Exam - Computer Graphics
 13 January 2011, 14-19

1 (a) What is the most efficient way to calculate the inverse of a rotation matrix? (0.3)
(b) What is the most important advantage of representing transforms as matrices? (0.4)
(c) How is this advantage utilized in the design of a renderer? (0.3)

2 (a) Explain how rasterization of a triangle is done. (0.5)
(b) Explain how shading of a rasterized triangle is done. (0.5)

3 (a) What is perspective correct interpolation?. (0.4)
(b) What is light mapping and what is it useful for. (0.3)
(b) What is image based lighting. (0.3)

4 (a) What is bump mapping and what is it used for? (0.4)
(b) Which data must the mesh provide in order to apply it? (0.3)
(c) Describe the algorithm for bump mapping. (0.3)

5 Compute $\boldsymbol{T}^{*}(1,1,1)$ where \boldsymbol{T} is defined as the matrix product
$T=M 1 * R 1 * S^{*} M 2^{*} R 2$
where each term is the matrix for a two-dimensional transform in homogenous coordinates as given below:

$$
\begin{array}{ll}
\text { M1: } & \text { translation by the vector }(-1,-1) \\
\text { R1: } & \text { rotation } 45 \text { degrees anti-clockwise } \\
\boldsymbol{S :} & \text { scaling by the factor } 2 \\
\text { M2: } & \text { translation by the vector }(1,1) \\
\text { R2: } & \text { rotation } 90 \text { degrees clockwise }
\end{array}
$$

6 (a) State the per-pixel and per-vertex expressions for the diffuse reflection according to Phong's reflection model in a point with barycentric coordinates $\left(b_{0}, b_{1}, b_{2}\right)$. The vertices of the triangle have normals ($\boldsymbol{n}_{0}, \boldsymbol{n}_{1}, \boldsymbol{n}_{2}$) the light comes from a directional light source such that the light vector is \mathbf{L} and the light intensity at the triangle is I. (0.8).
(b) In Phong's reflection model there is a so called ambient term. What is it and what is its purpose? (0.2)

THE END!

