Exam - Computer Graphics

29 March 2005, 8-13

1 (a) What is a rigid body transform? Given an as exact answer as you can. Also give one or more examples of transforms which are not rigid body transforms. (0.4)
(b) Give an expression for the projection of a vector \boldsymbol{a} on another vector \boldsymbol{b}. (0.6)

2 (a) How do you distinguish between the front side and the back side of a triangle? (0.4)
(b) Explain the notion of tesselation. (0.4)
(c) What is the so called minification problem? (0.2)

3 (a) How is the specular reflection computed in Blinn's reflection model? (0.3)
(b) What is a BRDF? (0.4)
(c) What is light mapping and what is it useful for? (0.3)

4 (a) What is the fundamental difference between ray-tracing and radiosity? (0.3)
(b) Describe how each of the algorithms work. (0.5)
(c) What is image based lighting? (0.2)

Compute $\boldsymbol{T}^{*}(1,1,1)$ where \boldsymbol{T} is defined as the matrix product

$$
T=M 1 * R 1 * S * M 2 * R 2
$$

where each term is the matrix for a two-dimensional transform in homogenous coordinates as given below:

$$
\begin{array}{ll}
\text { M1: } & \text { translation by the vector }(-1,-1) \\
\boldsymbol{R 1}: & \text { rotation } 45 \text { degrees clockwise } \\
\boldsymbol{S}: & \text { scaling by the factor } 2 \\
\text { M2: } & \text { translation by the vector }(1,1) \\
\boldsymbol{R 2}: & \text { rotation } 90 \text { degrees anti-clockwise }
\end{array}
$$

6 (a) Compute the shading of a triangle surface defined by vertex positions $\mathrm{P}_{0}-\mathrm{P}_{2}$ with flat shading, and Phong's reflection model, given a point light source with the attenuation function $f(r)$ and light intensity at the light source I_{1} and given that a point on the surface has incident light angle θ, viewer angle Ω and the material properties given below. (0.6)

Material properties	Vertex positions	Light source	Viewer
$k_{a}=0.2$			
$k_{d}=0.3$			
$k_{s}=0.5$	$P_{0}=\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right] \quad P_{1}=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right] \quad P_{2}=\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right]$	I $I_{l}=0.8$ $f(r)=1$ $\theta=30^{\circ}$	

(a) Now change to a somewhat artificial light model where you find the color of a surface point by doing a lookup with its normal in a cube map. Which color would the triangle get if the cube map is defined as below? (0.4)

Side	RGB value
positive X-direction:	$(1,0,0)$
negative X-direction:	$(0,1,1)$
positive Y-direction:	$(0,1,0)$
negative Y- direction:	$(1,0,1)$
positive Z- direction:	$(0,0,1)$
negative Z-direction:	$(1,1,0)$

THE END!

