LUND UNIVERSITY
FACULTY OF ENGINEERING

EMBEDDED SYSTEMS - ADVANCED COURSE
(EDA385)

Space Invaders

Submitted By:
Axel Andersson Submitted To:
John Gustavsson Flavius Gruian

Victor Skarler

November 6, 2015

Contents
1 Introduction

2 Implementation

2.1 Hardware
2.1.1 GPU
2.1.2 Audio
213 PS/2..
2.1.4 Utilization . . .

2.2 Software

2.3 Problems and Solutions
3 Operation Guide
4 Lessons Learned
5 Contributions

6 References

10

11

12

» HI-SCORE SCORE<2:

A" AN

uln
&

CREDIT

Figure 1: Screenshot of the original game. [1]

1 Introduction

The purpose of this project was to implement the arcade game Space Invaders
from 1978 on a FPGA (Field-Programmable Gate Array). The idea behind
the game is very simple. Figure 1 is a screenshot of the original game. The
player controls the ship in the bottom of the picture. It is possible to move
horizontally and the goal is to shoot all the aliens above. The aliens can also
shoot bullets, which the player has to dodge or take cover from behind the
green walls.

The implementation was done by designing a system containing both
software and hardware parts. Figure 2 displays an overview of the system.
Two custom hardware cores with AXI bus (Advanced eXtensible Interface)
interfaces had to be implemented. A GPU (Graphics Processing Unit) to
display the game on a VGA (Video Graphic Array) monitor and a audio
core to play sounds. Two different system buses had to be used as well,
AXI bus and PLB (Processor Local Bus). The reason behind this is that
the PS/2 controller could only be connected to the PLB. Therefore a bridge
between the buses had to be used to connect the devices on the AXI bus to

the keyboard. The software implemented on the CPU (Central Processing
Unit) was used to control the game functionalities. These functionalities
included moving all sprites and handling collisions between the bullets and
the player or the aliens.

The differences between the implemented and the proposed systems are
quite big. Originally it was assumed that the keyboard could be connected
directly to the AXI bus. There were also no plans to implement audio sup-
port. This was added since the rest of the system was implemented quite fast.
Text support on the GPU was also added, which means that the software
developer can print text wherever is needed.

2 Implementation

Keyboard
l Peripheral Hardware
Existing IP
PS/2 controller Custom IP
£ PLB Bus |
PLB-AXI Bridge
AXI Bus
GPU cPU Audio
PmodAmp1l
VGA display l

Spea-kers

Figure 2: Block diagram.

2.1 Hardware
2.1.1 GPU

The GPU is the unit that takes game info from software through the AXI
bus and generates a picture that is sent to the VGA display. The GPU itself
is divided into different components as seen in Figure 3.

| AXI |

GPU
ClockDivider » VGAController TextController
CoverController GPUController MonsterController

Display

Figure 3: GPU.

The VGA controller is designed by Ulrich Zoltan from Diligent and gives
out two signals that say which pixel the system are on (hCount, vCount). [2]
It also produces a signal when a row is complete called hSync and a signal
when all pixels have been painted called vSync. There is also a signal that
tells us if the pixel, that hCount and vCount point to, are outside of the
screen (blank). All these signals conform with the VGA standard and are
driven by a 256MHz clock since a resolution of 640*480 at 60Hz was desired.
The 25MHz clock are generated with a clock divider that takes a 100MHz
signal and outputs the desired frequency.

The monster controller and the cover controller contain some matrices
that define the covers and monsters displayed on the screen. The matrices

4

are written from the software through the AXI bus. The data from the AXI
bus contains a enable bit that begins the data writing process, an address
signal that defines what register to rewrite in the matrix and a data signal
that contains the information the be written.

The text controller, Figure 4, handles all the text displayed on the moni-
tor. It was implemented with help of a laboratory task from Brigham Young
University. [3] The 640*480 display is split into 80*30 character locations,
where each character is 816 pixels. These characters is stored in a RAM, as
ASCII code, where each location describes what character to be displayed.
hCount and vCount from VGA controller is used to decide which charac-
ter location to access from the RAM. Then depending on what character
ASCII the data has in that RAM location, the system accesses a place in a
ROM that has the sprite saved for that specific character. This data is then
sent to the GPU controller that decides if a pixel will be displayed and its
color. When writing to the RAM from software the only thing sent are a
ASCII code and the character location you want to write to, which makes
the programming in software very easy.

| AXI |

TextController

A 4

A 4

Character RAM Control Block Font ROM

Figure 4: Text controller.

The GPU controller is the block that chooses if a pixel will be displayed
or not. It takes the object coordinates from the software through the AXI
bus and depending on where on the monitor the VGA controller is, it checks
if a sprite exists there and its pixel of the sprite to paint. For the matrices in
the monster and cover controller there are LUT (lookup tables) that check
what object in the matrix the screen is on and depending on what status,
it displays the appropriative sprite. The sprites are hard-coded into LUT
where a logic 71”7 defines that the system shall display a color and 707 it

shall not. This minimizes the required hardware, compared to if each pixel
have a different color, which require more bits.

2.1.2 Audio

The audio unit reads data from the AXI bus, written by the MicroBlaze
processor, and then plays the selected sound file using a PWM (Pulse Width
Modulator). [4] The block diagram of the audio unit can be seen in Figure 5.

The unit is constructed around a PWM. The inputs are determined by
a controller that selects the appropriate sound file for the PWM to play
depending on the input from the AXI bus. The output data is fed as a 1-bit
output stream to the PModAmpl component that smoothens the signal and
amplifies it to line level output. The audio is played in mono with the left
channel mirroring the right one. The sound files are stored in an eight bit
level format with a sample rate of eight kilohertz, and are stored in RAMs
represented by Soundl and Sound2 in Figure 5.

AXI
AUDIO
Sound 1
Controller
Sound 2 I
PWM
I

l

Speakers «————PmodAmpl

Figure 5: Block diagram of the Audio Unit.

2.1.3 PS/2

The Xilinx IP(Intellectual Property), LogiCORE IP XPS PS2 Controller,
was used for the implementation of the PS/2 hardware controller. [5] XPS
PS2 was designed to be used with a PLB. So in order to connect the PLB

6

to the rest of the system a bus bridge between the PS/2 PLB and the AXI
bus was implemented.

A interrupt channel was also connected between the PS/2 input and the
MicroBlaze processor. This was done in order to be able to immediate address
the appropriate response for each PS/2 input in the software.

2.1.4 Utilization

In Figure 6, the utilization of the different blocks in the system is visual-
ized. The two largest blocks are the MicroBlaze and GPU core which is not
surprising, considering they contain the most hardware. Most of the things
in other can be removed since they are not paramount for the operation of
the system, UART (Universal asynchronous receiver/transmitter) and debug
module are not needed, but are useful during testing. If a custom made PS/2
controller were written, the area could be reduced by a large amount, since
the Xilinx PS/2 is a general purpose PS/2 controller and takes up unneces-
sary space. The sound core does not use much logic, but instead uses a lot
of memory which is not represented in this graph. The area of the AXI bus
can not be significantly decreased since it is a Diligent IP that should not be
modified.

7.4% MicroBlaze
AXI Bus
9%
GPU Core

Sound Core

PS/2 Controller

(I BN BN B

Other

v

Figure 6: Slice logic utilization

In Table 1, the total utilization of our system on a Digilent Nexys 3,
Xilinx Spartan-6 FPGA can be seen, where a total of 76% of the slices are

used. The system also use a total of 44% of the LUT which most can be
accounted for the different sprites, matrix LUT and the MicroBlaze. The
utilization of the registers is only 16%, where most of the registers are in the
GPU core and MicroBlaze. The system uses 27 of 32 the block RAMs, where
16 of these are in the MicroBlaze, eight are in the sound core and 3 are in
the text controller.

Table 1: FPGA utilization
Used Available Utilization

Slice Registers 3,015 18,224 16%

LUT 4274 9,112 44%
Occupied Slices 1,734 2,278 76%
RAMB16BWER 27 32 84%

2.2 Software

The software was implemented on a MicroBlaze CPU with 32 KB RAM,
running at 100 MHz and programmed in C. The object of the program is to
handle all necessary game logic, to make the game function as planned. A
model of the game, programmed in Python, was used to evaluate the needed
functionality. From the model it was derived that functions to initialize the
hardware were needed as well as one main game loop. From the loop all the
different functions handling the game logic itself were called upon. Functions
such as moving and spawning sprites, collision detection and polling keyboard
events.

The structure of the software was designed to be single threaded. The
program is running with a main loop to handle the game logic functions.
In addition to this it reads the input from the keyboard after receiving an
interrupt. The received information from the keyboard only describes if a
key has been pressed or released. Therefore extra functionality was added to
the function handling the interrupt from the keyboard. The player should be
able to move and shoot simultaneously, therefore an array was used to store
up to five pressed keys.

Data transfers from the software to the hardware components was handled
by an AXI bus. This meant that only 32-bit values could be transferred
between the components. Therefore several functions was implemented to
ensure that the data was sent correctly. These functions used logical SHIFT

8

and OR to pack several integers together in a 32-bit format. This could be
done since values never needed more than 10 bits to be represented in binary.
A majority of the sent data did not need more than 3-4 bits. This way data
could be sent in a very efficient manner to the registers in the custom built
hardware components.

2.3 Problems and Solutions

The major problem encountered was debugging, this due to the fact that
it is hard to detect if the errors are occurring in the software or hardware.
The solution we adopted was to have many isolated tests on the different
components before integrating them into the system. By doing this there
were no major bugs in the hardware at all.

We also had issues with the program not fitting in the memory when
compiling the software. This was solved by cleaning up the code and making
it more efficient. Also software compilation optimization was used.

3 Operation Guide

The main objective in our implementation of the Space Invaders game is
to eliminate all aliens in each level. This implementation of Space Invaders
has four levels of an ever increasing amount of aliens. The last level is then
looped when completed so the player may compete for the high score. The
player has to fire his gun in order to kill the aliens as they move ever closer
to the player, simultaneously as the player has to evade their incoming shots.
As the number of aliens begins to dwindle, they increase in speed and thus
the difficulty. To the players assistance there are a couple of covers that can
absorb the incoming shots. But as the covers are hit, they systematically get
damaged and ultimately destroyed. At the start of the game the player is
given two lives, which means that the player can get hit twice before losing
the game. For each alien the player manages to kill, he will receive score.
Sometimes, at random, a special boss alien will appear in the top of the screen
and if the player manages to hit it the player will be awarded additional score.

Before the FPGA is configured with the game, a PS/2 style keyboard
should be connected to the USB port and a PModAmp1 expansion module
should be connected to the JA(0-3) ports on the FPGA.

After the FPGA is configured with the game, the player can control it

using the keyboard controls as seen in Table 2. The player may also utilize
the hardware reset on the FPGA as seen in Table 3.

Table 2: Keyboard Controls

Action Key
Left A
Right D
Shoot Space
Reset Software | Esc
Skip Level C

Table 3: FPGA Controls
Action Key

Hardware Reset \ Center Push Button (BTNS, Pin BS)

4 Lessons Learned

When designing a system on a FPGA, the designer has to take into consider-
ation the limitation of resources. Especially the amount of memory available
and the different kinds of memories has to be taken into account. A very ob-
vious conclusion when looking at the utilization of the implemented system
is that images and audio occupy very large amounts of memory. Therefore
an external memory should be used for these kinds of data banks. Other-
wise the designer has to compromise the systems functionality. For example
the audio was stored in registers to begin with, but was moved to BRAMs
instead, to make room for more sounds. This solution was possible because
of the fact that the CPU memory was changed from 64 KB to 32 KB which
made 16 BRAMs available for the rest of the design.

Software optimization is also a very important, both in the sense of cod-
ing and in compiling. Compile optimization of the program can be done to
minimize the needed memory size and increase efficiency. The designer must
be aware of what the compiler optimization actually does to the code. Oth-
erwise unexpected behavior can appear, such as loops implemented to cause
delays being removed for example.

10

5 Contributions

The design of the system was split into following areas. The report has been
divided evenly where each person has written their own part, and the other
chapters have been written together.

e Axel:
— Main software
— SW/HW integration
— Testing
— Final presentation

e John:

— GPU core

Sound core (minor)
— SW/HW integration
— Testing

— Proposal presentation
e Victor:
— Software and hardware for PS/2

— Sound core (major)

— Testing

Final presentation

11

6 References

[1] Space Invaders game screenshot, Wikipedia
https://upload.wikimedia.org/wikipedia/en/2/20/
SpaceInvaders—-Gameplay.gif - 2015-11-04

2] VGA Controller reference design, Ulrich Zoltdn, Diligent
http://www.digilentinc.com/Data/Documents/Reference’,
20Designs/VGAY,20RefComp.zip - 2015-11-04

[3] VGA Text Generator laboratory, Advanced Digital Logic Design,
Brigham Young University
http://ece320web.groups.et.byu.net/labs/VGATextGeneration/
VGA_Terminal.html - 2015-11-04

[4] PWM Audio Tutorial using a FPGA, MakerComputing
https://www.youtube.com/watch?v=4byHVgXD-UI - 2015-11-04

[5] LogiCORE IP XPS PS2 Controller, Xilinx
http://www.xilinx.com/products/intellectual-property/xps_ps2.
html#overview - 2015-11-04

12

