
Transactions
Niklas Fors,	EDAF20,	2019-02-05

mostly	based	on	“Designing	Data-Intensive	Applications”	(chapter	7)	
by	Martin	Kleppmann

Transactions

Transaction:	a	group	of	operations	that	are	performed	together

Many	DBMSs	have	ACID	support	for	transactions:
• Atomicity – either	all	operations	are	performed	(committed),	or	none
• Consistency – keeps	the	database	in	a	consistent	state
• Isolation – concurrent	transactions	are	isolated	from	each	other
• Duration – committed	transactions	are	permanently	recorded

(What	this	means	exactly	varies	a	bit	between	DBMS…)

Example
A	transaction is	startedwith a	command (START	TRANSACTION)	and	endedwith another command
(COMMIT	to	save	changes,	or	ROLLBACK	to	undo all	changes).

start transaction;
insert into A values(1);
insert into A values(2);
commit;
-- A contains values 1 and 2

start transaction;
insert into A values(3);
rollback;
-- A still contains 1 and 2

Normally,	a	client executes in	”auto-commit”	mode.	Thismeans that each SQL	statement	is	its own
transaction—the	changes performed by	the	statement are immediately committed (written to	the	
database).	

Concurrency	Issue	– Lost	Update

User	1

User	2

Database

get counter

42

[42+1 = 43] set counter = 43

ok

time

get counter

42

[42+1 = 43]

ok

set counter = 43

The	counter	is	only	
incremented	once!

Thus,	one	update	is	lost.

Issue:	Dirty	Read

User	1

User	2

Database

insert into emails
(recipient_id, body, unread_flag)
values(2, 'Hello', true)

ok ok

update mailboxes
set unread = unread + 1
where recipient_id = 2

User	2	reads	an	
uncommitted	value!

User	2	retrieves	the	unread	
email,	but	not	the	correct	
number	of	unread	emails,	
since	the	update	occurs	
after	the	second	select.

Adding	new	email Updating	number	of	unread	emails

('Hello', true)

select unread
from mailboxes
where recipient_id = 2

select body, unread_flag
from emails
where recipient_id = 2
limit 50

0

Getting	latest	emails Getting	number	of	unread	emails

Atomicity

User	1

Database

insert into emails
(recipient_id, body, unread_flag)
values(2, 'Hello', true)

ok

CRASH!	
(DB	timeout,	etc,...)

update mailboxes
set unread = read + 1
where recipient_id = 2

Adding	new	email Updating	number	of	unread	emails

If	the	second	operation	fails	for	some	reason,	we	don’t	want	the	first	
operation	to	be	committed.	

Thus,	we	want:	
atomicity	- either	all	operations	are	performed	(committed),	or	none

Isolation	Levels	– How	Much	Is	Isolated?

Normally,	the	DBMS	supports	different	isolation	 levels:
• Read	uncommitted
• Uncommitted	values	can	be	read

• Read	committed
• Only	shows	committed	values	
• Prevents	dirty	reads

• Repeatable	read/snapshot	isolation	(default	in	MySQL)
• Shows	a	snapshot	of	the	database
• Prevents	dirty	reads	and	unrepeatable	reads

• Serializable
• Strongest	guarantees	(prevents	all	concurrency	issues),	but	might	be	slow
• Same	effect	as	running	transactions	in	serial

Setting	Isolation	Level	(SQL)

Set	isolation	level	for	the	current	session:
> SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;

Allowed	values:
READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ (standard in MySQL)
SERIALIZABLE

Get	current	session	isolation	level	in	MySQL	(v8):
> select @@transaction_isolation;

Isolation	Level:	Read	Committed

User	1

User	2

Database

set x = 3

ok ok

time

2

get x

set y = 3

get x

32

get x

commit

User	2	only	 reads	
committed	values!

No	dirty	reads!

Issue:	Read	Skew/Unrepeatable Read

User	1

Account	2

Account	1
balance = 600

update accounts
set balance = balance - 100
where id = 2

update accounts
set balance = balance + 100
where id = 1

balance = 400

User	2

balance = 500

balance = 500

User	2	moves	100	from	
Account	2	to	Account	1.

User	1	sees	the	value	of	
Account	1	before	User	2	
commits	and	the	value	of	
Account	2	after	the	commit.
=>	Sum:	500	+	400	=	900

(and	not	1000!)

select balance
from accounts
where id = 1

500

400

select balance
from accounts
where id = 2 commit

commit

Repeatable	Read/Snapshot	Isolation

• The	Read	skew/Unrepeatable	Read	issue	is	solved	using	the	isolation	
level	Repeatable	Read/Snapshot	Isolation.
• This	isolation	level	normally	creates	a	snapshot	of	the	database	when	a	
new	transaction	starts,	and	no	modifications	by	other	transactions	can	be	
seen	during	the	transaction.
• Normally	implemented	using	Multi-Version	Concurrency	Control	(MVCC)

Back	to	Lost	Updates

User	1

User	2

Database

get counter

42

[42+1 = 43] set counter = 43

ok

time

get counter

42

[42+1 = 43]

ok

set counter = 43

Pattern:
read-modify-write

Lost	Updates are	not	
solved	using	 the	isolation	
level	repeatable	read.

Solutions	to	Lost	Update

• Atomic	write	operations:
UPDATE counters SET value = value + 1 WHERE id = '1'

• Explicit	locking	(see	next	slide)
• Automatic	detection	of	lost	updates
• Not	available	in	MySQL,	but	available	for	the	isolation	level	Repeatable	Read	
in	PostgreSQL,	…

• Compare-and-set
UPDATE wiki_pages SET content = 'new content'
WHERE id = 1234 AND content = 'old content’

Use the	old	content to	verify that the	content hasn’t been changed by	another transaction.

Explicit	Locking

START TRANSACTION;
SELECT * FROM figures
WHERE name = 'robot' AND game_id = 222
FOR UPDATE;

-- Check whether move is valid, then update the position
-- of the piece that was returned by the previous SELECT.

UPDATE figures SET position = 'c4' WHERE id = 1234;
COMMIT;

The	FOR	UPDATE	locks	the	rows	returned	by	the	SELECT	statement,	and	tells	the	
database	that	these	rows	are	going	to	be	changed.	The	returned	rows	cannot	be	
used	by	another	transaction	(if	they	also	use	locks).

Locks	in	MySQL	(InnoDB)

Default	locking:
• SELECT	statements	set	no	locks
• UPDATE/INSERT/DELETE	statements	set	write	locks

If	a	SELECT	is	followed	by	a	later	update	of	the	same	item,	it	is	
necessary	to	explicitly	set	a	lock	on	the	item.	This	can	be	done	by:
• SELECT … LOCK IN SHARE MODE (read lock)
• SELECT … FOR UPDATE (write lock)

Another	Example	of	Lock	Usage

start transaction;
SELECT free FROM flights WHERE flight = 'A1' FOR UPDATE;
if (free == 0) {
rollback;

}
UPDATE flights SET free = free – 1 WHERE flight = 'A1';
INSERT INTO tickets VALUES(…);
commit;

In	this	case,	
1)	we	read	a	value,	
2)	check	a	condition	
over	the	value,	and	
3)	write	depending	
on	the	condition

Another	Issue:	Write	Skew

• A	hospital	uses	a	database	to	keep	track	of	doctors	and	who	
are	on	call (jourläkare)
• For	each	shift,	there	needs	to	be	at	least	one	doctor	on	call	

name on_call shift_id

Alice true 1234

Bob true 1234

Carol false 1234

Write	Skew
start transaction;
on_call = (

select count(*) from doctors
where on_call = true
and shift_id = 1234

)
if (on_call >= 2) {

update doctors
set on_call = false
where name = 'Alice'
and shift_id = 1234

}
commit;

start transaction;
on_call = (

select count(*) from doctors
where on_call = true
and shift_id = 1234

)

if (on_call >= 2) {
update doctors

set on_call = false
where name = 'Bob'
and shift_id = 1234

}
commit;

name on_call

Alice true

Bob true

Carol false

name on_call

Alice false

Bob false

Carol false

Ti
m
e

Note	that	both	 transactions	
modify	different	 rows!	

Alice Bob

Write	Skew

• The	previous	example	is	an	example	of	Write	Skew
• It’s	not	a	lost	update	since	two	different	objects/rows	are	modified

• Shape
1. Two	transactions	read	the	same	rows
2. They	check	some	condition	over	the	returned	rows
3. They	change	different	rows,	but	all	changes	together	invalidate	the	condition

Solutions	to	Write	Skew
• It	might	be	possible	to	use	constraints	for	certain	cases
• Use	the	isolation	level	Serializable
• Use	explicit	locks:

SELECT *
FROM doctors
WHERE on_call = true AND shift_id = 1234
FOR UPDATE

Note	that	COUNT(*)	has	been	replaced	with	*	to	lock	the	returned	
rows.	(If	the	SELECT	statement	checks	for	the	absence	of	rows,	then	
you	cannot	attach	locks.)
• This	effect,	when	one	write	query	affects	the	result	of	a	search	query	
in	another	transaction,	is	called	phantom.

Isolation	Level:	Serializable

• The	isolation	level	Serializable protects	against	all	shown	issues,	but	
with	a	performance	cost.
• In	some	situations	it	might	be	better	to	use	Serializable than	to	use	
locks,	because	concurrency	bugs	can	be	very	tricky!
• Serializable has	the	same	effect	as	running	transactions	in	serial
• Implementation	techniques:	
• Actual	serial	execution
• Two-Phase	Locking	(2PL)
• Serializable Snapshot	Isolation	(SSI)

Transactions	in	JDBC

Transaction	control	in	JDBC	is	performed	by	the	Connection	object.
When	a	connection	is	created,	by	default	it	is	in	auto-commit	mode.

Turn	off	auto-commit	mode	(start	a	transaction)	with:	
conn.setAutoCommit(false);
// ... a series of statements treated as a transaction
conn.commit();
or
conn.rollback();

After	a	transaction,	auto-commit	mode	must	be	turned	on	again.

