Contents Lecture 6

- Weighted interval scheduling
- Recursion or Iteration
- Subset sums and knapsacks
- RNA: dynamic programming over intervals
- DNA: sequence alignment (lab 5)
Recall interval scheduling:
- Input is a set of requests r_i with start s_i and finish f_i times
- Two requests conflict if their intervals overlap
- We want to select the maximum number of nonconflicting requests
- We have seen this can be done with a greedy algorithm which selects as next request the request with earliest finish time and which does not conflict with any already selected request

In the weighted interval scheduling problem each request has a value v_i:
- Now we want to maximize the sum of values v_i of the selected requests
- If anybody can figure out a greedy algorithm for that, congratulations!
- We will take an approach which at first may seem to be extremely slow
Assume the requests are named such that $f(1) \leq f(2) \leq \ldots \leq f(n)$

Each request has a value $v(i)$

In interval scheduling we started with r_1

Now we will instead consider each request starting with the last, r_n

Let T be an optimal schedule and $OPT(n)$ be the sum of the selected $v(i)$ from requests r_1, r_2, \ldots, r_n.

We will make our own optimal schedule S, also with value $OPT(n)$
Our algorithm

- $p(n)$ is the request with maximum $f(i)$ which does not conflict with r_n
- We need to decide if r_n should be selected or not, so we have two cases:
 1. r_n is selected: in this case $OPT(n) = v(n) + OPT(p(n))$
 2. r_n is not selected: in this case $OPT(n) = OPT(n - 1)$
- To decide which case to use, we evaluate both and see which is best!

function $OPT(n)$

if $n = 0$ then
 return 0

$a \leftarrow v(n) + OPT(p(n))$
$b \leftarrow OPT(n - 1)$
return $\max(a, b)$

- This algorithm will recompute $OPT(i)$ a huge number of times
- If for all i $p(i) = i - 1$ then OPT will be called 2^n times
- This seem to be useless but we can fix the problem. How?
Memoization

- Note that the value of $OPT(i)$ obviously never changes
- So when we have computed $OPT(i)$ we can remember the value
- We save it in an array and use it next time $OPT(i)$ is needed
- Let $m[1], m[2], \ldots, m[n] = -\infty$ initially

```python
function OPT(n)
    if n = 0 then
        return 0
    else if m[n] = -\infty then
        a \leftarrow v(n) + OPT(p(n))
        b \leftarrow OPT(n - 1)
        m[n] \leftarrow \max(a, b)
        return m[n]
```

- Remembering values like this is called memoization
Avoiding recursion

- Recursion is beautiful and simplifies life but the cost, as we know, is that it takes time to make function calls
- We can just produce the array m directly

```plaintext
procedure make_table(n)
    i ← 1
    while $i \leq n$
        $a \leftarrow v(i) + m[p(i)]$
        $b \leftarrow m[i - 1]$
        $m[i] \leftarrow \max(a, b)$
        $i \leftarrow i + 1$

function OPT(n)
    return $m[n]$
```
Dynamic programming

- What we just saw is an example of **dynamic programming**
- We express a solution in terms of solutions to **overlapping** smaller problems
- Note the difference between divide and conquer where we solve **independent** small problems
- The power of dynamic programming comes from avoiding recomputing already solved subproblems
- We will see several examples how we should think when using dynamic programming
- This technique was invented in the 1950’s by Richard Bellman
- In this context programming is not ”computer programming” but instead finding an optimal solution, or, program, to achieve typically a military scheduling problem (as linear programming in mathematics)
- Bellman wanted a fancy name so he could continue working on this with funding from the US defence
The subset sum problem: a variant to the knapsack problem

- How to bring as much hand luggage as possible on a flight
- You are allowed to bring at most \(W \) kilograms of hand luggage
- You have \(n \) items, and each item \(i \) has weight \(w_i \)
- Select a subset \(S \) of these items so that
 - \(T = \sum_{i \in S} w_i \leq W \)
 - \(T \) is as large as possible
- No greedy algorithm is known for this problem
- How can we use dynamic programming here???
- We need to consider both weights \(w_i \) and \(W \)
- If we select item \(i \) with weight \(w_i \) we have \(W - w_i \) left...
- In the normal knapsack problem, each item has both a value and a weight but in principle these problems are similar (we have weight = value)
Dynamic programming approach

- \(T = \sum_{i \in S} w_i \leq W \), maximize \(T \)
- Consider an optimal solution which can choose from \(n \) items for an allowable weight \(W \)
- Either item \(n \) is included or it is not. Excluding \(n \) may be due to \(w_n > W \) or because it is simply better to skip it
- For instance if the items have weights \(\{3, 7, 8\} \) and \(W = 10 \) it is better to skip the 8 kg item
- If we then select the 7 kg item, we clearly have \(W - 7 \) kg left

\[
OPT(n, W) = \begin{cases}
0, & n = 0 \\
OPT(n - 1, W), & w_n > W \\
\max(OPT(n - 1, W), w_n + OPT(n - 1, W - w_i)), & \text{otherwise}
\end{cases}
\]
• This is not polynomial time!
• The running time is dependent on the value of W!
RNA is a string $B = b_1 b_2 \ldots b_n$ over the alphabet $\{C, G, A, U\}$

Compared with DNA it is single stranded and due to this there are secondary structures when it connects to itself according to certain rules
A secondary structure is a matching $S = \{(b_i, b_j)\}$

A pair is shown as two molecules connected with a dashed edge

A molecule can only pair with at most one other molecule

A and U can pair, and C and G can pair

Pairing molecules cannot be too close: $(b_i, b_j) \in S \Rightarrow i < j - 4$

No crossing pairs: if $i < j < k < l$ then (b_i, b_k) and (b_j, b_l) cannot both be in S

The problem is to find an S with a maximal number of pairs
An $OPT(i,j)$ function

Initially called with $OPT(1, n)$

Then for some arbitrary call we have $OPT(i,j)$

b_j is our right most symbol, or molecule.

When b_j pairs with some b_t the noncrossing condition splits up our remaining interval in two halves:

- $b_i \ldots b_{t-1}$
- $b_{t+1} \ldots b_{j-1}$
An $OPT(i, j)$ function

- Case 1: $i \geq j - 4$: $OPT(i, j) = 0$
- Case 2: There is no available molecule to create a pair for b_j: $OPT(i, j) = OPT(i, j - 1)$
- Case 3: Taking rules used in Cases 1 and 2 into account, a t is selected which maximizes:
 \[OPT(i, j) = 1 + \max_t \{ OPT(i, t - 1) + OPT(t + 1, j - 1) \} \]
Comparing "abcd" and "abd" we can say that there is a ’c’ missing

Comparing "abcd" and "abed" we may say:
- the ’c’ and ’e’ should have been the same but where not, or
- the right string has a missing ’c’ and the left a missing ’e’

We can put a value on these differences:
- For a mismatch: there is a cost of α_{pq} with p and q being Unicode characters or members of some other alphabet such as symbols in DNA strings
 - If there is a missing character: δ
- For instance, α_{qw} may be 1 since ’q’ and ’w’ are close on a keyboard and $\alpha_{qk} = 3$ since they are more distant
- For a missing character, we may give it a cost $\delta = 2$ for instance
- To say how similar two strings are, we want to find the smallest cost of ”fixing” the strings so they become identical.
An example of using α_{pq}

- Assume $\alpha_{cd} = 3$
- Of course $\alpha_{pp} = 0$ for every character p
- We can compare "abc" and "abd"
- Starting from the end we simply note the cost $\alpha_{cd} = 3$ and move on to the next pair of characters
- "ab" and "ab" remain with no cost
An example of using δ

- We again compare "abc" and "abd"
- Starting from the end we either see this as
 - the left string misses a ’d’, or
 - the right string misses a ’c’
- Let us use the first case. It means we ”insert” the ’-’ and get: "abc-" i.e. there is a gap in the left string
- We don’t actually insert any ’-’ in the algorithms we will see soon, but the dashes are used when printing the output
- The gap in the left string is removed together with the ’d’ in the right string
- We then have "abc" and "ab"
X, Y, and \(OPT(i,j) \)

- \(X = "abc" \) and \(Y = "abd" \)
- \(X = x_1x_2x_3 \) and \(Y = y_1y_2y_3 \)
- The cost of an optimal alignment of \(X = x_1x_2\ldots x_i \) and \(Y = y_1y_2y\ldots y_j \) is denoted \(OPT(i,j) \)
- \(OPT(i,0) = i\delta \) since it ignores \(Y \) and aligns a string of \(i \) symbols with an empty string — which must be done with \(i\delta \)
- \(OPT(0,j) = j\delta \) for similar reason
- \(OPT(1,1) \) is the minimum of \(\alpha_{x_1y_1} \) and \(2\delta \)
- It is clear what happens when we use \(\alpha_{x_1y_1} \) — we are "charged" with the mismatch cost of \(\alpha_{x_1y_1} \), which in our example is \(\alpha_{aa} = 0 \)
- In the other case, we use one \(\delta \) to skip either \(x_1 \) or \(y_1 \) and then another \(\delta \) to skip the other of \(x_1 \) and \(y_1 \)
We can view the alignment as a graph

Another example: $X = "abdc"$ and $Y = "bbcd"

- A vertical δ eats one symbol from X and leaves Y unchanged
- A horizontal δ eats one symbol from Y and leaves X unchanged
- $OPT(i,j)$ is equivalent to finding a shortest path from $(0,0)$ to (i,j) in this graph, called G_{xy}
An $OPT(i, j)$ function

- It is probably clear now how we can write an optimal function to find the set of α and δ operations with minimum cost
- We have two strings $X = x_1 x_2 \ldots x_m$ and $Y = y_1 y_2 \ldots y_n$
- Using dynamic programming we write:
 - Case 1: $OPT(i, j) = \alpha_{x_i, y_j} + OPT(i - 1, j - 1)$
 - Case 2: $OPT(i, j) = \delta + OPT(i, j - 1)$
 - Case 3: $OPT(i, j) = \delta + OPT(i - 1, j)$
- As usual, we evaluate all cases and select the minimum
- We compute a table $A[0..m][0..n]$ using the recurrence for OPT
 - A is initialized with $A[i][0] \leftarrow i\delta$ for each i, and
 - A is initialized with $A[0][j] \leftarrow j\delta$ for each j.
- In this algorithm, we need the full matrix for print the alignment.
- If we only need the value computed by OPT then we only need space for the two most recently used columns.
Bellman-Ford shortest path algorithm

- Consider a directed graph \((V, E)\) with \(n\) nodes and \(m\) edges.
- Edge costs \(c_{vw}\) are allowed to be negative in this algorithm.
- No cycle may have negative cost though (obviously).
- The problem is to find the minimum cost path from \(s\) to \(t\).
- Let \(OPT(i, v)\) be the minimum cost of a path from \(v\) to \(t\) which uses at most \(i\) edges.
- The initial problem is \(OPT(n - 1, s)\) which can be solved by:

\[
OPT(i, v) = \begin{cases}
0, & \text{if } v = t \\
\infty, & \text{if } i = 0 \\
\min\{OPT(i - 1, v), OPT(i - 1, w) + c_{vw}\}, & \text{if } i \geq 1
\end{cases}
\]

- We can create the table \(M\) with \(O(n^2)\) space from \(OPT(i, v)\).
- \(M\) can be created in time \(O(n^3)\) for a dense graph.
Creating \(M \)

\[
\text{int } M[n][n]
\]

\[
\text{procedure } make_table(G, s, t)
\]

\[
n \leftarrow |V|\\
M[0][t] \leftarrow 0\\
M[0][v] \leftarrow \infty \text{ for } v \in V - \{t\}\\
i \leftarrow 1\\
\textbf{while } i \leq n - 1 \textbf{ do }\\
\quad \textbf{for } v \in V \textbf{ do }\\
\quad \quad M[i][v] \leftarrow \min\{M[i - 1][v], M[i - 1, w] + c_{vw}\}
\]

- This is a direct translation from the \(OPT(i, v) \) recurrence
- \(M[i][v] \) is the shortest path from \(v \) to \(t \) with at most \(i \) edges
- The \(M \) table can be used to compute a shortest path from \(s \) to \(t \)
- The Bellman-Ford algorithm is better than this, as we will see next
Consider the for-loop again:

\[
\text{for } v \in V \text{ do } \\
M[i][v] \leftarrow \min\{M[i - 1][v], M[i - 1, w] + c_{vw}\}
\]

- It checks each edge \((v, w)\) to discover a shorter path from \(v\)
- We do not need a two-dimensional matrix
- Each vertex can have two attributes: distance and succ

\[
\text{for } e = (v, w) \in E \text{ do } \\
\text{if } \text{distance}(v) > c_{vw} + \text{distance}(w) \text{ then} \\
\begin{align*}
\text{begin} \\
\text{distance}(v) &\leftarrow c_{vw} + \text{distance}(w) \\
\text{succ}(v) &\leftarrow w \\
\text{end}
\end{align*}
\]

- This gives a running time \(O(mn)\) — still \(O(n^3)\) in a dense graph
Fewer than $n - 1$ iterations

- If no change to any node occurs in the while-loop, it is safe to stop before all $n - 1$ iterations
- This is so since no change can happen in the future