EDAF50 — C++ Programming

2. Types and variables.

Sven Gestegérd Robertz
Computer Science, LTH

2022

QOutline

@ Data types and variables
@ Pointers: Syntax and semantics
@ References
@ Arrays
e Declarations, scope and lifetime
© User defined types
@ Structures
@ The operator ->
o Classes
@ The standard library alternatives to C-style arrays
@ std::string
@ std::vector

© Constants
@ Type inference

2. Types and variables. 2/1

Data types and variables

C++ is a strictly typed language

» Every name and every expression has a type
P> some concepts:

» a declaration introduces a name (and gives it a type)

» a type defines the set of possible values and operations
(for an object)

» an object is a place in memory that holds a value

» a value is a bit pattern interpreted according to a type.

» a variable is a named object

An object has

» a value and Unnamed objects

» a representation Unnamed objects include

> a type cast can » temporary values
change the value of
an object by changing
its type

» objects on the heap
(allocated with new)

2. Types and variables.

Data types

Primitive types

> Integral types: char, short, int, long, long long

> signed (as in Java)

» unsigned (modulo 2V “non-negative” numbers, not in Java)

» Floting point types: float, double, long double
P bool (boolean in Java)

» integer values are implicitly converted to bool
» zero is false, non-zero is true

» The type char is “the natural size to hold a character” on a
given machine (often 8 bits). Its size (in C/C++) is called

“a byte" regardless of the number of bits.

sizeof(char) =1 (1 byte)

» The sizes of all other data types are multiples of sizeof(char).

» sizes are implementation defined
» sizeof(int) is commonly 4.

v

2. Types and variables.

Variables
Declaration and initialization

initialization (avoi

int x; // x has an undefined value (if local)
// (as local variables in Java)

Declaration and initialization

int a{7}; // list initialization (recommended for most types)
int b(17); // "constructor call”

int y = {7}; // list initialization with extra = (copy)

int z = 7; // C style

vector<int> v{1,2,3,4,5%};

C style: Beware of implicit type conversion

int x = 7.8; // x == 7. No warning
int y {7.8}; // Gives a warning (or error with -pedantic-errors)

Data types and variables 2. Types and variables. 5/48

Data types

Pointers, Arrays and References

» References

» Pointers (similar to Java references)

» Arrays (“built-in arrays’). Similar to Java arrays of primitive
types

Data types and variables : Pointers: Syntax and semantics 2. Types and variables. 6/48

Pointers

Similar to references in Java, but
» a pointer is the memory address of an object

» a pointer is an object (a C++ reference is not)
» can be assigned and copied
» has an address
» can be declared without initialization, but then it gets an
undefined value , as do other variables
» four possible states
© point to an object
@ point to the address immediately past the end of an object
© point to nothing: nullptr. Before C++11: NULL
Q invalid
» can be used as an iteger value
» arithmetic, comparisons, etc.

Be very careful!

Data types and variables : Pointers: Syntax and semantics 2. Types and variables.

Pointers

Syntax, operatorers * and &

» In a declaration:
» prefix *: “pointer to”

int *p; : p is a pointer to an int

void swap(intx, intx); : function taking two pointers
» prefix & ‘“reference to”

int &r; : ris a reference to an int

» In an expression:
> prefix *: dereference, “contents of” (pointer — object)
*p = 17; the object that p points to is assigned 17
» prefix & “address of”, “pointer to" (object — pointer)

int x
int y

17;
42;

swap (8x, &y); Call swap(intx, intx) with pointers to x andy

Data types and variables : Pointers: Syntax and semantics 2. Types and variables. 8/a8

Pointers
Be careful with declarations

Advice: One declaration per line

int *a; // pointer to int

int* b; // pointer to int

int c; // int

intx d, e; // d is a pointer, e is an int

intx f, *g; // f and g are both pointers

Choose a style, either int *a or int*x b, and be consistent.

Data types and variables : Pointers: Syntax and semantics 2. Types and variables. 9/48

References

References are similar to pointers, but
» A reference is an alias to a variable

» cannot be changed (reseated to refer to another variable)
» must be initialized
» is not an object (has no address)

» Dereferencing does not use the operator *
» Using a reference is to use the referenced object.

Use a reference if you don't have (a good reason) to use a pointer.
» E.g., if it may have the value nullptr (“no object”)
» or if you need to change(“reseat”) the pointer
» More on this later.

Data types and variables : References 2. Types and variables. 10/48

Pointers and references

Call by pointer

In some cases, a pointer is used instead of a reference to “call by
reference:

Example: swap two integers

void swap2(int* a, int* b)
{
if(a != nullptr & b != nullptr) {
int tmp=xa;

*a = *b;
*b = tmp;
3
} ... and use: int x, y;
swap2 (&x, &y);
NB!:

» a pointer can be nullptr or uninitialized

» dereferencing such a pointer gives undefined behaviour

Data types and variables : References 2. Types and variables. 10/48

Pointers and references

Pointer and reference versions of swap

// References // Pointers
void swap(int& a, int& b)| void swap(int* pa, intx pb)
{ {
if(pa != nullptr && pb != nullptr) {

int tmp = a; int tmp = *pa;

a = b; *pa = *pb;

b = tmp; *pb = tmp;
} 3

¥

int m=3, n=4;
swap(m,n); Reference version is called

swap (&m,&n); Pointer version is called

NB! Pointers are called by value: the address is copied

Data types and variables : References 2. Types and variables. 11/48

Arrays (“C-arrays”, “built-in arrays")

» A sequence of values of the same type (homogeneous
sequence)

» Similar to Java for primitive types

» but no safety net — difference from Java

» an array does not know its size — the programmer’s

responsibility

» Can contain elements of any type

» Java arrays can only contain references (or primitive types)
» Can be a local (or member) variable (Difference from Java)
» Is declared T alsizel; (Difference from Java)

» The size must be a (compile-time) constant.
(Different from C99 which has VLAs)

2. Types and variables.

Arrays

Representation in memory

The elements of an array can be of any type
» Java: only primitive types or a reference to an object
» C++: an object or a pointer

Example: array of Point

class Point{ ps: [x:
signed char x; = pS[O]
signed char y; y:
3 X:
: ps[l]
Point ps[3]; y:
X
5|2
7 ps[2]

Important difference from Java: no fundamental difference
between built-in and user defined types.

Data types and variables : Arrays 2. Types and variables. 13/48

Data types

C strings

» C strings are charl] that are null terminated.
Example: char s[6] = "Hello";

S:

NB! A string literal is a C-style string (not a std: :string)

yH:

ye:

711

717

7\@7

The type of "Hello” is const char[6].

2. Types and variables.

Data types

C strings

» C strings are char[] that are null terminated.
Example: char s[6] = "Hello";

Data types and variables : Arrays

S:

’H’

’e’

)1)

71)

7\0’

2. Types and variables.

Pointers and arrays

Arrays are accessed through pointers

float f[4]; // 4 floats

floatx pf; // pointer to float
pf = f; // same as = &f[0]
float x = x(pf+3); // Alt. x = pf[3];

x = pf[3]; // Alt. x = x(pf+3);

f[o] £[1] £[2] £[3]
pf pf[3]
* (pf+3)

Data types and variables : Arrays 2. Types and variables. 16/48

Pointers and arrays

What does array indexing really mean?

The expression afb] is equivalent to x(a + by (and, thus, to bral)

Definition

For a pointer, Tx p, and an integer i, the expression p + i is
defined asp + i * sizeof(T)

That is,

» p+1 points to the address after the object pointed to by p
» p+i is an address i objects of type T after p.

Example: confusing code (Don't do this)

int a[] {1,4,5,7,93};

cout << a[2] << " == "<< 2[a] << endl;

5 ==15

Pointers and arrays
Function calls

Functio zeroing an array

void zero(intx x, size_t n) {

for (int* p=x; p != x+n; ++p)
*p = 0;
3 » The name of an array variable in an expression
is interpreted as “a pointer to the first element”:
nENEnE array decay
> a o &alo]
zero(a,5); » arrays cannot be copied (passed by value)

Array subscripting

void zero(int x[], size_t n) { » In function parameters T a[]
for (size_t i=0; i != n; ++i) is equivalent to T* a.
x[i] = o; (Syntactic sugar)
b » T* is more common

» An array is passed as a pointer and a size.

Data types and variables : Arrays 2. Types and variables. 18/48

Pointers and references

Pointer and reference versions of swap

// References // Pointers
void swap(int& a, int& b)| void swap(int* pa, intx pb)
{ {
if(pa != nullptr && pb != nullptr) {

int tmp = a; int tmp = *pa;

a = b; *pa = *pb;

b = tmp; *pb = tmp;
} 3

¥

int m=3, n=4;
swap(m,n); Reference version is called

swap (&m,&n); Pointer version is called

NB! Pointers are called by value: the address is copied

Data types and variables : Arrays 2. Types and variables. 19/48

Declarations

Scope

A declaration introduces a name in a scope
Local scope: A name declared in a function is visible

» From the declaration
» To the end of the block (delimited by{ 3})
» Parameters to functions are local names

Class scope: A name is called a member if it is declared /n a class*.
It is visible in the entire class.

Namespace scope: A named is called a namespace member if it is
defined /n a namespace*. E.g, std::cout.

A name declared outside of the above is called a global name and is
in the global namespace.

* outside a function, class or enum class.

Declarations, scope and lifetime 2. Types and variables. 20/48

Declarations

lifetimes

» The lifetime of an object is determined by its scope:
An object

v

» must be initialized (constructed) before it can be used
» is destroyed at the end of its scope.

a local variable only exists until the function returns
class members are destroyed when the object is destroyed

namespace objects are destroyed when the program terminates

v vy yvYyy

an object allocated with new lives until destroyed with delete.
(different from Java)

» Manual memory management

» new is not used as in Java

» Avoid new except in special cases

» more on this later

Declarations, scope and lifetime 2. Types and variables.

User defined types

» Built-in types (e.g., char, int, double, pointers, ...) and
operations
» Rich, but deliberately low-level
» Directly and efficiently reflect the capabilites of conventional
computer hardware

» User-defined types

» Built using the built-in types and abstraction mechanisms
» struct, class (cf. class i Java)
» Examples from the standard library
» std::string (cf. java.lang.String)
» std::vector, std::list ... (cf. corresponding class in
java.util)

» enum class: enumeration (cf. enum in Java)

» A concrete type can behave “just like a built-in type”.

User defined types 2. Types and variables. 22/48

Structures

The first step in building a new type is to organize the elements it
needs into a data structure, a struct.
Example: a vector of doubles

struct Vector {
int sz; Vector v: |[SZ:

doublex elem;

elem:

3
A variable of the type Vector can be created with

Vector v;

but now v.sz and the pointer v.elem are uninitialized.

To be useful, we must give elem som elements to point to.

User defined types : Structures 2. Types and variables. 23/48

Structures

Initialization

A function for initializing a Vector:

void vector_init(Vector& v, int s)
{
v.elem =
V.Ssz = s;

}

new double[s];

A variable of type Vector, with size 10, can be created with

Vector vec;
vector_init(vec, 10); //call-by-reference: vec is changed

» the operator new allocates an object on the heap (“the free
store”)
» objects on the heap live until removed using delete

» more on (better alternatives to) this later

User defined types : Structures 2. Types and variables. 24/48

Structures

Representation

struct Vector {
int sz;
doublex* elem;

3
void vector_init(Vector& v, int s)
{
v.elem = new double[s];
V.Sz = s;
3
void test()
{
Vector vec;
vector_init(vec, 5);
vec.elem[2] = 7;
3

Vector vec: |sz: 5

elemoé———— 7

User defined types : Structures 2. Types and variables. 25/48

Structures

Use

Now we can use our Vector:

#include <iostream>
double read_and_sum(int s)

{
Vector v; // create Vector object
vector_init(v,s); // initialize v with size s
for(int i=0; il=s; ++i) {
std::cin >> v.elem[i];
}
double sum{0};
for(int i=0; il!=s; ++i) {
sum += v.elem[i];
}
» > is the input operator
return sum;
} » the standard library <iostream>

» std::cin is standard input

User defined types : Structures 2. Types and variables. 26/48

Structures

Access of struct members

Vector v;

Vector& rv

0]
<

Vector* pv = &v;

int i = v.sz; // direct access (with name of variable)
int j = rv.sz; // access via reference (alias for name)
int k = pv->sz; // access via pointer

User defined types : Structures 2. Types and variables. 27/48

Access of members through pointers

The operator ->

For a pointer p, we can express
“The member x in the object p points to in two ways:

> (*¥p).x
» p->x

User defined types : The operator —> 2. Types and variables.

Classes

» Make a user-defined type behave like “a real type”
» Tight coupling between operations and the data representation
» Often: make the representation inaccessible to users
A class can have
» data members (“attributes”)
» member functions (“methods”)
» type members
» members can be
» public
» private

» protected
» like in Java

2. Types and variables.

Classes

Example

class Vector{
public:
Vector(int s) :elem{new double[s]}, sz{s} {} // constructor

double& operator[](int i) {return elem[il;} // subscripting
int size() {return sz;}

private:
doublex elem;
int sz;

}

» constructor, like in Java
» Creates an object and initializes members

Vector vec;

> the statements vector_init(vec, 5);

become vector vec(5);

» operators can be overloaded, e.g. operator[1(int)
» vec.elem[2] becomes vec[2]
» The representation is not accessible (elem is private)
» NB! Returns a reference so that vec[i] can be changed
(assigned)

User defined types : Classes 2. Types and variables. 30/48

Classes

Example

double read_and_sum(int s)

{
Vector v(s); // Create and initialize a Vector of size s
for(int i=0; il!=v.size(); ++i) {
std::cin >> v[il;
}
double sum{0};
for(int i=0; il!=v.size(); ++i) {
sum += v[i];
}
return sum;
3

User defined types : Classes 2. Types and variables. 31/48

Class definitions

Member functions: declarations and definitions

Member functions (< “methods” in Java)

Definition of class

class Foo {

public:
int fun(int, int); // Declaration of member function
int get_x() {return x;} // ... incl definition (inline)
private:
int x;
I3

NB! Semicolon after class definition

Definition of member function (outside the class)

int Foo::fun(int x, int y) {
//
}

No semicolon after function definition

User defined types : Classes 2. Types and variables. 32/48

Classes

Resource ma nagement

» RAIl Resource Acquisition Is Initialization

» An object is initialized by a constructor
» Allocates the needed resources

» When an object is destroyed, its destructor is executed
» Free resources owned by the object
» In the Vector example: the array pointed to by elem

class Vector{
public:
Vector(int s) :elem{new double[s]}, sz{s} {} // constructor
~Vector () {delete[] elem;} // destructor, delete the array

s
Manual memory management
» Objects allocated with new must be freed with delete
» Objects allocated with new[] must be freed with delete[]
» otherwise, the program has a memory leak
» (much) more on this later

User defined types : Classes 2. Types and variables. 33/48

Two types from the standard library

Alternatives to C-style arrays

Do not use built-in arrays unless you have (a strong reason) to.
Instead of

» char[] — Strings — use std: :string

» T[] — Sequences — use std: :vector<T>

More like in Java:

» more functionality — “behaves like a built-in type”
» safety net

The standard library alternatives to C-style arrays

Strings: std: :string

std: :string has operations for
P assigning
» copying
» concatenation
» comparison
>

input and output (<< >>)

» knows its size

Similar to java.lang.String but is mutable.

The standard library alternatives to C-style arrays : Std: :string 2. Types and variables,

Sequences: std::vector<T>

A std::vector<T> is
» an ordered collection of objects (of the same type, T)
» every element has an index

which, in contrast to a built-in array
» knows its size

» vector<T>::operator[] does no bounds checking
» vector<T>::at(size_type) throws out_of_range

» can grow (and shrink)

» can be assigned, compared, etc.

Similar to java.util.ArraylList

Is a class template

The standard library alternatives to C-style arrays : Std: :vector 2. Types and variables.

Example: std::string

#include <iostream>
#include <string>
using std::string;
using std::cout;
using std::endl;

string make_email (string fname,
string lname,
const string& domain)

{
fname[@] = toupper (fname[0]);
lname[@] = toupper(lname[0]);
return fname + ’.’ + lname + @’ + domain;
}
void test_string()
{
string sr = make_email("sven", "robertz”, "cs.lth.se");
cout << sr << endl;
}

Sven.Robertz@cs.1lth.se

The standard library alternatives to C-style arrays : Std: :vector 2. Types and variables.

Exam ple: std: :vector<int>

initialisation

void print_vec(const std::string& s, const std::vector<int>& v)

{
std::cout << s << " "
for(int e : v) {

std::cout << e << " ",

3
std::cout << std::endl;

}

void test_vector_init ()

{
std::vector<int> x(7);
print_vec("x", x);
std::vector<int> y(7,5);
print_vec("y", y);
std::vector<int> z{1,2,3};
print_vec("z", z);

}

X: 0 0 0 00 0 0

y: 5555555

z: 1 2 3

The standard library alternatives to C-style arrays : Std: : vector %, T o oA 38/48

Exam ple: std: :vector<int>

assignment

void test_vector_assign()

{
std::vector<int> x {1,2,3,4,5};
print_vec("x", x);
std::vector<int> y {10,20,30,40,503%};
print_vec("y", y);
std::vector<int> z;
print_vec("z", z);
z ={1,2,3,4,5,6,7,8,9};
print_vec("z", z);
zZ = X;
print_vec("z", z);

}

X 12345

y 10 20 30 40 50

z

z 1234567389

z 12345

The standard library alternatives to C-style arrays : Std: : vector %, T o oA 30/48

Exam ple: std: :vector<int>

insertion and comparison

void test_vector_eq()

{
std::vector<int> x {1,2,3};
std::vector<int> y;
y.push_back (1);
y.push_back (2);
y.push_back(3);

if(x == y) {
std::cout << "equal” << std::endl;
} else {
std::cout << "not equal” << std::endl;

The standard library alternatives to C-style arrays : Std: :vector 2. Types and variables.

Data types
Two kinds of constants

» A variable declared const must not be changed(final in Java)
» Roughly:"l promise not to change this variable.”

» Is checked by the compiler
» Use when specifying function interfaces
» A function that does not change its (reference) argument
» A member function (“method”) that does not change the state

of the object.
» Important for function overloading
» T and const T are different types
» One can overload int f(T&) and int f(const T&)
(for some type T)
» A variable declared constexpr must have a value that can be

computed at compile time.
» Use to specify constants
» Functions can be constexpr
» Introduced in C4++4-11

2. Types and variables. 41/48

Constants

char[], charx* och const charx

const is important for C-strings

A string literal (e.g., "I am a string literal”) is const.

» Can be stored in read-only memory

» charx str1 = "Hello”; — deprecated in C4++ — gives a
warning
» const charx str2 = "Hello”; — OK, the string is const

» char str3[] = "Hello"; — str3 can be modified

2. Types and variables.

const and pointers

const modifies everything to the left (exception: if const is first, it
modifies what is directly after)

Example
intx ptr;
const int* ptrToConst; //NB! (const int) *
int const* ptrToConst, // equivalent, clearer?
int* const constPtr; // the pointer is constant

const int* const constPtrToConst; // Both pointer and object
int const* const constPtrToConst; // equivalent, clearer?

Be careful when reading:

char *strcpy(char *dest, const char =*src);

(const char)*, not const (charx)

Constants 2. Types and variables. 43/48

const and pointers

Example:

void Exempel(intx ptr,
int const *x ptrToConst,
intx const constPtr,
int const * const constPtrToConst)

{
*ptr = 0; // OK: changes the value of the object
ptr = nullptr; // OK: changes the pointer
*ptrToConst = 0; // Error! cannot change the value
ptrToConst = nullptr; // OK: changes the pointer
*constPtr = 0; // OK: changes the value
constPtr = nullptr; // Error! cannot change the pointer
*constPtrToConst = 0; // Error! cannot change the value
constPtrToConst = nullptr; // Error! cannot change the pointer

}

Constants 2. Types and variables. 43/48

Pointers

Pointers to constant and constant pointer

int k; // int that can be modified
int const ¢ = 100;// constant int

int const *x pc; // pointer to constant int
int *pi; // pointer to modifiable int

pc = &c; // 0K

pc = &k; // OK, but k cannot be changed through =*pc
pi = &c; // Error! pi may not point to a constant
*pc = 0; // Error! pc is a pointer to const int

intx const cp = &k; // Constant pointer
cp = nullptr; // Error! The pointer cannot be reseated
*cp = 123; // OK! Changes k to 123

Constants 2. Types and variables. 43/48

Variables

Automatic type inference

auto: The compiler deduces the type from the initialization.

Declaration and initialization

auto x = 7; // int x
auto c = ’'c’; // char c
auto b = true; // bool b
auto d = 7.8; // double d

std::vector<int> v;
auto it = v.begin(); // std::vector<int>::iterator it

double calc_epsilon();
auto ep = static_cast<float>(calc_epsilon()); // float ep

In float ep = calc_epsilon(); the narrowing is not obvious NB!

with auto there is no risk of narrowing type conversion, so using = is safe.

Type inference 2. Types and variables. 4aa/48

Variables

Automatic type inference

Don't use auto if you need to be explicit about the declared type,
e.g.

» if naming the type makes the code more readable.

» to specify the value range or precision
(e.g., int/ long Or float/ double)

Suggested reading

References to sections in Lippman
Types, variables 2.1,2.2,2.5.2 (p 31-37, 41-47, 69)
Type aliases 2.5.1

Type deduction (auto) 2.5.2
Pointers and references 2.3

Scope and lifetimes 2.2.4, 6.1.1
const, constexpr 2.4

Arrays and pointers 3.5

Classes 2.6,7.1.4,7.15,13.1.3
std::string 3.2

std::vector 3.3

enumeration types 19.3

Next lecture

Modularity

References to sections in Lippman
Exceptions 5.6, 18.1.1
Namespaces 18.2

/O 1.2,8.1-8.2,17.5.2

	Data types and variables
	Pointers: Syntax and semantics
	References
	Arrays

	Declarations, scope and lifetime
	User defined types
	Structures
	The operator [basicstyle=]->
	Classes

	The standard library alternatives to C-style arrays
	std::string
	std::vector

	Constants
	Type inference
	Summary

