EDA221/DAT221

Exam – Computer Graphics 29 March 2005, 8-13

- 1 (a) What is a *rigid body transform*? Given an as exact answer as you can. Also give one or more examples of transforms which are not rigid body transforms. (0.4)
 - (b) Give an expression for the *projection* of a vector \boldsymbol{a} on another vector \boldsymbol{b} . (0.6)
- 2 (a) How do you distinguish between the front side and the back side of a triangle? (0.4)
 - (b) Explain the notion of *tesselation*. (0.4)
 - (c) What is the so called *minification* problem? (0.2)
- 3 (a) How is the specular reflection computed in Blinn's reflection model? (0.3)
 - (b) What is a BRDF? (0.4)
 - (c) What is *light mapping* and what is it useful for? (0.3)
- 4 (a) What is the fundamental difference between *ray-tracing* and *radiosity*? (0.3)
 - (b) Describe how each of the algorithms work. (0.5)
 - (c) What is *image based lighting*? (0.2)
- 5 Compute $T^*(1,1,1)$ where T is defined as the matrix product

T = M1 * R1 * S * M2 * R2

where each term is the matrix for a two-dimensional transform in homogenous coordinates as given below:

- *M1*: translation by the vector (-1,-1)
- *R1*: rotation 45 degrees clockwise
- *S*: scaling by the factor 2
- *M2*: translation by the vector (1,1)
- *R2*: rotation 90 degrees anti-clockwise

6 (a) Compute the shading of a triangle surface defined by vertex positions P_0 - P_2 with flat shading, and Phong's reflection model, given a point light source with the attenuation function f(r) and light intensity at the light source I_1 and given that a point on the surface has incident light angle θ , viewer angle Ω and the material properties given below. (0.6)

Material properties	Vertex positions	Light source	Viewer
$k_a = 0.2$		$I_l = 0.8$	$\Omega = 45^{\circ}$
$k_{d} = 0.3$	$P_0 = \begin{vmatrix} -1 \\ P_1 \end{vmatrix} = \begin{vmatrix} -1 \\ P_2 \end{vmatrix} = \begin{vmatrix} 1 \\ P_2 \end{vmatrix}$	f(r) = 1	
$k_{s} = 0.5$		$\theta = 30^{\circ}$	
$\alpha = 4$		0 - 50	

(a) Now change to a somewhat artificial light model where you find the color of a surface point by doing a lookup with its normal in a cube map. Which color would the triangle get if the cube map is defined as below? (0.4)

Side	RGB value
positive X-direction:	(1,0,0)
negative X- direction:	(0,1,1)
positive Y- direction:	(0,1,0)
negative Y- direction:	(1,0,1)
positive Z- direction:	(0,0,1)
negative Z- direction:	(1,1,0)

THE END!