
EDAF50 – C++ Programming

2. Types and variables.

Sven Gestegård Robertz
Computer Science, LTH

2024

Outline

1 Data types and variables
Pointers: Syntax and semantics
References
Arrays

2 Declarations, scope and lifetime
3 User defined types

Structures
The operator ->

Classes
4 The standard library alternatives to C-style arrays

std::string

std::vector

5 Constants

2. Types and variables. 2/1

Data types and variables
C++ is a strictly typed language

▶ Every name and every expression has a type
▶ some concepts:

▶ a declaration introduces a name (and gives it a type)
▶ a type defines the set of possible values and operations

(for an object)
▶ an object is a place in memory that holds a value
▶ a value is a bit pattern interpreted according to a type.
▶ a variable is a named object

An object has
▶ a value and
▶ a representation
▶ a type cast can

change the value of
an object by changing
its type

Unnamed objects
Unnamed objects include
▶ temporary values
▶ objects on the heap

(allocated with new)

Data types and variables 2. Types and variables. 3/46

Data types
Primitive types

▶ Integral types: char, short, int, long, long long

▶ signed (as in Java)
▶ unsigned (modulo 2N “non-negative” numbers, not in Java)

▶ Floting point types: float, double, long double

▶ bool (boolean in Java)
▶ integer values are implicitly converted to bool
▶ zero is false, non-zero is true

▶ The type char is “the natural size to hold a character” on a
given machine (often 8 bits). Its size (in C/C++) is called
“a byte” regardless of the number of bits.

▶ sizeof(char) ≡ 1 (1 byte)
▶ The sizes of all other data types are multiples of sizeof(char).

▶ sizes are implementation defined
▶ sizeof(int) is commonly 4.

Data types and variables 2. Types and variables. 4/46

Variables
Declaration and initialization

Declaration without initialization (avoid)

int x; // x has an undefined value (if local)
// (as local variables in Java)

Declaration and initialization

int a{7}; // list initialization (recommended for most types)
int b(17); // "constructor call"
int y = {7}; // list initialization with extra = (copy)
int z = 7; // C style

vector <int > v{1,2,3,4,5};

C style: Beware of implicit type conversion

int x = 7.8; // x == 7. No warning
int y {7.8}; // Gives a warning (or error with -pedantic -errors)

Data types and variables 2. Types and variables. 5/46

Data types
Pointers, Arrays and References

▶ References
▶ Pointers (similar to Java references)
▶ Arrays (“built-in arrays”). Similar to Java arrays of primitive

types

Data types and variables : Pointers: Syntax and semantics 2. Types and variables. 6/46

Pointers

Similar to references in Java, but
▶ a pointer is the memory address of an object
▶ a pointer is an object (a C++ reference is not)

▶ can be assigned and copied
▶ has an address
▶ can be declared without initialization, but then it gets an

undefined value , as do other variables
▶ four possible states

1 point to an object
2 point to the address immediately past the end of an object
3 point to nothing: nullptr. Before C++11: NULL
4 invalid

▶ can be used as an iteger value
▶ arithmetic, comparisons, etc.

Be very careful!
Data types and variables : Pointers: Syntax and semantics 2. Types and variables. 7/46

Pointers
Syntax, operatorers * and &

▶ In a declaration:
▶ prefix *: “pointer to”

int *p; : p is a pointer to an int
void swap(int*, int*); : function taking two pointers

▶ prefix &: “reference to”
int &r; : r is a reference to an int

▶ In an expression:
▶ prefix *: dereference, “contents of” (pointer → object)

*p = 17; the object that p points to is assigned 17
▶ prefix &: “address of”, “pointer to“ (object → pointer)

int x = 17;
int y = 42;

swap(&x, &y); Call swap(int*, int*) with pointers to x and y

Data types and variables : Pointers: Syntax and semantics 2. Types and variables. 8/46

Pointers
Be careful with declarations

Advice: One declaration per line

int *a; // pointer to int
int* b; // pointer to int
int c; // int

int* d, e; // d is a pointer , e is an int
int* f, *g; // f and g are both pointers

Choose a style, either int *a or int* b, and be consistent.

Data types and variables : Pointers: Syntax and semantics 2. Types and variables. 9/46

References

References are similar to pointers, but
▶ A reference is an alias to a variable

▶ must be initialized
▶ cannot be changed (reseated to refer to another variable)
▶ is not an object (has no address)

▶ Dereferencing does not use the operator *
▶ Using a reference is to use the referenced object.

Use a reference if you don’t have (a good reason) to use a pointer.
▶ E.g., if it may have the value nullptr (“no object”)
▶ or if you need to change(“reseat”) the pointer
▶ More on this later.

Data types and variables : References 2. Types and variables. 10/46

Pointers and references
Call by pointer

In some cases, a pointer is used instead of a reference to “call by
reference:

Example: swap two integers

void swap2(int* a, int* b)
{

if(a != nullptr && b != nullptr) {
int tmp=*a;
*a = *b;
*b = tmp;

}
} ... and use: int x, y;

...
swap2(&x, &y);

NB!:
▶ a pointer can be nullptr or uninitialized
▶ dereferencing such a pointer gives undefined behaviour

Data types and variables : References 2. Types and variables. 10/46

Pointers and references

Pointer and reference versions of swap

// References
void swap(int& a, int& b)
{

int tmp = a;
a = b;
b = tmp;

}

// Pointers
void swap(int* pa, int* pb)
{

if(pa != nullptr && pb != nullptr) {
int tmp = *pa;
*pa = *pb;
*pb = tmp;

}
}

int m=3, n=4;
swap(m,n); Reference version is called

swap(&m,&n); Pointer version is called

NB! Pointers are called by value: the address is copied

Data types and variables : References 2. Types and variables. 11/46

Arrays (“C-arrays”, “built-in arrays”)

▶ A sequence of values of the same type (homogeneous
sequence)

▶ Similar to Java for primitive types
▶ but no safety net – difference from Java
▶ an array does not know its size – the programmer’s

responsibility
▶ Can contain elements of any type

▶ Java arrays can only contain references (or primitive types)

▶ Can be a local (or member) variable (Difference from Java)
▶ Is declared T a[size]; (Difference from Java)

▶ The size must be a (compile-time) constant.
(Different from C99 which has VLAs)

Data types and variables : Arrays 2. Types and variables. 12/46

Arrays
Representation in memory

The elements of an array can be of any type
▶ Java: only primitive types or a reference to an object
▶ C++: an object or a pointer

Example: array of Point
class Point{

signed char x;
signed char y;

};

Point ps[3];

y:
x:

x:
y:
x:
y:

ps:
ps[0]

ps[1]

ps[2]

Important difference from Java: no fundamental difference
between built-in and user defined types.

Data types and variables : Arrays 2. Types and variables. 13/46

Data types
C strings

▶ C strings are char[] that are null terminated.
Example: char s[6] = "Hello";

s: ’H’ ’e’ ’l’ ’l’ ’o’ ’\0’

NB! A string literal is a C-style string (not a std::string)
The type of "Hello" is const char[6].

Data types and variables : Arrays 2. Types and variables. 14/46

Data types
C strings

▶ C strings are char[] that are null terminated.
Example: char s[6] = "Hello";

s: ’H’ ’e’ ’l’ ’l’ ’o’ ’\0’

Data types and variables : Arrays 2. Types and variables. 15/46

Pointers and arrays

Arrays are accessed through pointers

float f[4]; // 4 floats
float* pf; // pointer to float

pf = f; // same as = &f[0]
float x = *(pf+3); // Alt. x = pf[3];
x = pf[3]; // Alt. x = *(pf+3);

Data types and variables : Arrays 2. Types and variables. 16/46

Pointers and arrays
What does array indexing really mean?

The expression a[b] is equivalent to *(a + b) (and, thus, to b[a])

Definition
For a pointer, T* p, and an integer i, the expression p + i is

defined as p + i * sizeof(T)

That is,
▶ p+1 points to the address after the object pointed to by p

▶ p+i is an address i objects of type T after p.

Example: confusing code (Don’t do this)

int a[] {1,4,5,7,9};

cout << a[2] << " == "<< 2[a] << endl;

5 == 5

Data types and variables : Arrays 2. Types and variables. 17/46

Pointers and arrays
Function calls

Function for zeroing an array
void zero(int* x, size_t n) {

for (int* p=x; p != x+n; ++p)
*p = 0;

}

...
int a[5];

zero(a,5);

▶ The name of an array variable in an expression
is interpreted as “a pointer to the first element”:
array decay

▶ a ⇔ &a[0]
▶ arrays cannot be copied (passed by value)

Array subscripting
void zero(int x[], size_t n) {

for (size_t i=0; i < n; ++i)
x[i] = 0;

}

▶ In function parameters T a[]
is equivalent to T* a.
(Syntactic sugar)

▶ T* is more common

▶ An array is passed as a pointer and a size.

Data types and variables : Arrays 2. Types and variables. 18/46

Pointers and references

Pointer and reference versions of swap

// References
void swap(int& a, int& b)
{

int tmp = a;
a = b;
b = tmp;

}

// Pointers
void swap(int* pa, int* pb)
{

if(pa != nullptr && pb != nullptr) {
int tmp = *pa;
*pa = *pb;
*pb = tmp;

}
}

int m=3, n=4;
swap(m,n); Reference version is called

swap(&m,&n); Pointer version is called

NB! Pointers are called by value: the address is copied

Data types and variables : Arrays 2. Types and variables. 19/46

Declarations
Scope

A declaration introduces a name in a scope
Local scope: A name declared in a function is visible

▶ From the declaration
▶ To the end of the block (delimited by{ })
▶ Parameters to functions are local names

Class scope: A name is called a member if it is declared in a class∗.
It is visible in the entire class.

Namespace scope: A named is called a namespace member if it is
defined in a namespace∗. E.g, std::cout.

A name declared outside of the above is called a global name and is
in the global namespace.

∗ outside a function, class or enum class.

Declarations, scope and lifetime 2. Types and variables. 20/46

Declarations
lifetimes

▶ The lifetime of an object is determined by its scope:
▶ An object

▶ must be initialized (constructed) before it can be used
▶ is destroyed at the end of its scope.

▶ a local variable only exists until the function returns

▶ class members are destroyed when the object is destroyed

▶ namespace objects are destroyed when the program terminates

▶ an object allocated with new lives until destroyed with delete.
(different from Java)
▶ Manual memory management
▶ new is not used as in Java
▶ Avoid new except in special cases
▶ more on this later

Declarations, scope and lifetime 2. Types and variables. 21/46

User defined types

▶ Built-in types (e.g., char, int, double, pointers, . . .) and
operations
▶ Rich, but deliberately low-level
▶ Directly and efficiently reflect the capabilites of conventional

computer hardware

▶ User-defined types
▶ Built using the built-in types and abstraction mechanisms
▶ struct, class (cf. class i Java)
▶ Examples from the standard library

▶ std::string (cf. java.lang.String)
▶ std::vector, std::list . . . (cf. corresponding class in

java.util)
▶ enum class: enumeration (cf. enum in Java)

▶ A concrete type can behave “just like a built-in type”.

User defined types 2. Types and variables. 22/46

Structures

The first step in building a new type is to organize the elements it
needs into a data structure, a struct.
Example: a vector of doubles

struct Vector {
int sz;
double* elem;

};

elem:
sz:Vector v:

A variable of the type Vector can be created with
Vector v;

but now v.sz and the pointer v.elem are uninitialized.

To be useful, we must give elem som elements to point to.

User defined types : Structures 2. Types and variables. 23/46

Structures
Initialization

A function for initializing a Vector:
void vector_init(Vector& v, int s)
{

v.elem = new double[s];
v.sz = s;

}

A variable of type Vector, with size 10, can be created with
Vector vec;
vector_init(vec, 10); //call -by-reference: vec is changed

▶ the operator new allocates an object on the heap (“the free
store”)

▶ objects on the heap live until removed using delete

▶ more on (better alternatives to) this later

User defined types : Structures 2. Types and variables. 24/46

Structures
Representation

struct Vector {
int sz;
double* elem;

};
void vector_init(Vector& v, int s)
{

v.elem = new double[s];
v.sz = s;

}

void test()
{

Vector vec;
vector_init(vec , 5);
vec.elem [2] = 7;

}

elem
sz: 5Vector vec:

7

User defined types : Structures 2. Types and variables. 25/46

Structures
Use

Now we can use our Vector:
#include <iostream >
double read_and_sum(int s)
{

Vector v; // create Vector object
vector_init(v,s); // initialize v with size s
for(int i=0; i!=s; ++i) {

std::cin >> v.elem[i];
}

double sum {0};
for(int i=0; i!=s; ++i) {

sum += v.elem[i];
}

return sum;
}

User defined types : Structures 2. Types and variables. 26/46

▶ >> is the input operator
▶ the standard library <iostream>

▶ std::cin is standard input

Structures
Access of struct members

Vector v;

Vector& rv = v;

Vector* pv = &v;

...

int i = v.sz; // direct access (with name of variable)

int j = rv.sz; // access via reference (alias for name)

int k = pv ->sz; // access via pointer

User defined types : Structures 2. Types and variables. 27/46

Access of members through pointers
The operator ->

For a pointer p, we can express
“The member x in the object p points to in two ways:
▶ (*p).x

▶ p->x

User defined types : The operator -> 2. Types and variables. 28/46

Classes

▶ Make a user-defined type behave like “a real type”
▶ Tight coupling between operations and the data representation
▶ Often: make the representation inaccessible to users

A class can have
▶ data members (“attributes”)
▶ member functions (“methods”)
▶ type members
▶ members can be

▶ public
▶ private
▶ protected
▶ like in Java

User defined types : Classes 2. Types and variables. 29/46

Classes
Example

class Vector{
public:

Vector(int s) :elem{new double[s]}, sz{s} {} // constructor
double& operator [](int i) {return elem[i];} // subscripting
int size() {return sz;}

private:
double* elem;
int sz;

};

▶ constructor, like in Java
▶ Creates an object and initializes members

▶ the statements Vector vec;
vector_init(vec , 5);

become Vector vec(5);

▶ operators can be overloaded, e.g. operator[](int)
▶ vec.elem[2] becomes vec[2]

▶ The representation is not accessible (elem is private)
▶ NB! Returns a reference so that vec[i] can be changed

(assigned)
User defined types : Classes 2. Types and variables. 30/46

Classes
Example

double read_and_sum(int s)
{

Vector v(s); // Create and initialize a Vector of size s
for(int i=0; i!=v.size (); ++i) {

std::cin >> v[i];
}

double sum {0};
for(int i=0; i!=v.size (); ++i) {

sum += v[i];
}

return sum;
}

User defined types : Classes 2. Types and variables. 31/46

Class definitions
Member functions: declarations and definitions

Member functions (⇔ “methods” in Java)

Definition of class

class Foo {
public:

int fun(int , int); // Declaration of member function
int get_x () {return x;} // ... incl definition (inline)
...

private:
int x;

};

NB! Semicolon after class definition

Definition of member function (outside the class)

int Foo::fun(int x, int y) {
// ...

}

No semicolon after function definition
User defined types : Classes 2. Types and variables. 32/46

Classes
Resource management

▶ RAII Resource Acquisition Is Initialization
▶ An object is initialized by a constructor

▶ Allocates the needed resources
▶ When an object is destroyed, its destructor is executed

▶ Free resources owned by the object
▶ In the Vector example: the array pointed to by elem

class Vector{
public:
Vector(int s) :elem{new double[s]}, sz{s} {} // constructor
~Vector () {delete [] elem;} // destructor , delete the array
...

};

Manual memory management
▶ Objects allocated with new must be freed with delete
▶ Objects allocated with new[] must be freed with delete[]
▶ otherwise, the program has a memory leak
▶ (much) more on this later

User defined types : Classes 2. Types and variables. 33/46

Two types from the standard library
Alternatives to C-style arrays

Do not use built-in arrays unless you have (a strong reason) to.
Instead of
▶ char[] – Strings – use std::string

▶ T[] – Sequences – use std::vector<T>

More like in Java:
▶ more functionality – “behaves like a built-in type”
▶ safety net

The standard library alternatives to C-style arrays 2. Types and variables. 34/46

Strings: std::string

std::string has operations for
▶ assigning
▶ copying
▶ concatenation
▶ comparison
▶ input and output (<< >>)

and
▶ knows its size

Similar to java.lang.String but is mutable.

The standard library alternatives to C-style arrays : std::string 2. Types and variables. 35/46

Sequences: std::vector<T>

A std::vector<T> is
▶ an ordered collection of objects (of the same type, T)
▶ every element has an index

which, in contrast to a built-in array
▶ knows its size

▶ vector<T>::operator[] does no bounds checking
▶ vector<T>::at(size_type) throws out_of_range

▶ can grow (and shrink)
▶ can be assigned, compared, etc.

Similar to java.util.ArrayList

Is a class template

The standard library alternatives to C-style arrays : std::vector 2. Types and variables. 36/46

Example: std::string

#include <iostream >
#include <string >
using std:: string;
using std::cout;
using std::endl;

string make_email(string fname ,
string lname ,
const string& domain)

{
fname [0] = toupper(fname [0]);
lname [0] = toupper(lname [0]);
return fname + ’.’ + lname + ’@’ + domain;

}

void test_string ()
{

string sr = make_email("sven", "robertz", "cs.lth.se");

cout << sr << endl;
}

Sven.Robertz@cs.lth.se

The standard library alternatives to C-style arrays : std::vector 2. Types and variables. 37/46

Example: std::vector<int>

initialisation

void print_vec(const std:: string& s, const std::vector <int >& v)
{

std::cout << s << " : " ;
for(int e : v) {

std::cout << e << " ";
}
std::cout << std::endl;

}
void test_vector_init ()
{

std::vector <int > x(7);
print_vec("x", x);

std::vector <int > y(7,5);
print_vec("y", y);

std::vector <int > z{1,2,3};
print_vec("z", z);

}

x: 0 0 0 0 0 0 0
y: 5 5 5 5 5 5 5
z: 1 2 3

The standard library alternatives to C-style arrays : std::vector 2. Types and variables. 38/46

Example: std::vector<int>

assignment

void test_vector_assign ()
{

std::vector <int > x {1,2,3,4,5};
print_vec("x", x);
std::vector <int > y {10 ,20 ,30 ,40 ,50};
print_vec("y", y);
std::vector <int > z;
print_vec("z", z);
z = {1,2,3,4,5,6,7,8,9};
print_vec("z", z);
z = x;
print_vec("z", z);

}

x : 1 2 3 4 5
y : 10 20 30 40 50
z :
z : 1 2 3 4 5 6 7 8 9
z : 1 2 3 4 5

The standard library alternatives to C-style arrays : std::vector 2. Types and variables. 39/46

Example: std::vector<int>

insertion and comparison

void test_vector_eq ()
{

std::vector <int > x {1,2,3};
std::vector <int > y;
y.push_back (1);
y.push_back (2);
y.push_back (3);

if(x == y) {
std::cout << "equal" << std::endl;

} else {
std::cout << "not equal" << std::endl;

}
}

equal

The standard library alternatives to C-style arrays : std::vector 2. Types and variables. 40/46

Data types
Two kinds of constants

▶ A variable declared const must not be changed(final in Java)
▶ Roughly:“I promise not to change this variable.”
▶ Is checked by the compiler
▶ Use when specifying function interfaces

▶ A function that does not change its (reference) argument
▶ A member function (“method”) that does not change the state

of the object.
▶ Important for function overloading

▶ T and const T are different types
▶ One can overload int f(T&) and int f(const T&)

(for some type T)
▶ A variable declared constexpr must have a value that can be

computed at compile time.
▶ Use to specify constants
▶ Functions can be constexpr
▶ Introduced in C++-11

Constants 2. Types and variables. 41/46

char[], char* och const char*

const is important for C-strings

A string literal (e.g., "I am a string literal") is const.
▶ Can be stored in read-only memory

▶ char* str1 = "Hello"; — deprecated in C++ – gives a
warning

▶ const char* str2 = "Hello"; — OK, the string is const

▶ char str3[] = "Hello"; — str3 can be modified

Constants 2. Types and variables. 42/46

const and pointers

const modifies everything to the left (exception: if const is first, it
modifies what is directly after)

Example

int* ptr;
const int* ptrToConst; //NB! (const int) *
int const* ptrToConst , // equivalent , clearer?

int* const constPtr; // the pointer is constant

const int* const constPtrToConst; // Both pointer and object
int const* const constPtrToConst; // equivalent , clearer?

Be careful when reading:

char *strcpy(char *dest , const char *src);

(const char)*, not const (char*)

Constants 2. Types and variables. 43/46

const and pointers
Example:

void Exempel(int* ptr ,
int const * ptrToConst ,
int* const constPtr ,
int const * const constPtrToConst)

{
*ptr = 0; // OK: changes the value of the object pointed to
ptr = nullptr; // OK: changes the pointer

*ptrToConst = 0; // Error! cannot change the value
ptrToConst = nullptr; // OK: changes the pointer

*constPtr = 0; // OK: changes the value
constPtr = nullptr; // Error! cannot change the pointer

*constPtrToConst = 0; // Error! cannot change the value
constPtrToConst = nullptr; // Error! cannot change the pointer

}

Constants 2. Types and variables. 43/46

Pointers

Pointers to constant and constant pointer

int k; // int that can be modified
int const c = 100;// constant int
int const * pc; // pointer to constant int
int *pi; // pointer to modifiable int

pc = &c; // OK
pc = &k; // OK , but k cannot be changed through *pc
pi = &c; // Error! pi may not point to a constant
*pc = 0; // Error! pc is a pointer to const int

int* const cp = &k; // Constant pointer
cp = nullptr; // Error! The pointer cannot be reseated
*cp = 123; // OK! Changes k to 123

Constants 2. Types and variables. 43/46

Suggested reading

References to sections in Lippman
Types, variables 2.1,2.2,2.5.2 (p 31–37, 41–47, 69)
Type aliases 2.5.1
Type deduction (auto) 2.5.2
Pointers and references 2.3
Scope and lifetimes 2.2.4, 6.1.1
const, constexpr 2.4
Arrays and pointers 3.5
Classes 2.6, 7.1.4, 7.1.5, 13.1.3
std::string 3.2
std::vector 3.3
enumeration types 19.3

Summary 2. Types and variables. 45/46

Next lecture
Modularity

References to sections in Lippman
Exceptions 5.6, 18.1.1
Namespaces 18.2
I/O 1.2, 8.1–8.2, 17.5.2

Constants 2. Types and variables. 46/46

	Data types and variables
	Pointers: Syntax and semantics
	References
	Arrays

	Declarations, scope and lifetime
	User defined types
	Structures
	The operator [basicstyle=]->
	Classes

	The standard library alternatives to C-style arrays
	std::string
	std::vector

	Constants
	Summary

