(0.3p)

(0.4p)

Exam EDA221 Computer Graphics : Introduction to 3D

2013-01-10, 14.00-19.00, Sparta:A

Answers may be given in Swedish or English. Dictionaries for English (and the native language for each student) are allowed. Electronic calculators are **not** allowed.

Grading: The maximum score is 6.0. A score of 3.0 or above is needed to pass.

1. Spaces

What is a *space* in the context of computer graphics? Provide three examples of spaces that you have encountered and explain what they are used for. (1.0p)

2. Vector algebra

a) V	What is the difference between a <i>point</i> and a <i>vector</i> ? How are they represented in homos	genous
f	form?	(0.2p)
b) I	Provide formulas for the following vector operations: 2-norm (length), dot product, cross p	oroduct
a	and <i>reflection</i> . Give examples of application in computer graphics for each operation.	(0.8p)

3. Shading

a) What is the equation for <i>Phong shading</i> ? Explain each term.	(0.5p)	
b) Give an example of a Phong material, including values for the Phong coefficients. Motivate th		
coefficient values.	(0.2p)	
c) In what sense is Phong shading an approximation of the rendering equation?	(0.3 <i>p</i>)	

4. Scene content

a) What is a <i>scene graph</i> ? What's the advantages of using a scene graph?.	(0.3p)
b) Provide a scene graph, including relations and transformations, with object	cts undergoing spin

c) Explain *tessellation*.

as well as orbit.

5. Interpolation

Describe the following types of interpolation: *linear, bilinear, barycentric* and *cubic*. What can each respective type be used for in computer graphics? (1.0*p*)

6. Viewing

a) What is *orthographic projection*. Define such a matrix.
b) What is *perspective projection*. Define such a matrix.

(0.4p)
(0.6p)

The end.