
Lund University
Dept. of Computer Science
Mattias Nordahl

Software development in teams
EDAF45

2022–10–31

Lab 0 – Git basics

1

1 Introduction/Overview
We expect most students to already be somewhat familiar with Git and to have some experience
in using it. We will, nevertheless, cover the basics in this optional lab. Even for those of you who
are well versed in working with git, this lab can serve as a quick refresher. However, feel free to
skim through, or skip altogether, topics that you already have a good understanding of.

1.1 How you will use Git in this course
We use the CS department’s GitLab instance at https://coursegit.cs.lth.se/, where you
will have your own lab repository (for working on labs) and an achievement repository (for
reflection and grading). Lab materials will also be made available here. In the second half of the
course, you will also get repositories for your projects here.

Important! You have to log in at https://coursegit.cs.lth.se/ before we can create and give you
access to your repositories. You log in with your normal student id. Do this as soon as possible!

In later labs you will work in pairs. For this lab, however, since it is optional, you may choose
to do it on your own or with your lab partner. Most of the basics can be done and learned by
working locally, but there is also a couple of repositories accessible to all students, where you
can play around and do what ever you want. You do, however, have to set up SSH keys to be
able to communicate with the GitLab server. See next section.

1.2 Setting up SSH keys
SSH keys are a secure method of authentication that doesn’t involve your username or password,
and is typically required by Git repository services such as GitLab. GitLab have their own guide
on how to do this1, but here is a short summary.

Note: Your SSH key identifies your computer, and can be used with multiple services. If you already
have one, you can re-use it for our GitLab server. However, if you are the type of person who is
concerned with security, you might prefer to have separate SSH keys for each website that you want
to access, e.g. one for our GitLab server, one for the official GitLab, one for GitHub and so on. For
short advice on how to achieve that, check out the next section.

To generate a new SSH key:

1. Open a terminal

2. Write the following command: ssh-keygen -t ed25519 -C "your_email@example.com"

3. You are asked to name the file. You can use the default, by just pressing Enter.

4. Next, you are asked for a password. You may leave it blank and just press Enter.

See example output below:
1https://docs.gitlab.com/ee/user/ssh.html#generate-an-ssh-key-pair

2

•••
user@ubuntu:~# ssh-keygen -t ed25519 -C "your_email@example.com"
ssh-keygen -t ed25519 -Ckeygen
Generating public/private ed25519 key pair.
Enter file in which to save the key (~/.ssh/id_ed25519):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in ~/.ssh/id_ed25519
Your public key has been saved in ~/.ssh/id_ed25519.pub
The key fingerprint is:
SHA256:emJQ4KEgqO+zTNdwl/BL1raW3iRY1B1dpBcyaUWHm44 keygen
The key's randomart image is:
+--[ED25519 256]--+
|+ o o=B=|
|o. o o . ++o+|
|. . . o . o oo.|
|. . o + o. |
| . o . S + o |
| . = = = oE . |
| .. . = + = . |
| oo. . o o + |
| oo . . |
+----[SHA256]-----+

This will have generated a public and private key-pair in your ~/.ssh folder. Next, you need
to copy the contents of the public key (ends with .pub, contains a single line of text) to your
GitLab account. For example, print the content with cat, then select and copy the text.

•••
user@ubuntu:~# ls ~/.ssh
id_ed25519 id_ed25519.pub
user@ubuntu:~# cat ~/.ssh/id_ed25519.pub
ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIHtVeX4rKT51RK98rIavekxPnUumiRTzu1Z3WtKZua0N

your_email@example.com

Next, log into https://coursegit.cs.lth.se/ and open Preferences from the top-right menu.
Then select SSH Keys in the left-side menu. Now, paste your public key, and optionally set a
title an expiration date, and press Add key.
And that’s it!

1.3 Using multiple SSH keys
Using different keys for different websites is not difficult, but requires a little more setup. First,
generate new keys just as in the example in the previous sections. Some additional practical
tips:

• Use the comment in each key to identify which site you’re using the key for. Include, e.g.,
your username and the website address, e.g.: ssh-keygen -t ed25519 -C "coursegit"

3

• Rather than using the default file name, give each key-pair a name that identifies which
website you are using it on. For example:

•••
user@ubuntu:~# ls -a ~/.ssh
. coursegit_id25519 github_id25519 config
.. coursegit_id25519.pub github_id25519.pub known_hosts

Next, create a file in your ~/.ssh directory called config . Open it in an editor and specify
for each website (host) which user (git) and which SSH key to use, like below.

•••
user@ubuntu:~# nano ~/.ssh/config
(Showing editor content below line)
--
Host coursegit.cs.lth.se

User git
IdentityFile ~/.ssh/coursegit_ed25519

Host gitlab.com
User git
IdentityFile ~/.ssh/gitlab_ed25519

4

2 Git basics
This is the start of the actual lab itself.

2.1 The Git model
Git is a distributed versioning system that helps us as developers to share code and collaborate
with others. Files being managed by Git are stored in a database called a repository, which keeps
track of all the current and previous versions of the files.

When working with Git locally, we distinguish between the repository and the workspace.
The repository houses all versions of our code, and they are all immutable (cannot be changed).
To work with and change our code, we copy one select version of the code (usually the latest) to
the workspace. The workspace is a regular folder with regular files, that we can change in a text
editor or IDE. We can edit and save files in as many steps as we want. Once we reach a point
where we are happy with our changes, we copy our code in its current state to the repository,
where it becomes a new immutable version. See figure X for reference.

When working with GitLab or other cloud based Git repository services, they too use the Git
software, but have a bare repository, which simply means that there is no workspace attached
to it. We can interact with and synchronize our local repository with the remote one in the
cloud, using commands that we will cover in later sections.

2.2 Configuring Git on your computer (config)
If you have not done so already, you should configure Git on your computer, to use your name,
e-mail address and preferred text editor (e.g. nano, emacs, vim, VS Code, …). Optionally, you
may also set the default main branch name2.

•••
user@ubuntu:~# git config --global user.name "Firstname Lastname"
user@ubuntu:~# git config --global user.email "your_mail@domain.com"
user@ubuntu:~# git config --global core.editor nano
user@ubuntu:~# git config --global init.defaultBranch main

See also section 2.9 for other possible configurations that you may find useful.

2.3 Start working on a project (init)
To start working with a Git project, we can either create a new local repository, or clone an
existing one. The latter will be covered in section 2.8. For now, we will focus on the former and
create a new local repository. Create a new directory and initiate a new repository in it. Then
have a look inside.

2The convention used to be to name the main branch master, but has since changed to main. If you are using
an older Git version, that still uses master as default, this extra config line lets you change the default to main.

5

•••
user@ubuntu:~# mkdir ~/git/pvg-lab0
user@ubuntu:~# cd ~/git/pvg-lab0
user@ubuntu:~/git/pvg-lab0# git init
Initialized empty Git repository in ~/git/pvg-lab0/.git/
user@ubuntu:~/git/pvg-lab0# ls -a
. .. .git

This new directory now contains a complete self-contained Git repository, and the content in the
.git directory is where information about the repository state is stored.

2.4 Making changes, and the staging area (add, commit, reset and rm)
Files in your workspace can be added, modified and removed as you please. When you are ready
to add changes permanently to the repository, they are first copied (added) to the staging area,
then committed to the repository. The staging area is essentially just a copy of your workspace
(at least, until you’ve made changes in the workspace). It represents your proposal for the next
committed version. So, after having changed the workspace, copying your files to the staging
area is Git’s way of marking files to be included in the coming commit. This is done with the
git add command. Let’s try it out.

Info: Since adding to the staging area is a step separate from the commit itself, it gives the user
fine-grained controls of which files should be committed or not. There are, however, shortcuts that lets
you add and commit all files in a single step.

Create a README.md file with some arbitrary content inside it. Next, check the state of the
repository with the git status command. The status command will inform you that you are
working on the main branch, called main , and that there are no commits currently, but that
there are untracked files. Untracked simply means that the files exists in the workspace, but
not in the staging area, and thus are not being tracked by Git. Note that nano below can be any
editor, e.g. emacs, vim or VS Code; Choose your preferred editor.

•••
user@ubuntu:~/git/pvg-lab0# nano README.md
user@ubuntu:~/git/pvg-lab0# git status
On branch main

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

README.md

nothing added to commit but untracked files present (use "git add" to track)

Next, add the README.md file to the staging area and re-check the status. The workspace and
staging area will now be in synch.

6

•••
user@ubuntu:~/git/pvg-lab0# git add README.md
user@ubuntu:~/git/pvg-lab0# git status
On branch main

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: README.md

We can demonstrate that the workspace and the staging area are really two separate copies of
your working tree, with individual states. Make another change to your README.md file, and
check the status again. You will see that there are now different changes to the file in both the
workspace and the staging area. See figure 1a for reference.

•••
user@ubuntu:~/git/pvg-lab0# nano README.md
user@ubuntu:~/git/pvg-lab0# git status
On branch main
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
modified: README.md

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: README.md

Add this latest edit to the staging area too, then finally, you can finalize your changes by
running the git commit command. Git will open your configured editor where you can write
your commit message. To finish, save and close the file. Alternatively, you can use the -m flag
to give a commit message directly. Refer again to figure 1a, showing how git add and git
commit affect the workspace, staging area and repository.

•••
user@ubuntu:~/git/pvg-lab0# git commit -m "Initial commit."
[main (root-commit) f55cf7a] Initial commit.
1 file changed, 1 insertion(+)
create mode 100644 README.md

2.4.1 Removing from the staging area

Files that are staged (have been added to the staging area) can be unstaged by using either
the command git rm --cached , git restore --staged or git reset . They do slightly
different things, and can also be given arguments which might make them function more or

7

(a) git add copies files from the workspace to the
staging area, replacing whatever version was there be-
fore. git commit copies files from the staging area
into the repository, where it becomes a new perma-
nent version.

(b) git reset restores files in the staging area to
the version that was last fetched from the repository.
git rm --cached removes files completely from the

staging area, such that they are removed from the
repository upon committing.

Figure 1: Schematic figure showing how git commands interact with and
change the state of the workspace, staging area and repository.

less alike. Obviously, this can be confusing. To keep it simple, we will briefly look at only
rm --cached and reset.

Both rm --cached and reset operate only on the staging area, so you won’t accidentally loose
your changes in the workspace3. The reset command is functionally the direct opposite of add;
add copies files from your workspace to the staging area, and reset resets that action by copying
the unmodified version from the repository back to the staging area. So, if you reset a file before
a commit, that change is simply not part of the commit, but is still present in the workspace.
The rm --cached command, on the other hand, explicitly removes files from the staging area,
rather than resetting it to the unmodified repository version. This means that, if you finish
your commit after removing a file with rm --cached, that file will no longer exist in the new
repository version. It will still be present in the workspace, but be untracked. See figure 1b,
which illustrates the difference.

Now, let’s try it out. Modify your README.md file in some way, and also add a new file. The
README.md file is already tracked (exists in the staging area), but have changes in the workspace.
The new file exists only in the workspace. Try both resetting and removing the files, and check
the status after every command to see the effects. You can commit if you wish.

Quiz: Only in a certain case is rm --cached and reset equivalent. Can you see when?

3Used with other parameters, both rm and reset can affect the workspace, so use carefully.

8

•••
user@ubuntu:~/git/pvg-lab0# nano README.md
user@ubuntu:~/git/pvg-lab0# nano SomeFile.txt
user@ubuntu:~/git/pvg-lab0# git add *
user@ubuntu:~/git/pvg-lab0# git reset README.md SomeFile.txt
user@ubuntu:~/git/pvg-lab0# git add *
user@ubuntu:~/git/pvg-lab0# git rm --cached README.md SomeFile.txt

2.5 Checking your work (status, log, diff and blame)
There are a couple of Git commands that lets you keep track of and analyze your work. We have
already seen the git status command, that summarizes the current state very well, including
what changes have been made in the workspace and the staging area. When we start working
with a remote repository, we will see that the status command also displays some information
about how work has progressed locally and remotely.

The git log command shows previous commits that have been added to the repository. It has
several optional arguments for if you’re looking for information about a specific commit or range
of commits. Have a look at the manual by running git log --help .

Next, git diff is used to show and highlight differences between commits or entire working
trees. In its base form, i.e. if called without any arguments, it compares the workspace with the
staging area. You can also compare specific commits, branches (covered in the next sections) or
file paths from within or outside the repository. Run git diff --help to see the manual.

Finally, although the name can seem a bit harsh, the git blame command can sometimes be
useful. It shows who authored individual lines in a file. In a group project, this can be useful
for finding out who has written a certain piece of code, in case you have questions or feedback
to give.

2.6 Using branches (branch and merge)
One of Git’s strengths is its ability to efficiently handle branches. Branches are like named
copies of your entire work tree, including its history. The original copy is itself also a branch,
conventionally called main . Branches enable you to break away from the main code, to a copy
where you can work on your current task in isolation from other changes. Once you are done,
you can merge your branch back into main . Of course, while you worked on your branch, other
developers might have made changes to main in the meantime (covered more in later sections).
If these changes are incompatible with yours, it will lead to merge conflicts.

2.6.1 Create a feature branch

One can deploy many branching strategies, depending on e.g. the size of the project or team.
A common strategy is to create a new branch for every new feature. In that way, multiple people
can be working separately on multiple features. You can use the git branch command to
inspect your branches, create new ones, and switch between them. Let’s try it out:

9

•••
user@ubuntu:~/git/pvg-lab0# git branch
* main
user@ubuntu:~/git/pvg-lab0# git branch new-feature
user@ubuntu:~/git/pvg-lab0# git branch
* main
new-feature

user@ubuntu:~/git/pvg-lab0# git checkout new-feature
Switched to branch 'new-feature'
user@ubuntu:~/git/pvg-lab0# git branch

main
* new-feature

The command lists the branches that exist in your repository, and marks the current one, i.e.
the branch is currently checked out in the workspace, with an asterisk (*). While you are on this
new feature branch, commit a change to the README.md file, and then inspect the branches
using git branch -v and git show-branch .

•••
user@ubuntu:~/git/pvg-lab0# nano README.md
user@ubuntu:~/git/pvg-lab0# git add README.md
user@ubuntu:~/git/pvg-lab0# git commit -m 'Update README file'
[new-feature 4cda1ac] Update README file
1 file changed, 2 insertions(+)

user@ubuntu:~/git/pvg-lab0# git branch -v
main a680bbb Add README file

* new-feature 4cda1ac Update README file
user@ubuntu:~/git/pvg-lab0# git show-branch
! [main] Add README file
* [new-feature] Update README file

--
* [new-feature] Update README file

+* [main] Add README file

The -v option means that the output will be more “verbose”, i.e., give you more information.
The output of the show-branch command consists of two parts, divided by two dashes (--).
The first part lists existing branches, similar to git branch. The asterisk (*) marks the cur-
rent branch and exclamation points (!) all other branches. The second part lists individual
commits, and indicates in the left columns which branches those commits are present on. The
first commit is present on both branches, whereas the new commit is only present on the feature
branch. This output becomes easier to understand if you add some more commits, so feel free
to play around for a bit. You can also try to create more branches.

Now, we are happy with our new feature and want to bring it back to the main branch. We can do
this using the git merge command. Please note, that the merge command merges a specified
branch into the current branch; So, we first want to switch back to main , so that new-feature
is merged into it, rather than the other way round4. After that, we’ll use git diff to look at

4Of course, we might want to do the merge in the reverse order, if other developers have made changes to main

10

the difference between the branches, perform the merge, and delete the feature branch.

•••
user@ubuntu:~/git/pvg-lab0# git checkout main
user@ubuntu:~/git/pvg-lab0# git diff new-feature
diff --git a/README.md b/README.md
index 7547d1d..0ee3895 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1 @@
Some content

-
-Adding another line
user@ubuntu:~/git/pvg-lab0# git merge new-feature
Updating a680bbb..4cda1ac
Fast-forward
README.md | 2 ++
1 file changed, 2 insertions(+)

user@ubuntu:~/git/pvg-lab0# git branch -d new-feature
Deleted branch new-feature (was 0ee3895).

2.6.2 Resolving conflicts

The above merge was without any conflict, meaning that Git could perform it automatically.
However, when the branches being merged contain changes on the same lines, Git doesn’t know
what to do with them, and reports it as a conflict. This can easily happen when changes are
created in parallel.

You will now get to explore how conflicts can occur and how you can resolve them. Run the
below commands to create a new feature branch B1 (automatically created when the -b flag
is given to git checkout) where you add some more content to the README.md file and then
commit the change (the -a flag to git commit is short for first doing git add).

•••
user@ubuntu:~/git/pvg-lab0# git checkout -b B1
Switched to branch 'B1'
user@ubuntu:~/git/pvg-lab0# nano README.md
user@ubuntu:~/git/pvg-lab0# git commit -a -m 'Update README again'
[B1 370eab5] Update README again
1 file changed, 2 insertions(+)

Then checkout main again and create a second feature branch B2 where you commit a similar
change on the same line in the README.md file. After you are done, move back to the main branch
and inspect the content of the branches with git show-branch .

Quiz: Why do we first switch back to main before checking out B2? Why not checkout B2 immediately?

that we want to bring in to our feature branch.

11

•••
user@ubuntu:~/git/pvg-lab0# git checkout main
user@ubuntu:~/git/pvg-lab0# git checkout -b B2
Switched to a new branch 'B2'
user@ubuntu:~/git/pvg-lab0# nano README.md
user@ubuntu:~/git/pvg-lab0# git commit -a -m 'Update README some more'
[B2 3e9e718] Update README some more
1 file changed, 2 insertions(+)

user@ubuntu:~/git/pvg-lab0# git checkout main
user@ubuntu:~/git/pvg-lab0# git show-branch
! [B1] Update README again
! [B2] Update README some more
* [main] Update README file

+ [B2] Update README some more

+ [B1] Update README again
++* [main] Update README file

The two feature branches now have one commit each to the same line in the same file. Run the
commands below to merge B1 into main , and then try to do the same with B2 :

12

•••
user@ubuntu:~/git/pvg-lab0# git merge B1
Updating 4cda1ac..370eab5
Fast-forward
README.md | 2 ++
1 file changed, 2 insertions(+)

user@ubuntu:~/git/pvg-lab0# git merge B2
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the result.
user@ubuntu:~/git/pvg-lab0# git status
On branch main
You have unmerged paths.

(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")
user@ubuntu:~/git/pvg-lab0# cat README.md
Some content

Adding another line

<<<<<<< HEAD
Add yet another line
=======
One more line
>>>>>>> B2

As you can see, both changes have been put into the file, and the conflicting lines has been
wrapped between <<<<<<<< HEAD and >>>>>>>> B2 and divided into two parts by ======= .
The first part shows the conflicting changes from the current branch, which in this case is
main , and the second part shows the conflicting changes of the branch that the current branch
is being merged with, in this case B2 . To resolve the conflict, you manually replace the whole
section from the start tag to the end tag, with the content that you prefer. When you have
resolved the conflict in the file, use the git add command again to tell Git that you have done
so, and then commit your change to finish the merge:

•••
user@ubuntu:~/git/pvg-lab0# nano README.md
user@ubuntu:~/git/pvg-lab0# git add README.md
user@ubuntu:~/git/pvg-lab0# git commit
[main 044a148] Merge branch 'B2'

When running just git commit above without the -m flag to give a message, you will be

13

prompted for a message in your editor; And since you are in the middle of resolving a merge
conflict a message is suggested to indicate this (i.e., Merge branch 'B2'). An alternative to
resolving the conflict via the editor, is to resolve it using the git mergetool command. This
command will open a tool to help you with the merge, possibly by showing you versions of
the file side by side, allowing you to pull in the version you want and to edit it. You may
need to configure which tool the command should use, look at the documentation for assistance
(git help mergetool). Now let’s clean things up:

•••
user@ubuntu:~/git/pvg-lab0# git branch -d B1 B2
Deleted branch B1 (was 370eab5).
Deleted branch B2 (was 3e9e718).

2.7 Using the stash (stash)
Sometimes you may need to move between branches before you are ready to commit your changes
on the current branch. In such cases, you can record uncommitted changes and stash them away
to restore them later. Let’s look at a scenario that demonstrates the usefulness of this. Run the
below commands to create a branch, edit the README.md file, and then move back to main :

•••
user@ubuntu:~/git/pvg-lab0# git checkout -b try-stash
Switched to a new branch 'try-stash'
user@ubuntu:~/git/pvg-lab0# nano README.md
user@ubuntu:~/git/pvg-lab0# git status
On branch try-stash
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")
user@ubuntu:~/git/pvg-lab0# git checkout main
M README.md
Switched to branch 'main'
user@ubuntu:~/git/pvg-lab0# git status
On branch main
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

The change on the try-stash branch “followed you” to the main branch. If you would like to
avoid this, you can stash the changes before you switch to another branch. Switch back to the
try-stash branch, stash your changes, then move back to main again:

14

•••
user@ubuntu:~/git/pvg-lab0# git checkout try-stash
M README.md
Switched to branch 'try-stash'
user@ubuntu:~/git/pvg-lab0# git stash
Saved working directory and index state WIP on try-stash: 044a148 Merge branch 'B2'
user@ubuntu:~/git/pvg-lab0# git status
On branch try-stash
nothing to commit, working tree clean
user@ubuntu:~/git/pvg-lab0# git checkout main
Switched to branch 'main'
user@ubuntu:~/git/pvg-lab0# git status
On branch main
nothing to commit, working tree clean

After you stashed the changes your working tree on the try-stash branch became clean and
when you moved over to the main branch you did not bring any changes with you. When you
are ready, you can restore the state on the try-stash branch. Run the below commands to
move back to the try-stash branch, list available entries in the stash (this works as a stack,
with the most recent entry on top), then apply the stash entry by explicitly naming it:

•••
user@ubuntu:~/git/pvg-lab0# git checkout try-stash
user@ubuntu:~/git/pvg-lab0# git stash list
stash@{0}: WIP on try-stash: 044a148 Merge branch 'B2'
user@ubuntu:~/git/pvg-lab0# git stash apply stash@{0}
On branch try-stash
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

Note that after applying the stash, the changes still remain on the list. To remove it you can use
git stash drop to remove the top element or git stash drop <name> to remove a named
stash entry. In this case, where we wanted to apply the top element, we could have also used
git stash pop to both apply and drop the entry. For now, let’s clean up and remove the
branch:

15

•••
user@ubuntu:~/git/pvg-lab0# git stash clear
user@ubuntu:~/git/pvg-lab0# git stash list
user@ubuntu:~/git/pvg-lab0# git reset --hard
HEAD is now at 044a148 Merge branch 'B2'
user@ubuntu:~/git/pvg-lab0# git checkout main
user@ubuntu:~/git/pvg-lab0# git branch -d try-stash
Deleted branch try-stash (was 044a148).

2.8 Working remotely and collaborating with others (remote, clone, push,
pull and fetch)

Important! Remember to set up SSH keys for GitLab, as explained in section 1.2.

The goal when collaborating is that every team member can access and work on the team’s
shared code base. The way to do that using Git is to have a shared, remote repository that
each user can clone locally. You then work locally, as we have been doing thus far, and push
your commits to the remote repository. From there, other users can pull your commits and add
them to their clone. Similarly, you can pull commits that others have pushed.

We can use the command git remote to inspect which references we have to remote repositories.
Currently, we have none, so we get an empty response. So, we should set up a remote, which
can be done in two fundamentally different ways.

init + push If you have created a local repository, which you now wish to share, you must
add a remote reference to an empty repository to which your local repository
can be copied.

clone If there already exists a shared repository, you can clone it locally, which
automatically sets up a remote reference to it.

For the purpose of this lab, we have prepared a couple of empty “playground repositories”, where
you can try things out in any manner that you want. This means that, if you are the first person
to start using a repository, you can do the initial push to copy your local repository to the
remote. If, on the other hand, another student has already done that, you can instead clone
theirs. You’ll find the repositories here:

https://coursegit.cs.lth.se/edaf45/ht22-vt23/lab0-playground

In the examples below, replace <N> to match the name of a real repository.

16

Sharing your local repository (to an empty repository)

Use git remote add to add a new remote reference, specifying its name origin (conventional
name for the shared repository) and its location. Then use git push with the -u flag, which
means that you set an upstream, thereby linking your local branch to the remote one. The argu-
ments origin and main are the name of the remote (that we just created) and the name of the
remote branch (which, by convention, should match the local branch name), respectively.

•••
user@ubuntu:~/git/pvg-lab0# git remote add origin

git@coursegit.cs.lth.se:edaf45/ht22-vt23/lab0-playground/playground<N>.git
user@ubuntu:~/git/pvg-lab0# git push -u origin main
Counting objects: 13, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (6/6), done.
Writing objects: 100% (13/13), 1.15 KiB | 590.00 KiB/s, done.
Total 13 (delta 1), reused 0 (delta 0)
To coursegit.cs.lth.se:edaf45/ht22-vt23/lab0-playground/playground<N>.git
* [new branch] main -> main

Branch 'main' set up to track remote branch 'main' from 'origin'.

Cloning an existing repository

Simply use git clone and specify the location of the shared repository. This will create a new
directory matching the name of the repository, into which the repository will be cloned. Make
sure to not clone a repository into your already existing repository.

•••
user@ubuntu:~/git/pvg-lab0# cd ~/git
user@ubuntu:~/git/pvg-lab0# git clone

git@coursegit.cs.lth.se:edaf45/ht22-vt23/lab0-playground/playground<N>.git
user@ubuntu:~/git/pvg-lab0# cd playground<N>

2.8.1 A reflection on branches and merging

Now that we will start working with a remote repository, we should note that we need to expand
our branching model a bit, in the following way; Even if working on only one branch, main , there
exists separate versions of main in your local repository and in the remote repository. Git handles
this by also storing the state of the remote repository, and keeps track of both local and remote
branches. Run git branch -a -vv (all branches and extra verbose) to see this. As you can
see, there is both a local and a remote main branch, main and remotes/origin/main .

•••
user@ubuntu:~/git/pvg-lab0# git branch -a -vv
* main 044a148 [origin/main] Merge branch 'B2'
remotes/origin/main 044a148 Merge branch 'B2'

17

It is good to understand this model, as we introduce the pull, push and fetch commands.

2.8.2 fetch

The git fetch command is used to download changes (commits) from the remote reposi-
tory to your own. However, this will update your local copy of the remote branch, i.e.
remotes/origin/main , and synchronize it with the actual remote branch on GitLab. Then, in
order to get those commits onto your own local main branch, you must do a merge. Assuming
that there actually are some changes to fetch, it might look like this:

•••
user@ubuntu:~/git/pvg-lab0# git fetch
remote: Enumerating objects: 4, done.
remote: Counting objects: 100% (4/4), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (4/4), 453 bytes | 90.00 KiB/s, done.
From coursegit.cs.lth.se:edaf45/ht22-vt23/lab0-playground/playground<N>

90e7680..768a712 main -> origin/main
user@ubuntu:~/git/pvg-lab0# git status
On branch main
Your branch is behind 'origin/main' by 1 commit, and can be fast-forwarded.

(use "git pull" to update your local branch)

nothing to commit, working tree clean
user@ubuntu:~/git/pvg-lab0# git merge origin/main
Updating 90e7680..768a712
Fast-forward
README.md | 2 ++
1 file changed, 2 insertions(+)

user@ubuntu:~/git/pvg-lab0# git status
On branch main
Your branch is up to date with 'origin/main'.

nothing to commit, working tree clean

After fetching changes, git status informs us that our local main branch is behind the remote
origin/main by one commit. Then we do a merge, and status is back to being up-to-date.

2.8.3 pull

Often, many people don’t actively use git fetch , but rather git pull instead. It can do a
bit more “magic” behind the scene, that we will not go into here, but is essentially functionality
equivalent to doing both a fetch and a merge. For a similar example as above, a pull might
look like this:

18

•••
user@ubuntu:~/git/pvg-lab0# git pull
remote: Enumerating objects: 7, done.
remote: Counting objects: 100% (7/7), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 1), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (4/4), 346 bytes | 24.00 KiB/s, done.
From coursegit.cs.lth.se:edaf45/ht22-vt23/lab0-playground/playground<N>

8d7591c..b38747f main -> origin/main
Updating 8d7591c..b38747f
Fast-forward
README.md | 1 +
1 file changed, 1 insertion(+)

user@ubuntu:~/git/pvg-lab0# git status
On branch main
Your branch is up to date with 'origin/main'.

nothing to commit, working tree clean

2.8.4 push

To copy commits in the other direction, i.e. from your local repository to the remote, you use
the command git push . So, from modifying files in your workspace, there are three steps to
take to share them; add them to the staging area, commit them to your local branch, and push
the contents of that branch to the remote.

However, whenever two branches are to be merged, as we have seen, there might be conflicts.
From where we are sitting, conflicts can’t be handled if they occur on the remote device. So,
if your repository is not in synch with the remote before pushing, Git will simply disallow it.
Instead, you must first pull the latest changes from the remote, and merge them locally. Then,
you can add and commit the merge, and then push. It can look like this:

•••
user@ubuntu:~/git/pvg-lab0# nano README.md
user@ubuntu:~/git/pvg-lab0# git commit -a -m "Updated README"
[main 1e9befb] Updated README

1 file changed, 3 insertions(+)
user@ubuntu:~/git/pvg-lab0# git push
To coursegit.cs.lth.se:edaf45/ht22-vt23/lab0-playground/playground<N>.git
! [rejected] main -> main (fetch first)

error: failed to push some refs to
'coursegit.cs.lth.se:edaf45/ht22-vt23/lab0-playground/playground<N>.git'

hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

19

•••
user@ubuntu:~/git/pvg-lab0# git pull
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the result.
user@ubuntu:~/git/pvg-lab0# nano README.md
user@ubuntu:~/git/pvg-lab0# git add README.md
user@ubuntu:~/git/pvg-lab0# git commit -a -m "Updated README again"
[main 869fdf8] Updated README again
user@ubuntu:~/git/pvg-lab0# git push
Enumerating objects: 14, done.
Counting objects: 100% (14/14), done.
Delta compression using up to 8 threads
Compressing objects: 100% (6/6), done.
Writing objects: 100% (8/8), 779 bytes | 779.00 KiB/s, done.
Total 8 (delta 2), reused 0 (delta 0), pack-reused 0
To coursegit.cs.lth.se:edaf45/ht22-vt23/lab0-playground/playground<N>.git

19f0e26..869fdf8 main -> main

2.9 Other, sometimes useful, utilities
• Feel free to keep a cheat sheet at the ready, e.g.: https://about.gitlab.com/images/

press/git-cheat-sheet.pdf

• Some other git settings you might want to configure. Note that this is the opinions of one
person, read more here and make up your own opinion:
https://spin.atomicobject.com/2020/05/05/git-configurations-default/

•••
user@ubuntu:~# git config --global pull.rebase true
user@ubuntu:~# git config --global fetch.prune true
user@ubuntu:~# git config --global diff.colorMoved zebra

• …

20

