern
Static polymorphism

The CRTP structure

template <typename T>
class Base {
public:

void method () {
static_cast <T*>(this)->method ();

}
};

class Derived : public Base<Derived > {
public:

void method () {
std::cout << "Derived method" << std::endl;

}
};

CRTP 9. More about resource management and the standard library. 38/49

The Curiously Recurring Template Pattern
Example: Animal sounds

class Animal {
public:

Animal(const std:: string& name) :name(name) {}
void speak () const {cout << name << " says "<< get_sound () << "!\n";}
virtual std:: string get_sound () const = 0;
virtual ~Animal () =default;

private:
std:: string name;

};

class Dog : public Animal {
public:

using Animal :: Animal;
virtual std:: string get_sound () const override {return {"Woof"};}

};

class Cat : public Animal {
public:

using Animal :: Animal;
virtual std:: string get_sound () const override {return {"Meow"};}

};

CRTP 9. More about resource management and the standard library. 39/49

The Curiously Recurring Template Pattern
Example: Animal sounds

If we don’t need run-time polymorphism:
Dog d{"Fido"};
Cat c{"Caesar"};

d.speak (); Fido says Woof!
c.speak (); Caesar says Meow!

Base class template

template <typename Derived >
class Animal {
public:

Animal(const std:: string& name) :name(name) {}
void speak () const {

cout << name << " says "
<< static_cast <const Derived*>(this)->get_sound ()
<< "!\n";

}
private:

std:: string name;
};

CRTP 9. More about resource management and the standard library. 40/49

The Curiously Recurring Template Pattern
Example: Animal sounds

Concrete derived classes

class Dog : public Animal <Dog > {
public:

using Animal :: Animal;
std:: string get_sound () const {

return {"Woof"};
}

};

class Cat : public Animal <Cat > {
public:

using Animal :: Animal;
std:: string get_sound () const {

return {"Meow"};
}

};

NB! No override

CRTP 9. More about resource management and the standard library. 41/49

The Curiously Recurring Template Pattern
Example:

Base class template

template <typename Derived >
class Computer{
public:

void print_answer (){
auto ans = incredibly_complex_computation ();
static_cast <Derived*>(this)->do_print_answer(ans);

}
private:

int incredibly_complex_computation () {return 42;}
};

Behaves like it had a pure virtual function
virtual void do_print_answer(int) =0;

CRTP 9. More about resource management and the standard library. 42/49

The Curiously Recurring Template Pattern
Example:

Concrete classes

class Local_Computer :public Computer <Local_Computer >{
public:

void do_print_answer(int ans) {
cout << "Answer:" << ans << endl;

}
};

class Networked_Computer :public Computer <Networked_Computer >{
public:

Networked_Computer(ServerConnection c) :conn{c} {}
void do_print_answer(int ans) {

conn.upload(ans);
}

private:
ServerConnection conn;

};

Local_Computer l{};
l.print_answer (); Answer: 42

CRTP 9. More about resource management and the standard library. 43/49

The Curiously Recurring Template Pattern
Static polymorphism

▶ Polymorphism without the run-time overhead
▶ Common functionality in base class

▶ E.g., compute value
▶ Specific functionality in derived classes

▶ E.g., output to different devices (console, file, socket)
▶ Reusing generic functionality in unrelated classes

▶ E.g., counting allocations and instances

CRTP 9. More about resource management and the standard library. 44/49

The Curiously Recurring Template Pattern
Example: counting instances

Base class template

template <typename Derived >
class Counted{
public:

static int get_alive () {return alive;}
static int get_created () {return created ;}

protected:
Counted () {++ created; ++ alive ;}
Counted(const Counted &) {++ created; ++ alive ;}
~Counted () {--alive;}

private:
static int created;
static int alive;

};

template <typename Derived >
int Counted <Derived >:: created {0};

template <typename Derived >
int Counted <Derived >:: alive {0};

CRTP 9. More about resource management and the standard library. 45/49

▶ The variables are static: one variable
per class (not per object).

▶ This is a class template: a new Counted<T>
class will be instantiated for each subclass

▶ Each subclass will have its own counters

The Curiously Recurring Template Pattern
Example: counting instances

Concrete subclass and helper function

class Foo :public Counted <Foo >
{
public:

Foo(int i) :x(i) {}
private:

int x;

};

template <typename T>
void print_counts ()
{

cout << typeid(T).name() << " alive: " << T:: get_alive ()
<< ", created: " << T:: get_created () << endl;

}

CRTP 9. More about resource management and the standard library. 46/49

Suggested reading

References to sections in Lippman
Sequential containers 9.1 – 9.3
Container Adapters 9.6
Associative containers chapter 11
Tuples 17.1
Swap 13.3
Moving objects 13.6

CRTP 9. More about resource management and the standard library. 48/49

	The standard library
	Sequences
	Insertion
	Container adapters

	std::tie
	tuples and std::tie()

	Templates
	CRTP

