
EDAF50 – C++ Programming

1. Introduction

Sven Gestegård Robertz
Computer Science, LTH

2022

Outline

1 About the course

2 Presentation of C++
History
Introduction
Functions

1. Introduction 2/1

EDAF50: C++ programming, 7.5 hp

The course gives detailed knowledge about C++. Special emphasis
is placed on the language constructs that make C++ a more

advanced, and also more complex, language than Java.

Knowledge and understanding
I know about and be able to describe the

differences between C++ and Java
I have detailed knowledge about C++

and the standard library STL
Competences and skills

I be able to choose the correct language construct
to solve a given problem

I be able to use tools to develop C++ programs in
a Unix environment

About the course 1. Introduction 3/30

EDAF50: C++ programming , 7.5 hp
Important differences to Java

New or extended concepts in C++
(compared to Java / introductory courses):

I Pointers and memory management
I Functions: call-by-value and call-by-reference
I Polymorphism: both static and dynamic

(compare templates to generics)
I Operator overloading

About the course 1. Introduction 4/30

EDAF50: C++ programming , 7.5 hp
Examination details

The compulsory course items are
I laborations
I project
I written examination

The final grade is based on the result of the written examination.

About the course 1. Introduction 5/30

History
C++ is a descendent of Simula and C.

1967: Simula (Dahl & Nygaard)
1972: C (Dennis Ritchie)
1978: K&R C (Kernighan & Ritchie)
1980: C with Classes (Bjarne Stroustrup)
1985: C++ (Bjarne Stroustrup)
I ISO standard 1998

Other relatives:

1995: Java (James Gosling et al.)
2000: C# (Anders Hejlsberg)
I virtual machine
I automatic memory management
I safe languages

Presentation of C++ : History 1. Introduction 7/30

C++ is not a pure extension of C

I both ISO C and ISO C++ are
descendants of K&R C, and are
“siblings”

I some details are incompatible
between ISO C och C++

I Areas are not to scale

In general: Don’t write C++ as if it were C

Presentation of C++ : History 1. Introduction 8/30

What is C++?

The ISO standard for C++ defines two things
I Core language features, e.g.,

I data types (e.g., char, int)
I control flow mechanisms (e.g., if and while statements).
I rules for declarations
I templates
I exceptions

I Standard-library components, e.g.,
I Data structures (e.g., string, vector, and map)
I Operations for in- and output (e.g., << and getline())
I Algorithms (e.g., find() and sort())

The standard library is written in C++
I Example of what is possible

Presentation of C++ : History 1. Introduction 9/30

A minimal program in C++

empty.cc

int main() { }

I has no parameters
I does nothing
I the return value of main() is interpreted by the system as an

error code
I non-zero means error
I no explicit return value is interpreted as zero (NB! only in

main())
I rarely used in Windows
I often used on Linux/Mac

Presentation of C++ : Introduction 1. Introduction 10/30

The first C++ program
Hello, World!

hello.cc

#include <iostream >
int main()
{

std::cout << "Hello , World!" << std::endl;
return 0;

}

hello.cc

#include <iostream >
using std::cout;
using std::endl;

int main()
{

cout << "Hello , World!" << endl;
return 0;

}

Presentation of C++ : Introduction 1. Introduction 11/30

What is a program?

C++ is a compiled language
I Source code
I Object file(s)
I Executable file

Source file 1

Source file 2

Compilation

Compilation

Object file 1

Object file 2

Linking Executable

Presentation of C++ : Introduction 1. Introduction 12/30

A C++ program

Example: compute and print x2.

#include <iostream >

double square(double x)
{

return x*x;
}

void print_square(double d)
{

std::cout << "the square of " << d <<
" is " << square(d) << std::endl;

}

int main()
{

print_square (1.234);
return 0;

}

Presentation of C++ : Introduction 1. Introduction 14/30

Functions
Declaration and definition

The main way of getting sonething done in C++:
I call a function

I Declare before use
A function must have been declared before it can be called

I A function declaration specifices
I name
I return type
I types of the parameters

I Example: function declarations
int random ();
void exit(int);
double square(double);
int pow(int x, int exponent);

I A function definition contains the implementation
I Must only occur once

Presentation of C++ : Functions 1. Introduction 15/30

I The compiler ignores parameter names
I Give names if it increases readability

Difference from Java
Function and variable declarations

I In Java functions and variables
can only be declared inside a class.

I In C++, functions and variables
can exist independently of classes.

I free functions do not belong to a class
I member functions in a class

I global variables
I member variables

Presentation of C++ : Functions 1. Introduction 16/30

Function declaration
Example

I Declaration and definition

Example: Mean value – variant 1

double mean(double x1 , double x2) // Declaration and definition
{

return (x1+x2)/2;
}

int main()
{

double a=2.3, b=3.9;
cout << mean(a, b) << endl;

}

Presentation of C++ : Functions 1. Introduction 17/30

Function definition
With forward declaration

I Fuction declaration before use in main()

I Fuction definition elsewhere

Example: mean – variant 2

double mean(double , double); // declaration (prototype)
mean.h

int main()
{

double a=2.3, b=3.9;
std::cout << mean(a, b) << endl; // use

} main.cc

mean.cc
double mean(double x1 , double x2) // definition
{

return (x1+x2)/2;
}

Presentation of C++ : Functions 1. Introduction 18/30

Function definition
With forward declaration

I Fuction declaration before use in main()
I Fuction definition elsewhere

Example: mean – variant 2

double mean(double , double); // declaration (prototype)
mean.h

#include <iostream >
#include "mean.h"

int main()
{

double a=2.3, b=3.9;
std::cout << mean(a, b) << endl; // use

} main.cc

mean.cc
double mean(double x1 , double x2) // definition
{

return (x1+x2)/2;
}

Presentation of C++ : Functions 1. Introduction 18/30

Functions
Function calls

The semantics of function argument passing is the same as
copy initialization: (Same as for primitive types in Java)

I In a function call, the values of the arguments are
I type checked, and
I with implicit type conversion (if needed)
I copied to the function parameters

I Example: with a function double square(double d)

double s2 = square (2); // 2 is converted to double
// double d = 2;

double s3 = square("three"); // error
// double d = "three";

Presentation of C++ : Functions 1. Introduction 19/30

Functions
Function overloading

I Overloading (“överlagring”)
void print(int);
void print(double);
void print(std:: string);

void user()
{

print (42); // calls print(int);
print (1.23); // calls print(double);
print (4.5f); // calls print(double);
print("Hello") // calls print(std:: string);

}

I Default arguments (sometimes) similar to overloading
I void print(int x, std::ostream& out = std::cout);
I The rules are complex. Only use for trivial cases
I Risk of ambiguity if combined with overloading

Presentation of C++ : Functions 1. Introduction 20/30

I Cannot differ only in return type
I Must not be ambiguous

Functions
Call - ambiguity

I With overloaded functions, the compiler selects “the best”
function (after implicit type conversion)

I If two alternatives are “equally good matches ” it is an error

void print2(int , double);
void print2(double , int);

void user()
{

print2(0, 0); // Error! ambiguous
}

I and also (with print() from last slide)

long l = 17;
print(l); // Error! print(int) or print(double)?

Presentation of C++ : Functions 1. Introduction 21/30

Functions
Rule of thumb

Factor your code into small functions to
I give names to activities and document their dependencies
I avoid writing specific code in the middle of other code
I facilitate testing

I A function should perform a single task
I Keep functions as short as possible
I Rule of thumb

I Max 24 lines
I Max 80 columns
I Max 3 block levels
I Max 5–10 local variables
I Inversely proportional to complexity

Presentation of C++ : Functions 1. Introduction 22/30

Call by value and call by reference
Call by value(värdeanrop)

In a ’normal’ function call, the values of the arguments are copied
to the formal parameters (which are local variables)

Example: swap two integer values

void swap(int a, int b)
{

auto tmp=a; // int tmp = a;
a = b;
b = tmp;

}

. . . and use:
int x = 2;
int y = 10;

swap(x, y);

cout << x ", " << y << endl;

Presentation of C++ : Functions 1. Introduction 23/30

2,10 x and y are not changed

Call by value and call by reference
Call by reference(referensanrop)

Use call by reference instead of call by value:

Example: swap two integer values

void swap(int& a, int& b)
{

auto tmp=a;
a = b;
b = tmp;

}. . . and use:
int x = 2; int y = 10;

swap(x, y);

NB! The argument for a reference parameter must be an lvalue
The call swap(x,15); gives the error message
invalid initialization of non -const reference of type "int&"
from an rvalue of type ’int ’

Presentation of C++ : Functions 1. Introduction 24/30

References

I A reference is an alias for a variable

Presentation of C++ : Functions 1. Introduction 25/30

Statements

Mostly the same syntax as in Java:
I if, switch
I for, while, do while

I break, continue
but goto is spelled differently:
I No break to a label
I goto (used in C, rarely used in C++)

Presentation of C++ : Functions 1. Introduction 26/30

Operators

Operators and expressions quite similar to Java

The same as in Java
E.g., + - * / % ++ -- += -= *= && || & | etc., and [] . ?:

The trinary operator ?:(like in Java)

z = (x>y) ? x : y; if (x>y)
z=x;

else
z=y;

Many more, including
Pointer operators: * & ->

Input and output: << >> (overloaded shift operators)
sizeof, decltype (compile-time)

Presentation of C++ : Functions 1. Introduction 27/30

Suggested reading

References to sections in Lippman
Functions 6.1 (p 201–207)
Arithmetic 4.1-4.5, 4.11
Constants 2.4 2.4.4 (p 59–60, 65–66)
Pointers and references 2.3 (p 50–59)

Summary 1. Introduction 28/30

Next lecture
Types

References to sections in Lippman
Types, variables 2.1,2.2,2.5.2 (p 31–37, 41–47, 69)
Type aliases 2.5.1
Type deduction (auto) 2.5.2
Pointers and references 2.3
Scope and lifetimes 2.2.4, 6.1.1
const, constexpr 2.4
Arrays and pointers 3.5
Classes 2.6, 7.1.4, 7.1.5, 13.1.3
std::string 3.2
std::vector 3.3
enumeration types 19.3

Summary 1. Introduction 30/30

	About the course
	Presentation of C++
	History
	Introduction
	Functions

	Summary

