Exam - Computer Graphics

20 december 2003, 8-13

1 (a) What is the most important advantage of representing transforms with matrices? (0.3)
(b) How is this utilized in the design of a renderer? (0.4)
(c) How is the transformation of normals different from the transformation of vectors? (0.3)

2 (a) What is Catmull-Rom-interpolation? (0.6)
(b) What is back face culling, and how is it done? (0.4)
3. (a) What is a cube map and what is it used for? (0.2)
(b) How do you do lookup in a cube map? (0.8)

4 (a) What are barycentric coordinates? (0.3)
(b) Explain how barycentric coordinates can be used for rasterization and shading of triangle meshes. (0.7)

5 (a) Describe what a call to the function draw () below will draw on the screen. (0.8)

```
def draw():
    glColor(1,0,0)
    glPushMatrix()
    glScale(3,3,3)
    glTranslate(2,0,0)
    glRotate(90, 0,0,1)
    glPushMatrix()
    glTranslate(1,0,0)
    drawSquare()
    glColor(0,1,0)
    glPopMatrix()
    glPushMatrix()
    glTranslate(4,0,0)
    glScale(0.5,0.5,0.5)
    glRotate(270, 0,0,1)
    drawSquare()
def drawSquare():
    glBegin(GL_QUADS)
    glVertex(0,0,0)
    glvertex(0,1,0)
    glVertex(1,1,0)
    glVertex(1,0,0)
    glEnd()
```

(b) What is a vertex array? And what are its advantages? (0.2)

6 (a) A triangle surface with vertices P_{0}, P_{1}, P_{2} bis lit by a point light source with transmittance L and positioned in P_{L}. There is no ambient light in the scene. Use Phong's reflection model to determine the light reflection reaching the point P_{V} from each of the vertices. (0.7)

| Material parameters
 $k_{a}=0.1$ | Vertex positions | |
| :--- | :--- | :--- | :--- |
| $k_{d}=0.5$ | $P_{0}=\left[\begin{array}{l}2 \\ 0 \\ k_{s}=0.2\end{array}\right.$ | |
| $\alpha=3$ | | |\(\quad P_{1}=\left[\begin{array}{l}0

4

0\end{array}\right] \quad P_{2}=\left[\begin{array}{l}0

0

8\end{array}\right] \quad\)| Light source |
| :--- |
| $L=1.0$ |
| $P_{L}=\left[\begin{array}{l}5 \\ 3 \\ 1\end{array}\right]$ |\(\quad P_{V}=\left[\begin{array}{l}8

1

8\end{array}\right]\)
(b) Determine the light reflection from the point $P=(2 / 3,2 / 3,4)$ by interpolation over the triangle surface. (0.3)

SLUT!

