Database Technology

Lectures 2015/16

Per Andersson

Per.Andersson@cs.lth.se

Introduction

SQL

E/R Modeling

The Relational Data Model
JDBC, Transactions

PHP

Normalization

Stored Programs
Object-Oriented Databases, NoSQL
Logical Query Languages
XML

Relational Algebra
Implementation of DBMS's

62

37
104
142
173
218
239
269
279
309
330

Per.Andersson@cs.lth.se

What Is a Database?

A database is a collection of data, which is:

@ persistent,

@ structured, and the database contains a description of the structure
(metadata).

A database management system (DBMS):
@ manages the data (very large amounts of them, usually),

@ allows users to specify the logical structure of the database (the
database “schema”) and to enter, alter, and delete data,

@ allows users to query the data via a query language (SQL most
common),

@ supports concurrent access to the data,

@ handles backup, crash recovery, ...

Per Andersson (Per.Andersson@cs.lth.se) Introduction 2014/15 2 / 360

Per.Andersson@cs.lth.se

Why Not Simple Files Instead?

Consider:

@ The file structure is determined by the application program:

e Difficult to change the logical structure of the data.
e A new kind of query = a new program must be written.

@ Difficult to implement efficient queries and updates.

@ Difficult to handle concurrent access, crash recovery, ...

Per Andersson (Per.Andersson@cs.lth.se) Introduction 2014/15

Per.Andersson@cs.lth.se

Developing a Database Application

Several steps:

@ Model the data. Entity-Relationship (E/R) modeling (also called
conceptual modeling, semantic modeling, ...). Very similar to

object-oriented modeling (static model).
@ Translate the E/R model into a relational model.
@ Implement the relational model in a DBMS.

@ Write the necessary programs to implement the desired queries and
updates.

2014/15 4 / 360

Per Andersson (Per.Andersson@cs.lth.se) Introduction

Per.Andersson@cs.lth.se

The Relational Data Model

Suggested in 1970 by E.F. Codd. Today used in almost all DBMS's.
@ A relational database consists of relations (tables).
o A relation has attributes (columns in the table).
@ A relation is a set of tuples (rows in the table).

Earlier, hierarchical or network databases were used.

Per Andersson (Per.Andersson@cs.lth.se) Introduction 2014/15

Per.Andersson@cs.lth.se

The Relational Model lllustrated

Relationﬁ Attributeﬁ

title
Star Wars 1977 124 color
Mighty Ducks 1991 104 color

Wayne's World % _coor >

Per Andersson (Per.Andersson@cs.lth.se) Introduction 2014/15 6 / 360

Per.Andersson@cs.lth.se

Sample Relation

An instance of a relation Accounts, which records bank accounts with
their balance, type, and owner:

t——— t—————— t——m——————— e +
| accountNo | balance | type | ownerPNo |
tm—mmmm tm—mm—————— tmmmmm o mmmm +
| 12345 | 1000 | savings | 730401-2334 |
| 67890 | 2846.92 | checking | 790614-2921 |
t——m t—————— tmmm——————— t——mm +

Four attributes: accountNo, balance, type, and ownerPNo. Two tuples:
the first says that account number 12345 has a balance of one thousand
dollars, and is a savings account owned by a person with the person

number 730401-2334.
Relation schemas are usually described in a more concise form. The

relation name is given first, followed by the attribute names inside
parentheses: Accounts(accountNo, balance, type, ownerPNo).

Per Andersson (Per.Andersson@cs.lth.se) Introduction 2014/15 7 / 360

Per.Andersson@cs.lth.se

SQL — Structured Query Language
@ SQL History

@ Simple Queries

@ Joins

Subqueries
Aggregation Operators
Grouping

Database Modifications

Defining Relations

Primary Keys and Foreign Keys

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 8 / 360

Per.Andersson@cs.lth.se

@ SQL stands for “Structured Query Language”, pronounced
“ess-queue-ell”

@ Current standard SQL3, 1999

@ Declarative — just tell SQL what should be done; it is up to the SQL
compiler to figure out details about how to do it

@ Two major parts: a DDL (data definition language), a DML (data
manipulation language)

@ Free format, reserved words, case-insensitive

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 9 / 360

Per.Andersson@cs.lth.se

SQL Usage

SQL can be used in different ways:

@ Write SQL statements directly at a terminal or in a file:
select accountNo from Accounts where balance > 1000;

This is for developers, not for end users.

@ Write an application program (here in Java) and pass the SQL
statements to the DBMS:

ResultSet rs = stmt.executeQuery("select accountNo from " +
"Accounts where balance > 1000");
/* present the results to the user */

This is the most common usage, and the way that most people come
into contact with databases.

In either case, the application developer has to know SQL.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 10 / 360

Per.Andersson@cs.lth.se

Different DBMS's

Huge, commercial:

@ Oracle, MS SQL Server, DB2, Sybase, Informix, ...
Smaller, free:

e MySQL, MariaDB, PostgreSQL, mSQL, SQLite, ...
We use MySQL in the course.

@ Advantages with MySQL.: free, easy to install (you can do it on your
own computer), fast, supports most of the SQL standard (from
version 5), enormous user community, . . .

@ Disadvantages: bought by Oracle . ..

@ Open source community is moving to MariaDB.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 11 / 360

Per.Andersson@cs.lth.se

Simple SQL Queries

Find the balance of account 67890:

select balance
from Accounts
where accountNo = 67890;

Find all savings accounts with negative balances:

select accountNo
from Accounts
where type = ’savings’ and balance < 0;

Typical structure:

select SOMETHING
from SOMEWHERE
where CERTAIN CONDITIONS HOLD;

Per Andersson (Per.Andersson@cs.lth.se) SQL 2014/15 12 / 360

Per.Andersson@cs.lth.se

SQL From Book

The following examples are similar, but not always identical, to the
examples in the book.

A movie database: a movie has a title, a production year, a length, is in
color or black-and-white, is produced by a studio, and the producer has a
certificate number. Schema:

Movies(title, year, length, filmType, studioName, prodNbr)

Example relation instance:

o t————— tmm tmmm mmm tmmm +
| title | year | length | filmType | studioName | prodNbr |
tmm e t————— tmmm———— tmmmm tmmmm——m tmmm +
Pretty Woman	1990	119	color	Disney	99912
Star Wars	1977	124	color	Fox	12345
Wayne’s World	1992	95	color	Paramount	34129
tmm +————— to————— tm————————— tomm tom———— +

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 13 / 360

Per.Andersson@cs.lth.se

SQL Example

Find all movies produced by Disney in 1990:

select *
from Movies
where studioName = ’Disney’ and year = 1990;

Sample result:

tmm +—————= t——————— tmmm——————— tmm— t———————— +
| title | year | length | filmType | studioName | prodNbr |
tmmm t————— tmmm————— tmmm tmmmm——mm tmmmm————— +
| Pretty Woman | 1990 | 119 | color | Disney | 99912 |
tmm - t————— tmm————— tmmm tmmmm——m tmmm—————— +
MySQL: string comparisons are not case sensitive.

Per Andersson (Per.Andersson@cs.lth.se) SQL 2014/15 14 / 360

Per.Andersson@cs.lth.se

Projection (select Clause)

Select only certain attributes:

select title, length
from Movies

where studioName = ’Disney’ and year = 1990;
tom e e +
| title | length |
Fom $——— +
| Pretty Woman | 119 |
e e L to——————— +

The same with new names for the attributes (as is optional):

select title as name, length as duration
from Movies

where studioName = ’Disney’ and year = 1990;
Fmm - +
| name | duration |
Fom - +
| Pretty Woman | 119 |
F—————————————— +—————————— +

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 15 / 360

Per.Andersson@cs.lth.se

Selection (where Clause)

Expressions in the where clause (note single quotes around string literals):

select title

from Movies
where year > 1970 and filmType <> ’color’;

Wildcards:

select title
from Movies
where title like ’Star’,’;

%» matches O—many characters, _ matches exactly one character.

2014/15 16 / 360

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

Ordering the Output

Sort the output, first by length, then by title:

select x*
from Movies
order by length, title;

May (naturally) be combined with where:

select x*

from Movies

where studioName = ’Disney’ and year
order by length, title;

SQL

Per Andersson (Per.Andersson@cs.lth.se)

1990

17 / 360

Per.Andersson@cs.lth.se

More Than One Relation

A relation describing movie studio executives who have a name, address,
certificate number, and a net worth:

MovieExecs (name, address, certNbr, netWorth)
Find the producer of Star Wars:

select prodNbr
from Movies
where title = ’Star Wars’;

(Output: 12345, remember this)

select name
from MovieExecs
where certNbr = 12345;

Can be done in a better way, see next slide.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 18 / 360

Per.Andersson@cs.lth.se

Joining Several Relations in One Query

The better way to find the producer of Star Wars:

select name

from Movies, MovieExecs

where title = ’Star Wars’ and
prodNbr = certNbr;

The relations mentioned in the from clause are joined according to the
condition in the where clause.

In the select and where clauses, all attributes in all the relations
mentioned in the from clause are available.

If attribute names are not unique, they must be prefixed with the
relation name and a dot.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 19 / 360

Per.Andersson@cs.lth.se

Join Example |

The banking database (see slide 7, “Sample Relation") also keeps track of
bank customers.

@ A customer is described by his person number (Swedish civic
registration number), his name, and his address.

@ Each customer can own many accounts.
@ Each account is owned by exactly one customer.

This is described by two relations:

Customers(persNo, name, address)
Accounts(accountNo, balance, type, ownerPNo)

The attribute ownerPNo in Accounts refers to the attribute persNo in
one of the Customers tuples.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 20 / 360

Per.Andersson@cs.lth.se

Join Example |l, cont’d

Find the name of the customer who owns the account with number
12345:

select name

from Accounts, Customers

where accountNo = 12345 and
ownerPNo = persNo;

accountNo balance type ownerPNo persNo name address
67890 2846.92 checking 790614-2921 730401-2334 Bo Ek Malmé

1000.00 savings 30401-2334 801206-4321 EvaAm Lund

Per Andersson (Per.Andersson@cs.lth.se) SQL 2014/15 21 / 360

Per.Andersson@cs.lth.se

Join Example Il

Two relations (describe movies and that stars appear in movies):

Movies(title, year, length, filmType, studioName, prodNbr)
StarsIn(title, year, starName)

Find all movies with all stars who appear in them:

select Movies.title, Movies.year,
length, filmType, studioName, starName
from Movies, Starsln
where Movies.title = StarsIn.title and
Movies.year = Starsln.year;

The resulting table is shown on the next slide.

Per Andersson (Per.Andersson@cs.lth.se) SQL 2014/15 22 / 360

Per.Andersson@cs.lth.se

Join Example

title year length filmType studioName title year starName
< Star Wars Fox Carrie Fisher

Mighty Ducks 1991 104 Disney Mark Hamill
Wayne's World 1992 95 Paramount Harrison Ford
Mighty Ducks 1991 Emilio Estevez
Wayne's World 1992 Dana Carver
Wayne's World 1992 Mike Myers
length filmType studioName starName
Star Wars 124 color Fox Carrie Fisher
Star Wars 124 color Fox Mark Hamill
Star Wars 124 color Fox Harrison Ford
104 color Disney Emilio Estevez
Wayne's World 1992 95 color Paramount Dana Carvey
Wayne's World 1992 95 color Paramount Mike Myers
Per Andersson (Per.Andersson@cs.lth.se) SQL 2014/15 23 / 360

Per.Andersson@cs.lth.se

Set Operations, Union

The common set operations, union, intersection, and difference, are
available in SQL.

The relation operands must be compatible in the sense that they have
the same attributes (same data types) in the same order.

The relations Movies and StarsIn again:

Movies(title, year, length, filmType, studioName, prodNbr)
StarsIn(title, year, starName)

Find all movies mentioned in either relation:

select title, year from Movie
union

select title, year from StarsIn;

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 24 / 360

Per.Andersson@cs.lth.se

Intersection, Difference

Stars(name, address, gender, birthDate)
MovieExecs (name, address, certNbr, netWorth)

Female movie stars who are also movie executives and who are rich:

select name, address

from Stars

where gender = ’F’
intersect

select name, address

from MovieExecs

where netWorth > 10000000;

Movie stars who are not also movie executives:

select name, address from Stars

except
select name, address from MovieExecs;

MySQL doesn’t have intersect or except.

25 / 360

Per Andersson (Per.Andersson@cs.lth.se) 2014/15

Per.Andersson@cs.lth.se

Find the producer of Star Wars (same as before):

select name
from Movies, MovieExecs
where title = ’Star Wars’ and prodNbr = certNbr;

Another way to do this, using a subquery:

select name
from MovieExecs
where certNbr =
(select prodNbr
from Movies
where title = ’Star Wars’);

The subquery in parentheses produces a single tuple like (12345). It
would be an error if it produced more than one tuple (then you cannot test
with =).

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 26 / 360

Per.Andersson@cs.lth.se

Conditions Involving Relations

Other tests on relations:
@ exists R
@ s in R
@ s > all R (or <, <=, =, <>, >=)

@ s >any R(or<, ...)

Prefix with not to get the negated condition.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 27 / 360

Per.Andersson@cs.lth.se

Conditions Involving Tuples

Movies(title, year, length, filmType, studioName, prodNbr)
StarsIn(title, year, starName)
MovieExecs(name, address, certNbr, netWorth)

Find all producers of movies where Harrison Ford stars:

select name
from MovieExecs
where certNbr in
(select prodNbr
from Movies
where (title, year) in
(select title, year
from Starsln
where starName = ’Harrison Ford’)

);

Note that you can explicitly construct tuples like certNbr or (title,
year).

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 28 / 360

Per.Andersson@cs.lth.se

Eliminating Subqueries

Many queries that use subqueries can be rewritten to use joins. A simpler
way to find producers of Harrison Ford movies:

select name

from MovieExecs, Movies, StarsIn

where certNbr = prodNbr and
Movies.title = StarsIn.title and
Movies.year = Starsin.year and
starName = ’Harrison Ford’;

That is, join three relations.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 29 / 360

Per.Andersson@cs.lth.se

Testing For Membership

Find the producers who haven't produced any movies. This cannot be
written as a join:

select name
from MovieExecs, Movies
where certNbr <> prodNbr; -- WRONG

Must do it this way:

select name
from MovieExecs
where certNbr not in (select prodNbr from Movies);

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 30 / 360

Per.Andersson@cs.lth.se

Correlated Subqueries

Find titles that have been used for two or more movies (produced in
different years). Using a correlated subquery:

select title, year
from Movies 0ld -- "rename" the relation
where year <> any

(select year

from Movies

where title = 01ld.title);

With a join:

select 0ld.title, 0Old.year

from Movies 0ld, Movies New

where 0ld.title = New.title and
0ld.year <> New.year;

This will list the same title more than once. Use select distinct to
avoid this.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 31 / 360

Per.Andersson@cs.lth.se

| d
|
I
I

5
7
10

2
4
9

b

b

select * from R, S; (or select * from R cross join S;)

A~
4+
O
-
O
O
Nl
al
-
B
n
0,
4+
|
(qV)
O
N—r
=
O
)
n
n
O
Nl
O

Two tables, R and S:

—~
o
n
<
Ik}
—
n
O
©
=
o
n
n
~
Q
o}
a
<
o
()
Ay
~
c
o
(]
0
—
(]
©
c
<
—
(]
o

Per.Andersson@cs.lth.se

Natural (“normal”) Join

select * from R, S where R.b = S.b;

+———— +————— +———— - +———— +
| a | b | b | ¢ | d |
+—————- +—————- +—————- t————— +————— +
| 1 | 2 | 2 | 5 | 6 |
| 3 | 4 | 4 | 7 | 8 |
t————— t————— t————— +————— t————— +

This is called “equijoin” (equality join). A natural join, where attributes
with the same names are joined, is almost the same:

select * from R natural join S;

R —— R o — R +
| b | a | ¢ | d |
PR —— PR —— R R — +
| 2 | 1 | 5 | 6 |
| 4 | 3 | 7 | 8 |
PR —— PR PR —— R — +

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 33 / 360

Per.Andersson@cs.lth.se

Variations on Join Syntax

Joining two tables with a condition in the where clause is common. The
following syntaxes are equivalent:

select *
from R, S
where <some-condition>;

select *
from R inner join S
on <some-condition>;

The two forms can be combined, often like this:

select *
from R inner join S
on R.b = 5.b

where a = 1;

34 / 360

Per Andersson (Per.Andersson@cs.lth.se) SQL 2014/15

Per.Andersson@cs.lth.se

Sometimes, you wish to join but also include tuples from one table which
do not match with any tuple in the other table. A left outer join includes
tuples from the “left” table (mentioned first), a right outer join from the
“right” table.

select *
from R right outer join S
on R.b = S.b;

+————— +————— +————— +————— +————— +
| a | b | b | ¢ | d |
+—————- +—————- +—————- +————— +————— +
I 1 | 2 | 2 | 5 | 6 |
| 3 | 4 | 4 | 7 | 8 |
| NULL | NULL | 9 | 10 | 11 |
+————— +————— +————— +————— +————— +

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 35 / 360

Per.Andersson@cs.lth.se

Aggregation Operators

Five operators that can be applied to a column name:
SUM, AVG, MIN, MAX, COUNT
Examples:

select avg(netWorth)
from MovieExecs;

select count(starName) —-- does not count nulls
from StarslIn;

select count(*) —-- counts nulls
from StarslIn;

The aggregation operators may not be used in where clauses — they
operate on a whole relation after tuples have been selected with where.

Per Andersson (Per.Andersson@cs.lth.se)

SQL

2014/15 36 / 360

Per.Andersson@cs.lth.se

It is possible to first group tuples from a query with group by and then
apply an operator to the tuples of each group. Examples:
Find the sum of the lengths of all movies for each studio:

select studioName, sum(length)
from Movies
group by studioName;

Find the total length of all movies produced by each producer:

select name, sum(length)
from MovieExecs, Movies
where prodNbr = certNbr
group by name;

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 37 / 360

Per.Andersson@cs.lth.se

Grouping lllustrated

Schema: Operas (composer, opera)

select composer, count(¥*)

from Operas

group by composer;

composer opera

Verdi Nabucco

Verdi La Traviata

Bellini Norma

Puccini La Bohéme

Verdi Rigoletto

Puccini Madama Butterfly
Rossini Guglielmo Tell
Puccini Il Trittico

Verdi Otello

Bellini Il Pirata

Per Andersson (Per.Andersson@cs.lth.se)

—

composer count(*)

Bellini 2
Puccini 3
Rossini 1
Verdi 4

i)

composer opera

Bellini Norma

Bellini Il Pirata

Puccini La Boheme
Puccini Madama Butterfly
Puccini Il Trittico

Rossini Guglielmo Tell
Verdi Nabucco

Verdi La Traviata

Verdi Rigoletto

Verdi Otello

2014/15

38 / 360

Per.Andersson@cs.lth.se

having Clauses

You can control which groups that should be present in the output by

introducing a condition about the group.
Find the composers, except Verdi, who have written more than two

operas:

select composer, count (*)

from Operas
where composer <> ’Verdi’

group by composer
having count (*) > 2:

Note the order of selection:
O first where (determine which tuples to include),

@ then group by,
© last having (determine which groups to include).

2014/15

39 / 360

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

Database Modifications — Insertion

Insert a new tuple into the relation StarsIn(title, year, starName):

insert into StarsIn(title, year, starName)
values (’The Maltese Falcon’, 1942, ’Sidney Greenstreet’);

Since we here give new values for all the attributes we may instead write:

insert into Starsln
values (’The Maltese Falcon’, 1942, ’Sidney Greenstreet’);

When this form is used, the attribute values must be in the same order as
in the definition of the relation schema. This is sensitive to changes in the
relation schema, so it is better to use the first form.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 40 / 360

Per.Andersson@cs.lth.se

Delete Sidney Greenstreet as a star in The Maltese Falcon:

delete from Starsln

where title = ’The Maltese Falcon’ and
year = 1942 and
starName = ’Sidney Greenstreet’;

Note that the tuple must be described precisely. This would delete all
occurrences of Sidney Greenstreet as a star:

delete from Starsln
where starName = ’Sidney Greenstreet’;

And this would delete all tuples from the relation:

delete from Starsln;

Per Andersson (Per.Andersson@cs.lth.se) SQL 2014/15

41 / 360

Per.Andersson@cs.lth.se

Update the relation MovieExecs(name, address, certNbr,
netWorth). Double the net worth of all executives:

update MovieExecs
set netWorth = 2 * netWorth;

Attach the title ’Pres. ’ in front of the name of every movie executive
who is the president of a studio (described by the relation Studios (name,
address, presCNbr)):

update MovieExecs
set name = ’Pres. ’ || name
where certNbr in (select presCNbr from Studios);

| | is string concatenation.

MySQL: use concat (stringl, string2) to concatenate strings.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 42 / 360

Per.Andersson@cs.lth.se

Defining a Relation Schema

A table is created in SQL with the create table statement. You list all
attributes with their data types.
Example:

create table Stars (
name char (20),
address varchar (256) ,
gender char(1) default ’?7’,
birthdate date

);

See next slide for possible data types.

Per Andersson (Per.Andersson@cs.lth.se) SQL 2014/15 43 / 360

Per.Andersson@cs.lth.se

Data Types

char (n)
varchar (n)

boolean

int, integer
float, real
decimal(n,d)
date, time
blob

A character string of fixed length, n characters, padded
with blanks.

A character string of varying length, at most n charac-
ters.
True or false or unknown (!). In MySQL, boolean

Is a synonym for tinyint and true is 1, false is O,
unknown IS null.

Integers.

Floating-point numbers.

Real numbers, n positions, d decimals.
Date and time.

“Binary Large Objects”

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 44 / 360

Per.Andersson@cs.lth.se

Modifying Relation Schemas

Delete a table:

drop table Stars;
Add a column:

alter table Stars add phone char(16);
Delete a column:

alter table Stars drop birthdate;

Note: adding and deleting columns is common — databases are long-lived
and changed many times during their lifetime.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 45 / 360

Per.Andersson@cs.lth.se

Indexes

An index on an attribute of a relation is a data structure that makes it
efficient to find those tuples that have a fixed value for the attribute.

It would speed up queries like the following if we could find the movies
made in a specific year quickly:

select *
from Movies
where studioName = ’Disney’ and year = 1990;

An index on the year attribute is created with:
create index YearIndex on Movies(year);

and deleted with:

drop index YearIndex on Movies;

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 46 / 360

Per.Andersson@cs.lth.se

Index Selection

Naturally:

@ An index on an attribute speeds up queries where a value for the
attribute is specified.

@ An index makes insertions, deletions, and updates more time
consuming.

Index selection is a difficult task!

Usually, the DBMS automatically creates an index on the primary key
attributes of a relation. More about keys later.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 47 / 360

Per.Andersson@cs.lth.se

Tables created with create table actually exist in the database.
Another class of relations, views, do not exist physically. They are created
with create view as the answer to a query and are materialized when
they are accessed. Views can be queried as other relations, and sometimes
also modified. You cannot have an index on a view.

Example:

create view ParamountMovies as
select title, year

from Movie

where studioName = ’Paramount’;

select title

from ParamountMovies
where year = 1976;

There are rules for modification of relations via views.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 48 / 360

Per.Andersson@cs.lth.se

View Advantages

Views are good for several things:

@ to restrict what data a user sees. You can create a view and give a
user access rights to this view only, not to the underlying tables,

@ to simplify queries where another query is used more than once.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 49 / 360

Per.Andersson@cs.lth.se

Materialized Views

Some DBMS's (not MySQL) support materialized views:

@ like a normal (“virtual”) view, but the values are stored in the
database (like a table), not recomputed every time the view is
accessed,

o efficient if the view is used frequently,

@ but the view must be recomputed by the DBMS when one of the
underlying base tables changes (like an index).

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 50 / 360

Per.Andersson@cs.lth.se

The data in a database should be correct . ..

Data can be checked by the application program when it is entered, but
some of these checks can be automatically performed by the DBMS.
Integrity constraints in SQL:

@ Key constraints

@ Foreign-key constraints

@ Assertions (not in MySQL)
o Triggers

Key constraints and foreign-key constraints are covered here, triggers later.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 51 / 360

Per.Andersson@cs.lth.se

Primary Key Constraints

A key on a relation is an attribute, or a set of attributes, that uniquely
identifies each tuple in a relation.

Example: Persons(persNo, name, address). persNo is a key, name
Is not a key, address is not a key, name+address is not a key.

SQL (two equivalent variants):

create table Persons (
persNo char(11),
name varchar (40) ,
address varchar(60),
primary key (persNo)
) ;

create table Persons (
persNo char(11l) primary key,
name varchar (40) ,
address varchar (60)

);

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 52 / 360

Per.Andersson@cs.lth.se

Invented (“Synthesized”) Keys

For many relations, the selection of attributes that are to be used as a
primary key is straightforward. In the Persons example, the person
number is an obvious key (actually, person numbers were invented for this
purpose.)

But consider the Movies relation that we have used:

Movies(title, year, filmType, studioName, prodNbr)

We will show later that {title, year} is a key to the Movies relation.
But it may be costly to use a string and an integer as a key, and also
impractical if you later find that there actually exist two movies with the

same name that are made in the same year.

In practice, you would probably invent a “movie identification number”
to use as a key for the relation. It would be advantageous if this number
could be accepted as a standard by the whole movie industry.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 53 / 360

Per.Andersson@cs.lth.se

Invented Keys in MySQL

In MySQL, you usually use an auto increment column when you need an
invented key. Example:

select * from T;

b —————— +
| x | vy |
create table T (t———t————— - +
X integer auto_increment, | 1 | first |
y varchar(10), | 2 | second |
primary key (x) | 3 | third |
) ; -t +
insert into T(y) values(’first’); select last_insert_id();
insert into T values(0, ’second’); Fomm +
insert into T values(null, ’third’); | last_insert_id() |
e +
| 3 |
e +

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 54 / 360

Per.Andersson@cs.lth.se

Primary Key Consequences

If you declare an attribute (or a set of attributes) S as a primary key, you
state that:

@ two tuples cannot agree on all of the attributes in S,
@ attributes in S cannot have null as a value.

Any insertion or update that violates one of these conditions will be
rejected by the DBMS.

55 / 360

Per Andersson (Per.Andersson@cs.lth.se) SQL 2014/15

Per.Andersson@cs.lth.se

Declaring Keys with unique

Keys may be declared with unique instead of with primary key. This
means almost the same, but:

@ there may be any number of unique declarations, but only one
primary key,

@ unique permits nulls in the attribute values, and nulls are always
considered unique.

Per Andersson (Per.Andersson@cs.lth.se) SQL 2014/15 56 / 360

Per.Andersson@cs.lth.se

Foreign Keys

A foreign key is an attribute in a relation that references a key (primary
key or unique) in another relation. Example:

Studios(name, address, presCNbr)
MovieExecs(name, address, certNbr, netWorth)

We expect that each studio president is also a movie executive (or null, if
the studio doesn’t have a president at the present time). This is enforced
by specifying presCNbr as a foreign key.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 57 / 360

Per.Andersson@cs.lth.se

Declaring Foreign Keys

The Studios relation on the previous slide can be written:

create table Studios (
name char(30),
address varchar(255),
presCNbr int,
primary key (name),
foreign key (presCNbr) references MovieExecs(certNbr)

);

or, alternatively, in standard SQL but NOT in MySQL:

create table Studios (
name char (30) primary key,
address varchar(255),
presCNbr int references MovieExecs(certNbr)

)

certNbr must be a key (primary or unique) in MovieExecs. MySQL: only
the InnoDB storage engine supports foreign keys.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 58 / 360

Per.Andersson@cs.lth.se

Foreign Key Checks

We wish to state that Steven Spielberg, certNbr = 12345, is the
president of Fox studios (he isn't). The following is ok:

insert into Studios values(’Fox’, ’Hollywood’, 12345);

This will fail, since there is no movie executive with certNbr = 99999:
insert into Studios values(’Fox’, ’Hollywood’, 99999);

The following updates fail — foreign keys are always checked.

update Studios set presCNbr = 99999 where name = ’Fox’;
update MovieExecs set certNbr = 99999 where certNbr = 12345;
delete from MovieExecs where certNbr = 12345;

More on next slide.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 59 / 360

Per.Andersson@cs.lth.se

More on Deletes and Updates

There are alternatives on what to do on deletes and updates. Suppose

that Steven Spielberg retires — then we must set presCNbr = null in
the Fox studio before we delete Steven's row in the MovieExecs table.

This is simpler:

foreign key (presCNbr) references MovieExecs(certNbr)
on delete set null

Or we can delete the studio if the president retires (not realistic):
foreign key (presCNbr) references MovieExecs(certNbr)

on delete cascade

Similar with updates — what if Steven's certificate number is changed?
Do it like this:

foreign key (presCNbr) references MovieExecs(certNbr)
on delete set null
on update cascade

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 60 / 360

Per.Andersson@cs.lth.se

Constraints on Attributes

You can disallow tuples in which an attribute is null by declaring the
attribute as not null:

presCNbr int not null,

You can also make simple checks on attribute values:

presCNbr int check (presCNbr > 100000),

The following constraint is correct, but it cannot replace the foreign-key
declaration:

presCNbr int check
(presCNbr in (select certNbr from MovieExecs)),

since the constraint isn't checked when a tuple from the MovieExecs
relation is deleted or updated.

MySQL: check on attributes is not supported (not null is).

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 61 / 360

Per.Andersson@cs.lth.se

Database Design — E/R Modeling

Database Design

Entity Sets, Relationships

UML Notation

Finding Entity Sets and Relationships
Constraints

Weak Entity Sets

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 62 / 360

Per.Andersson@cs.lth.se

E/R Modeling, Introduction

What information must the database hold? What are the relationships
between the information components?

These questions are answered during the analysis phase of database
development, when an analysis model is developed. This is called
Entity-Relationship (E/R) modeling. Entities are “information pieces”,
“things" (compare with objects in object-oriented modeling).

After the analysis, the E/R model is translated into a relational model
with tables, attributes, keys, etc. (compare with the design phase in
object-oriented modeling).

Finally, the relational model is expressed in a data definition language
and the queries in a data manipulation language (compare with the
implementation phase in object-oriented modeling).

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 63 / 360

Per.Andersson@cs.lth.se

Database Design, Overview

|deas

Movie = = Star

0.”
1

Studio

E/R design

Movies(title, year, ...)
Relational schema Stars(name, ...)

create table Movies (
title varchar(40),
Relational DBMS year int,

) ;

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 64 / 360

Per.Andersson@cs.lth.se

Elements of the E/R Model

Element types in the E/R model:

Entity sets Similar to (object-oriented) classes but contain only data, no
operations. An entity set is a collection of entities (objects).
Note: | use singular names for entity sets (as for classes),
corresponding plural names for relations.

Attributes The data in the entity sets. Attributes are atomic, i.e.
“simple values” (ints, chars, strings, but not arrays, structs,
Relationships Connections between entity sets (associations in
object-oriented modeling).

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 65 / 360

Per.Andersson@cs.lth.se

Entity-Relationship Diagrams

An E/R model is expressed in diagram form. There are several notations
available, none of which is standardized. The book uses boxes for entity
sets, ovals for attributes, and diamonds for relationships. Multiplicity of
relationships is expressed with different kinds of arrow heads.

Movie Stars-in Star

Studio

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling

2014/15 66 / 360

Per.Andersson@cs.lth.se

The First Diagram Explained

@ Entity sets Movie, Star, and Studio.

@ Movies have a title, a production year, a length, and a type, “color”
or “B/W". Stars have a name and an address. Studios have a name
and an address.

@ A movie has several stars, a star can star in several movies. A movie
is owned by one studio (the arrow head means “one"), a studio can
own several movies.

Movie Stars-in Star

@ owns Studio

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 67 / 360

Per.Andersson@cs.lth.se

UML Notation

We will use UML (Unified Modeling Language) instead of the conventional

E/R notation (this is becoming common in the database world).
Advantages with UML:

@ standardized,
@ compact,

e multiplicity is explicit.

Movie
title 0.* stars-in q Star
year name
length address
filmType
0.*

1
Studio

name

address

owns

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 68 / 360

Per.Andersson@cs.lth.se

UML Notation Details

relationship wiEﬁ ™)

name
Movie 3
title 0 - @ o« |__Star
year S——— nam%
length _address
filmType o

— 0. —
entity set — oWwns U attrlbutesﬁ

cf. “class”
multiplicity —
zero to many

Studio
name
address

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 69 / 360

Per.Andersson@cs.lth.se

Instances of an E/R Diagram

In object-oriented modeling, a class diagram can be instantiated to show
objects instead of classes. Similarly, an E/R diagram can be instantiated

to show entities instead of entity sets.
Example (not UML notation, and most attribute values have been

omitted):

Michael
Douglas

Basic
Instinct

Carolco Sharon
Pictures Stone

Total

Recall

Arnold
Schwarzenegger

E/R Modeling 2014/15 70 / 360

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

Multiplicity

A company has many employ-
ees; each employee may work in
several companies.

A company has many employ-
ees; each employee works in one
company.

A company has many employ-
ees; each employee works in one
company or is unemployed.

Company 0 *employ% —1 Person
Company 3 employ% ~—1 Person
Company 0 1employ% —1 Person

Per Andersson (Per.Andersson@cs.lth.se)

E/R Modeling

2014/15

71 / 360

Per.Andersson@cs.lth.se

Multiway Relationships

A star signs a contract with a studio for a movie:

Star contract Movie

0..”

oot
Studio

It's not easy to figure out the multiplicities in such relationships. Easier to
promote the relationship to an entity set:

Movie

Star T 0. Contract 0~

0.”
1

Studio

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 72 / 360

Per.Andersson@cs.lth.se

Roles

In addition to naming a relationship, you can specify the roles that the
entities play in the relationship. A role name is written at the end of the
relationship line.

employer employee
Company 0..” employs 0..”

Person

Roles are especially useful when an entity set has a relationship to itself:

husband
Person 01

wife | 0..1 married-to

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 73 / 360

Per.Andersson@cs.lth.se

Attributes on Relationships

Reconsider the model with the company that has employees. Employees
are paid salaries. Where does the salary attribute belong?

@ Not in Company, since the company has many employees with
different salaries.

@ Not in Person, since a person may be employed by many companies
and thus have many different salaries, or be unemployed and have no

salary.
The attribute belongs to the relationship, employs. In UML:

Employment
salary

0.* emplloys 0..*

Person

Company

2014/15 74 / 360

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling

Per.Andersson@cs.lth.se

Subclasses

There are special kinds of movies: cartoons and murder mysteries.
Expressed with the “is-a” relationship (generalization/specialization):

Movie
title
year
length
Star filmType
0..*
& weapon

This is similar to inheritance in object-oriented modeling.

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 75 / 360

Per.Andersson@cs.lth.se

Finding Entity Sets and Relationships

We have not considered how we go about finding the entity sets and
relationships in a system, just said that they should “reflect reality” .

In object-oriented modeling one common technique to find classes is to
pick out the nouns from the requirements specification. This will result in
a long list of names, and then there are rules for determining which of the
names that are good classes. Many associations can also be found in the
requirements specification.

This technique works also in database modeling. Some of the nouns in
the list will become entities, some will become attributes, some are
irrelevant, etc.

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 76 / 360

Per.Andersson@cs.lth.se

Design Principles

If you are used to object-oriented modeling, you have already met most of
the principles of good design.

Faithfulness:
@ The entity sets and their attributes should reflect reality.

In order to meet this requirement you have to study the current system in
detalil.

Example, where we have entity sets Course and Instructor, with a
relationship teaches between them. What is the multiplicity of this
relationship?

@ Do instructors teach more than one course? Are there instructors that
do not teach?
@ Can courses be taught by more than one instructor?

The answers to these and similar questions may vary depending on the
policies and needs of the institution that is being modeled.

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 77 / 360

Per.Andersson@cs.lth.se

Choosing Relationships

Star contract Movie

0.”

0..1
Studio

We have the relationship contract — do we still need the relationships
stars-in (Star <— Movie) and owns (Studio <+— Movie)?

@ If a star can appear in a movie only if there's a contract we don't
need stars-in.

@ If all movies have at least one star under contract we don’t need owns.

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 78 / 360

Per.Andersson@cs.lth.se

Expressing Relationships

This is not a correct model:

Movie
title Studio
year name
length address
filmType
— > | studioName

The attribute studioName expresses the same thing as the relationship
owns that we had earlier, but in the wrong way:

@ one of the main purposes of the E/R model is to make relationships
clear and visible,

@ so relationships must not be hidden in attributes.

Later, when the E/R model is translated into relations, the relation

Movies will (maybe) contain an attribute studioName as a foreign key,
but that is an implementation detail.

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 79 / 360

Per.Andersson@cs.lth.se

The Right Kind of Element

Movie
title 0.* owns ’ Studio
year name
length address
filmType

Why is Studio an entity set? Couldn't we put the name and address of
the studio as attributes in Movie instead?
The answer is no, since

@ studios are probably important real-world entities that deserve their
own description, and

@ to do so would lead to redundancy: we would have to repeat the
studio address for each movie.

The case would be different if we did not record the address of studios,
but even then it would probably be a good idea to keep the entity set
Studio during analysis, and maybe remove it later, during design.

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 80 / 360

Per.Andersson@cs.lth.se

Modeling Constraints

Constraints give additional information on a model. Different kinds:

@ Key constraints

@ Single-value constraints

@ Referential integrity constraints

@ Domain constraints

@ General constraints

Constraints are part of the database schema and may be enforced by a

DBMS.

Per Andersson (Per.Andersson@cs.lth.se)

E/R Modeling

2014/15

81 / 360

Per.Andersson@cs.lth.se

Key Constraints

A key is an attribute, or a set of attributes, that uniquely identifies an
entity.

@ A key can consist of more than one attribute. For instance, (title +
year) uniquely identifies a movie. (Not just title by itself, since there

may be several movies with the same title, but hopefully made in
different years.)

@ There can be more than one possible key. Pick one and use it as the

primary key. In a generalization hierarchy, the key must be contained
in the “root” entity set.

NOTE: in database modeling, keys are essential!l Not so in object-oriented
modeling, where each object has a unique identity.

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 82 / 360

Per.Andersson@cs.lth.se

Keys in the E/R Model

To show keys in a UML diagram, you underline the attributes belonging to
a key for an entity set:

Movie
title 0.* OWNS ’ Studio
year name
length address
filmType

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 83 / 360

Per.Andersson@cs.lth.se

Referential Integrity

Referential integrity means that an entity surely exists at “the other end”
of a relationship. Like this, where the multiplicity “1" tells us that every
movie is owned by a studio:

Movie
title 0.* Owns ’ Studio
year name
length address
filmType

Note that if a studio is deleted, all movies owned by that studio must also
be deleted.

The following is another case — there may be movies that are currently
not owned by any studio.

Movie
tille 0. Owns (1 Studio
year name
length address
filmType

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 84 / 360

Per.Andersson@cs.lth.se

Weak Entity Sets

An entity set which does not contain enough information to form a key is
called a weak entity set. Some attributes from another (related) entity set
must be used to form a key.

Example: a movie studio has several film crews. The crews are
numbered 1, 2, ... Other studios may use the same numbering, so to

identify a crew we must first identify the studio (using the name as a key),
then we can use the number to identify the crew.

<<weak>> 0.* unit-of ’ Studio
Crew name
number address

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 85 / 360

Per.Andersson@cs.lth.se

Weak Entity Sets, cont'd

We use the stereotype <<weak>> to designate a weak entity set. (This is
not a standard stereotype, but UML allows you to invent your own
stereotypes.)

The relationship to the entity set whose key is used to form the key for
the weak entity set is called a supporting relationship. We don't have any
notation to express this.

The example on the previous slide shows a common source of weak
entity sets, where an entity is existent-dependent on another entity.

Per Andersson (Per.Andersson@cs.lth.se) E/R Modeling 2014/15 86 / 360

Per.Andersson@cs.lth.se

The Relational Data Model

From Entity Sets to Relations
From Relationships to Relations
Combining Relations

Weak Entity Sets

Relationships With Attributes

Subclasses)

Per Andersson (Per.Andersson@cs.lth.se) The Relational Data Model 2014/15 87 / 360

Per.Andersson@cs.lth.se

The Relational Data Model

Suggested in 1970 by E.F. Codd. Today used in almost all DBMS's.
@ A relational database consists of relations (tables).
@ A relation has attributes (columns in the table).
@ A row in a table is called a tuple.

The relational model is very well understood, and high level, very efficient,
query languages (e.g., SQL) are supported.

During the analysis phase, however, it is better to use a model (E/R, for
instance), that is richer and more expressive. After analysis, the E/R
model is translated into relations.

Per Andersson (Per.Andersson@cs.lth.se) The Relational Data Model 2014/15 88 / 360

Per.Andersson@cs.lth.se

Before, and After, Relations

Hierarchical databases (1965—-1985)

@ Data is structured in trees.

@ Operations: tree traversal and node manipulation.
Network databases (1965-1985)

@ Data is structured in graphs.

@ Operations: graph traversal and node manipulation.
Relational databases (1975-7)

@ Data is structured in tables.

@ Operations: create new tables, modify tables, ...
Object-oriented databases (1990-7)

@ Data is structured in objects, with references.

@ Operations: methods in the objects.

Per Andersson (Per.Andersson@cs.lth.se) The Relational Data Model 2014/15 89 / 360

Per.Andersson@cs.lth.se

Relational Model Basics

Relationﬁ

title

Star Wars
Mighty Ducks

Attributeﬁ

124 color
1991 104 color

Wayne's Worl

% cdor >

Tuple ﬁ

@ Relation schema: Movies(title, year, length, filmType).

@ Relations are sets (order between tuples is immaterial).

@ Order between attributes is also immaterial.

Per Andersson (Per.Andersson@cs.lth.se)

The Relational Data Model 2014/15 90 / 360

Per.Andersson@cs.lth.se

E/R Model — Relational Model

In short:

@ Each entity set becomes a relation with the same attributes as the
entity set.

@ Each relationship becomes a relation whose attributes are the keys for
the connected entity sets, plus the attributes of the relationship.

But:
@ Special cases for relationships with multiplicity 1 (or 0..1).
@ Special treatment of weak entity sets.
o Careful treatment of generalization hierarchies (“is-a").
And:
@ Relations must be normalized to avoid redundancy.

Per Andersson (Per.Andersson@cs.lth.se) The Relational Data Model 2014/15 91 / 360

Per.Andersson@cs.lth.se

E/R Entity Sets — Relations

Movie
title 0.* stars-in g = Star
year name
length address
filmType
0.*

1
Studio

name

address

owns

Movies(title, year, length, filmType)
i Stars(name, address)
Studios(name, address)

Per Andersson (Per.Andersson@cs.lth.se) The Relational Data Model 2014/15 92 / 360

Per.Andersson@cs.lth.se

E /R Relationships — Relations

e 0.* starsin o | Star
year name

length address
filmType
0.”

’
Studio

name

address

owns

; Owns(title, year, studioName)
StarsIn(title, year, starName)

The relationship owns usually isn't implemented as a separate relation —
see slide 96. Notice the keys in the relations — they are related to the
multiplicities in the E/R model.

Per Andersson (Per.Andersson@cs.lth.se) The Relational Data Model 2014/15 93 / 360

Per.Andersson@cs.lth.se

Foreign Keys

Foreign keys in relations that come from relationships:

Owns(title, year, studioName)

In SQL, the corresponding table will look like this:

create table Owns (
title varchar (20),
year int,
studioName varchar(20) not null,
primary key (title, year),
foreign key (title, year) references Movies(title, year),
foreign key (studioName) references Studios(name)

);

Note not null: this is because there is a “1” on the studio side of the

relationship. Had the multiplicity been “0..1" we wouldn’t have specified
not null.

Per Andersson (Per.Andersson@cs.lth.se) The Relational Data Model 2014/15 94 / 360

Per.Andersson@cs.lth.se

Example Relations

Movie
title
year
length
filmType

0.”

stars-in

Star
name
address

title

Star Wars
Mighty Ducks
Wayne's World

title

Star Wars

Star Wars

Star Wars
Mighty Ducks
Wayne's World
Wayne's World

name

Carrie Fisher
Mark Hamill
Harrison Ford

year
1977
1991
1992

year
1977
1977
1977
1991
1992
1992

address

length filmType
124 color
104 color
95 color

starName
Carrie Fisher
Mark Hamill
Harrison Ford
Emilio Estevez
Dana Carver
Mike Myers

123 Maple St., Hollywood
456 Oak Rd., Brentwood
789 Palm Dr., Beverly Hills

The Relational Data Model

Per Andersson (Per.Andersson@cs.lth.se)

2014/15 95 / 360

Per.Andersson@cs.lth.se

Combining Relations

Relations that arise from relationships with multiplicity 1 (or 0..1) can be
deleted by modifying the relation on the “many” side.

0.* owns 1

Studio

length
filmType

Earlier, we used the schema:

Movies(title, year, length, filmType)

Owns(title, year, studioName)

Studios(name, address)

name
address

The studio is determined uniquely by the key for Movies, so we can use
the following, simpler, schema instead:

Movies(title, year, length, filmType, studiolName)

Studios (name, address)

The Relational Data Model

2014/15

96 / 360

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

The combining of relations on the previous slides works also for
relationships with multiplicity “0..1" instead of “1":

Movie

title
year
length
filmType

0.* 0Owns 0 1

Studio

Results in:

Movies(title, year, length, filmType, studiolName)

Studios(name, address)

name
address

In this case, studioName will be null if a movie doesn’t have an owning

studio.

The Relational Data Model

Per Andersson (Per.Andersson@cs.lth.se)

2014/15

97 / 360

Per.Andersson@cs.lth.se

Several Alternatives

Person | o1 owns g.1}—D0d

pName dName

Persons(pName, ...), Dogs(dName, ...), Owns (pName, dName) Good if
there are lots of persons who don't own a dog, and lots of
dogs without an owner, but introduces a new table.

Persons(pName, ..., dName), Dogs(dName, ...) Good if all (most)
persons own a dog.

Persons(pName, ...), Dogs(dName, ..., pName) Good if all (most) dogs
have an owner.

PersonsDogs(pName, ..., dName, ...) Good if all (most) persons own a
dog and all (most) dogs have an owner.

Per Andersson (Per.Andersson@cs.lth.se) The Relational Data Model 2014/15 98 / 360

Per.Andersson@cs.lth.se

When Not to Combine Relations

Many-many (0..* — 0..*) relationships may not be combined. Example:

filmType

0..x Stars-in g =

Star

name
address

If we combined the relations we would have to repeat all the information
about a movie (1length and £ilmType) for each star!

title year
Star Wars 1977
Star Wars 1977
Star Wars 1977
Mighty Ducks 1991
Wayne's World 1992
Wayne's World 1992

length filmType
124 color
124 color
124 color
104 color
95 color
95 color

The Relational Data Model

starName
Carrie Fisher
Mark Hamill
Harrison Ford
Emilio Estevez
Dana Carver
Mike Myers

Per Andersson (Per.Andersson@cs.lth.se)

2014/15 99 / 360

Per.Andersson@cs.lth.se

Handling Weak Entity Sets

Recall: A weak entity set does not contain enough information to form a
key.

@ The relation for a weak entity set must include also the key attributes
of the other (supporting) entity sets that help form the key.

@ A supporting relationship need not be converted to a relation.

<<weak>> 0.* unit-of ’ Studio
Crew name
number address

This becomes:

Studios(name, address)

Crews (number, studioName)

Per Andersson (Per.Andersson@cs.lth.se) The Relational Data Model 2014/15 100 / 360

Per.Andersson@cs.lth.se

Relationships with Attributes

Create relations from the following model:

Employment
salary

0.* emplloys 0.”

Company Person

Company (cName, ...)

Person(pNbr, ...)

Employment (cName, pNbr, salary)

We get exactly the same result if we promote the employs relationship to
a weak entity set:

<<weak>>
Employment
salary

Person

Company 3

Per Andersson (Per.Andersson@cs.lth.se) The Relational Data Model 2014/15 101 / 360

Per.Andersson@cs.lth.se

Subclass Structures — Relations

Movie
title
year
length
Star f|ImTypZ§
0.~
- weapon

Different options:
E/R create a relation for each entity set.
Object-oriented create a relation for each possible “concrete” entity set.

Null values create one relation containing all attributes, use null where
an attribute is not applicable.

Per Andersson (Per.Andersson@cs.lth.se) The Relational Data Model 2014/15 102 / 360

Per.Andersson@cs.lth.se

Subclass Examples

None of the following alternatives is the best in all respects. The E/R
method is the most commonly used.

E/R:
Movies(title, year, length, filmType)

MurderMysteries(title, year, weapon)

Cartoons(title, year)

Object-Oriented:
Movies(title, year, length, filmType)

MurderMysteries(title, year, length, filmType, weapon)

Cartoons(title, year, length, filmType)

Nulls:

Movies(title, year, length, filmType, weapon)
where weapon is null for regular movies and cartoons. Often necessary to
introduce a type-attribute (like here, to differentiate between regular
movies and cartoons).

Per Andersson (Per.Andersson@cs.lth.se) The Relational Data Model 2014/15 103 / 360

Per.Andersson@cs.lth.se

JDBC, Transactions

@ SQL in Programs

@ Embedded SQL and Dynamic SQL

o JDBC

@ Drivers, Connections, Statements, Prepared Statements
)

)

Updates, Queries, Result Sets

Transactions

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 104 / 360

Per.Andersson@cs.lth.se

SQL in Programs

We have started by using SQL interactively, i.e., by writing SQL
statements in a client and watching the results. All DBMS's contain a
facility for doing this, but it is not intended for end users.

Instead, the SQL statements are specified within programs.

Client
(mysql)
SQL
SQL
Application |« » DBMS

SQL \

HTTP

Web ‘l, Web
Browser Server

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 105 / 360

Per.Andersson@cs.lth.se

Advantages and Problems

The most important advantage with SQL in programs:

@ You get access to a powerful programming language with advanced
program and data structures, graphics, etc.

But there are also problems. SQL uses relations as the only data structure,
“normal” programming languages use other structures: classes, arrays,
lists, ... There must be a way to overcome this mismatch:

@ How are values passed from the program into SQL commands?

@ How are results of SQL commands returned into program variables?

@ How do we deal with relation-valued data?

2014/15 106 / 360

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

Embedded SQL

One way to interface to a DBMS is to embed the SQL statements in the
program. Example (C language, Java's SQLJ is similar):

void createStudio() {
EXEC SQL BEGIN DECLARE SECTION;
char studioName[80], studioAddr[256];
char SQLSTATE[6];
EXEC SQL END DECLARE SECTION;

/* read studioName and studioAddr from terminal */

EXEC SQL INSERT INTO Studios(name, address)
VALUES (:studioName, :studioAddr);
}

This code must be preprocessed to produce a normal C program with

special DBMS function calls. The C program is then compiled and linked
with a DBMS library.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 107 / 360

Per.Andersson@cs.lth.se

Dynamic SQL

Another way to interface to a DBMS is to let the program assemble the
SQL statements at runtime, as strings, and use the strings as parameters
to the library function calls (CLI, Call Level Interface). Then, the

preprocessing step can be skipped.
Example (Java, JDBC):

void createStudio() {
String studioName, studioAddr;
/* read studioName and studioAddr from terminal */
String sql = "insert into Studios(name, address) "
+ "values (7, ?)";
PreparedStatement ps = conn.prepareStatement (sql);
ps.setString(1l, studioName);
ps.setString(2, studioAddr);
ps.executeUpdate() ;

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 108 / 360

Per.Andersson@cs.lth.se

JDBC

JDBC (just a name, sometimes said to mean Java Database Connectivity)
is a call level interface that allows Java programs to access SQL databases.
JDBC is a part of the Java 2 Platform, Standard Edition (packages
java.sql, basics, and javax.sql, advanced and new features).

In addition to the Java classes in J2SE you need a vendor-specific driver
class for your DBMS.

ODBC is an earlier standard, not only for Java.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 109 / 360

Per.Andersson@cs.lth.se

Loading the Database Driver

To load a database driver (in this example, a MySQL driver), you use the
following statement:

try {

Class.forName("com.mysql. jdbc.Driver");
} catch (ClassNotFoundException e) {

// ...1f the class cannot be found

+

You must load the driver only once in the program.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 110 / 360

Per.Andersson@cs.lth.se

Per Andersson (Per.Andersson@cs.lth.se) JDBC 2014/15

Establishing a Connection

When a driver has been loaded you connect to the database with a
statement of the following form:

Connection conn = DriverManager.getConnection/(
url, username, password) ;

Connection s a class in package java.sql,

url Is a vendor- and installation-specific string,
username Is your database login name,
password Is your database login password.

Example (for our local installation):

try {
Connection conn = DriverManager.getConnection/(
"jdbc:mysql://puccini.cs.lth.se/" + "dbO1",
"db01", "abc123de");
} catch (SQLException e) { ... }

111 / 360

Per.Andersson@cs.lth.se

A Note on SQLExceptions

All JDBC calls can throw SQLExceptions (package java.sql). In the
following, we will not show the necessary try catch structure that is
necessary to handle these exceptions:

try {
// ... JDBC calls
} catch (SQLException e) {
// ... do something to handle the error
} finally {
// ... cleanup
+

Do not leave the catch block empty. As a minimum, write something like
this:

} catch (SQLException e) {
e.printStackTrace();

+

Per Andersson (Per.Andersson@cs.lth.se) JDBC 2014/15 112 / 360

Per.Andersson@cs.lth.se

JDBC Statement Objects

To send an SQL statement to the DBMS, you use a JDBC Statement
object or (better) a PreparedStatement object (package java.sql). An
active connection is needed to create a statement object:

Statement stmt = conn.createStatement() ;

At this point stmt exists, but it does not have an SQL statement to pass
on to the DBMS. You must supply that, as a string, to the method that is
used to execute the statement. Example:

String sql = "update BankAccounts "
+ "set balance = balance + 1000.00 "
+ "where accntNbr = ’SA-223344°";

stmt.executeUpdate (sql) ;

Per Andersson (Per.Andersson@cs.lth.se) JDBC 2014/15 113 / 360

Per.Andersson@cs.lth.se

SQL Injection

Be careful to check all input that you request from a user. Do not use
unchecked input as part of an SQL string. Example:

String accntNbr = requestAccntNbrFromUser () ;
double amount = requestAmountFromUser () ;
String sql = "update BankAccounts"
+ "set balance = balance + " + amount + " "
+ "where accntNbr = " + accntNbr + "’";
stmt . executeUpdate(sql) ;

A user who knows SQL could enter the following string when requested to
enter the account number (this is called “SQL injection”):

> or ’x’ = ’x

The resulting condition always evaluates to true! The problem doesn't
occur if you use PreparedStatements (next slide).

Per Andersson (Per.Andersson@cs.lth.se) JDBC 2014/15 114 / 360

Per.Andersson@cs.lth.se

Prepared Statements

In a PreparedStatement, you use JDBC calls to insert parameter values
into an SQL statement. All strings are properly escaped, and the correct
delimiters are supplied, so there is no danger of SQL injection.

String sql = "update BankAccounts "
+ "set balance = balance + 7 "
+ "where accntNbr = 7";
PreparedStatement ps = conn.prepareStatement(sql);

The question marks are placeholders for the parameters. These are
plugged in as follows:

ps.setDouble(1l, amount);
ps.setString(2, accntNbr);

Now the statement is ready for execution:

ps.executeUpdate() ;

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 115 / 360

Per.Andersson@cs.lth.se

Exceptions and Closing of Statements

In the previous examples, we didn't close the statement object if an
exception occurred. This we must do, and it is best done in the finally

block:

try {
// ... JDBC calls
} catch (SQLException e) {
// ... do something to handle the error
} finally {
try {
ps.close();
} catch (SQLException e2) {
// ... can do nothing if things go wrong here
+
+

The code in the finally block is always executed, regardless of what has
happened before.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 116 / 360

Per.Andersson@cs.lth.se

Per Andersson (Per.Andersson@cs.lth.se) JDBC 2014/15

Creating Tables

Different kinds of SQL statements must be executed with different JDBC
calls:

execute(uery select statements.
executeUpdate insert, update, delete, ..., (all modifying statements).
In the examples that follow, we will assume a database with the following

schema (bars sell beers at different prices):

Bars (name, address)
Sells(barName, beerName, price)

It is possible to create these tables from JDBC, but database tables are
usually not created or deleted in application programs (instead, in mysql
or a similar database client).

117 / 360

Per.Andersson@cs.lth.se

Insert /Update Statements

Insert some data into the beer database, then raise the price of Urquell at
Bishop's Arms:

String sql = "insert into Bars "

+ "values (’Bishop’’s Arms’, ’Lund’)";
PreparedStatement ps = conn.prepareStatement(sql);
ps.executeUpdate() ;

sql = "update Sells "
+ "set price = price + 2.00 "
+ "where barName = ’Bishop’’s Arms’ "
+ "and beerName = ’Urquell’)";

ps = conn.prepareStatement(sql);

int n = ps.executeUpdate();

Comments on next slide.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 118 / 360

Per.Andersson@cs.lth.se

Comments, Insert/Update

Notice:
@ No semicolon after the SQL statement string.
@ Two consecutive ’-s inside an SQL string become one ’
(’Bishop’’s Arms’).
@ executeUpdate returns the number of affected tuples when an
update, insert or delete statement is executed. It returns zero on

create and drop statements.

2014/15 119 / 360

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

Update Example

A more general method to raise the price of a beer at a specific bar.

boolean raiseBeerPrice(String bar, String beer, double amount) {
try {
String sql = "update Sells "

+ "set price = price + 7 "

+ "where barName = ? and beerName = 7";
PreparedStatement ps = conn.prepareStatement (sql);
ps.setDouble(1l, amount);
ps.setString(2, bar);
ps.setString(3, beer);
int n = ps.executeUpdate();
if (n!'=1) {

return false;
+
} catch (SQLException e) {
return false;
} finally { ... }
return true;

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 120 / 360

Per.Andersson@cs.lth.se

select Statements

To issue a select query you execute the statement with executeQuery.

This method returns an object of class ResultSet that functions as an

iterator for the returned bag of tuples. A tuple is fetched with the next ()

method, and attributes of a tuple are fetched with getXXX() methods.
Example:

String sql = "select * from Sells";
PreparedStatement ps = conn.prepareStatement(sql);
ResultSet rs = ps.executeQuery();
while (rs.next()) {

String bar = rs.getString("barName") ;

String beer = rs.getString("beerName");

double price = rs.getDouble("price");

System.out.println(bar + " sells " + beer

+ " for " + price + " kr.");

¥

next () returns false if there are no more tuples.

Per Andersson (Per.Andersson@cs.lth.se) JDBC 2014/15 121 / 360

Per.Andersson@cs.lth.se

Result Sets

Notice: there is at most one ResultSet object associated with each
statement object. So the following sequence of statements is wrong:

ResultSet rs = ps.executeQuery();

ps.close();
String beer = rs.getString("beerName");
// the statement is closed, the result set no longer exists

This is also wrong:

ps = conn.prepareStatement ("select * from Sells where barName=7");
ps.setString(1l, "Bishop’s Arms’");

ResultSet rsl = ps.executeQuery();

ps.setString(1l, "John Bull");

ResultSet rs2 = ps.executeQuery();

String beer = rsl.getString("beerName");
// rsl no longer exists, it has been replaced by rs2

Per Andersson (Per.Andersson@cs.lth.se) JDBC

2014/15 122 / 360

Per.Andersson@cs.lth.se

Different get Methods

There are overloaded versions of the get methods that access a column
not by name but by ordinal number. The following gives the same result
as the get-s on slide 121:

String bar = rs.getString(1l);
String beer = rs.getString(2);
double price = rs.getDouble(3);

This form is not recommended, since it presumes knowledge of the column
order.

There are several different get methods: getByte, getShort, getInt,
getLong, getFloat, getDouble, getBoolean, getString, ...

Per Andersson (Per.Andersson@cs.lth.se) JDBC 2014/15 123 / 360

Per.Andersson@cs.lth.se

Let the DBMS Do the Work — 1

It may seem natural to write code like the following:

String sql = "select * from Sells";
PreparedStatement ps = conn.prepareStatement (sql);
ResultSet rs = ps.executeQuery();

while (rs.next()) A
if (rs.getDouble("price") < 40.00 &&
rs.getString("beerName") .equals("Urquell”)) {

System.out.println("Cheap Urquell at: "
+ rs.getString ("barName")) ;

+

After all, this is “normal” programming.

2014/15 124 / 360

Per Andersson (Per.Andersson@cs.lth.se) JDBC

Per.Andersson@cs.lth.se

Let the DBMS Do the Work — 2

You should let the DBMS do the work it is designed to do:

String sql = '"select barName " +
+ "from Sells "
+ "where price < 40.00 and beerName = ’Urquell’";

PreparedStatement ps = conn.prepareStatement(sql);
ResultSet rs = ps.executeQuery();
while (rs.next()) {
System.out.println("Cheap Urquell at: " +
rs.getString("barName")) ;

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 125 / 360

Per.Andersson@cs.lth.se

Communication Java < Database

Guidelines:

@ The database communication should be in one class. Do not spread
SQL statements all over your program!

@ Write methods in the class that return results of SQL queries, or
perform updates.

@ Do not return ResultSet objects or anything JDBC-related.

@ select address from Bars where barName = 7;
= public String getAddress(String barName) { ... }

@ select barName from Bars;
= public ArrayList<String> getBarNames() { ... }

@ select *x from Bars where barName = 7;
= public Bar getBar(String barName) { ... }
and write a class Bar with the same attributes as the relation.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 126 / 360

Per.Andersson@cs.lth.se

Transactions

Normally, databases are used by several clients simultaneously, and the
DBMS executes the code for the clients in parallel (one thread for each
client). The DBMS must ensure that actions performed by different clients
do not interfere with each other.

The client code is grouped into transactions. A transaction is a
sequence of actions that is performed as a “unit”. The DBMS guarantees
that a transaction is ACID:

Atomic either performed in its entirety or not performed at all,

Consistent transforms the database from one consistent state to another
consistent state,

Isolated executes independently of other transactions, so the partial
effects of an incomplete transaction is invisible,

Durable the effects of a successfully completed transaction are
permanently recorded in the database.

Per Andersson (Per.Andersson@cs.lth.se) JDBC 2014/15 127 / 360

Per.Andersson@cs.lth.se

Commit and Rollback

Normally, a client executes in “auto-commit”™ mode. This means that each
SQL statement is its own transaction — the changes performed by the
statement are immediately committed (written to the database).

A transaction is started with a command (START TRANSACTION)
and ended with another command (COMMIT to save changes, or
ROLLBACK to undo all changes).

delete from A;

start transaction;

insert into A values (1);
insert into A values (2);
commit;

-— A contains 1 and 2

start transaction;

insert into A values (3);
rollback;

—— A still contains 1 and 2

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 128 / 360

Per.Andersson@cs.lth.se

Problem: Lost Update

Two transactions T1 and T2 (x could be a bank account balance):

Tl: read x; x x + 100; write x; commit.
T2: read x; x = x - 100; write x; commit.

There will be problems (a “lost update”) if T1's and T2's actions are
interleaved:

T1 T2 X
read x 1000
read x
x = 1000+100
x = 1000-100
write x 1100
commit
write x 900
commit

Here, T1 must execute before T2, or T2 before T1.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15

129 / 360

Per.Andersson@cs.lth.se

Problem: Dirty Read

Another problem is called “dirty read”. It may occur if a transaction
performs a rollback after it has written a data item, and that item has
been read by another transaction.

T1 T2 X

read x 1000

x = 1000+100

write x 1100
read x "dirty read"
x = 1100-100

rollback 1000
write x 1000
commit

Other problems: unrepeatable read, where a transaction reads the same
data item twice and receives different answers because another transaction
has changed the item; and the phantom problem, where a transaction
receives different answers to a query because another transaction has
modified a table.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 130 / 360

Per.Andersson@cs.lth.se

Using Locks to Control Transactions, Deadlocks

One way of solving problems like the ones described is to use locks. A
transaction may request a lock on a data item. If another transaction
requests a lock for the same item it will have to wait until the first
transaction has released the lock.

Locks may be of different granularity. No problems will surely occur if
each transaction starts by locking the entire database, but since that
would prevent all concurrency it is not acceptable. InnoDB and several
other DBMS's lock rows in tables, others lock entire tables.

Two transactions can become stuck waiting for each other to release a
lock. This is called deadlock and must be detected (or prevented) by the
DBMS. Servers respond to deadlock by aborting at least one of the
deadlocked transactions and releasing its locks.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 131 / 360

Per.Andersson@cs.lth.se

Different Kinds of Locks

Most DBMS's support two kinds of locks:

Read (Shared) Lock A transaction which intends to read an object needs
a read lock on the object. The lock is granted if there are no
locks, or only other read locks, on the object (otherwise the
transaction must wait for the other locks to be released).

Write (Exclusive) Lock A transaction which intends to write an object
needs a write lock on the object. The lock is granted only if
there are no read or write locks on the object (otherwise the
transaction must wait for the other locks to be released)

Transactions that are read only (only hold read locks) can never block
each other.

Locks may be explicit (explicitly requested by a transaction) or implicit
(automatically requested by a transaction as a side effect of executing an
SQL statement).

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 132 / 360

Per.Andersson@cs.lth.se

Serializable Transaction Schedules, Two-Phase Locking

The schedule of two (or more) transactions is an ordering of their actions.
A schedule is serial if there is no interleaving of the actions of the different
transactions (i.e., T1 executes in its entirety before T2, ...). To require
serial schedules is not acceptable, since they forbid concurrency.

What we need is schedules that have concurrent execution but behave
like serial schedules. Such schedules are called serializable. There is a
surprisingly simple condition, called two-phase locking (or 2PL), under
which we can guarantee that a schedule is serializable:

In every transaction, all lock actions precede all unlock actions.

This condition can be enforced by the DBMS — normally by not providing
any “unlock” action, but instead releasing all locks at commit (or
rollback).

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 133 / 360

Per.Andersson@cs.lth.se

Transaction Isolation Levels

By setting the transaction isolation level clients can control what kind of
changes the transaction is allowed to see:

READ UNCOMMITTED Can see modifications even before they are
committed. Dirty, nonrepeatable, and phantom reads can
occur.

READ COMMITTED Can only see committed modifications. Dirty reads
are prevented, but nonrepeatable and phantom reads can
occur.

REPEATABLE READ If a transaction issues the same query twice, the
results are identical. Dirty and nonrepeatable reads are
prevented, but phantom reads can occur. This is the default
level in InnoDB.

SERIALIZABLE Rows examined by one transaction cannot be modified by
other transactions. Dirty, nonrepeatable, and phantom reads
are prevented.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 134 / 360

Per.Andersson@cs.lth.se

Transactions in MySQL

MySQL supports several storage engines. The default engine, MyISAM, is
not transaction safe. It only supports the LOCK/UNLOCK TABLES
commands, which can be used in some cases to emulate transactions.

The InnoDB engine supports transactions. |t performs row-level locking.
If rows are accessed via an index, only the index records are locked. If
there is no index and a full table scan is necessary, every row of the table
becomes locked, which in turn blocks all modifications by other clients. So

good indexes are important.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 135 / 360

Per.Andersson@cs.lth.se

Consistent Non-Locking Read in InnoDB

A read (SQL select) in InnoDB sets no locks, not even a read lock.
Instead, multi-version concurrency control (MVCC) is used to create a
snapshot of the database when the transaction starts. The query sees the
changes made by those transactions that committed before that point of
time, and no changes made by later or uncommitted transactions (but it
sees changes made by the same transaction). This is called “consistent
read” in InnoDB.

Consistent reads has the advantage that read-only transactions never
are blocked, not even by writers.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 136 / 360

Per.Andersson@cs.lth.se

MVCC Implementation

Consistent read is implemented in the following way:

@ Before an update, the affected rows are copied to a “rollback
segment’ .

@ There can be several rollback segments, identified by transaction
number and timestamp.

@ Consistent reads are made from the appropriate rollback segment.
@ When the transaction commits, the rollback segment is discarded.

@ If the transaction aborts, the information from the rollback segment is
written to the database.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 137 / 360

Per.Andersson@cs.lth.se

Locking in InnoDB

select ... sets no locks, consistent reads are used.

update ... (and insert and delete) sets write locks.

If a select is followed by a later update of the same item, it is necessary to
explicitly set a lock on the item. This is done in the following way:

Read lock select ... lock in share mode

Write lock select ... for update

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 138 / 360

Per.Andersson@cs.lth.se

Transaction Example

A table Flights with flight number (f1ight) and number of available
seats (free). Book a ticket on flight A1

start transaction;

select free from Flights where flight = ’Al1’;

if (free == 0) rollback;

update Flights set free = free - 1 where flight = ’Al’;
insert into Tickets ticket-information;

commit;

Here, two simultaneous transactions may find that one seat (the last) is
available, and both may book that seat. This must naturally be prevented
(one of the transactions must be rolled back); see next slide for
alternatives.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 139 / 360

Per.Andersson@cs.lth.se

© Write lock: select free ... for update. This will set a write

lock on A1 which will not be released until commit. Another
transaction will block on the select statement and find that free
has become 0.

Constraint check. In the table definition, specify check (free >=
0). If this constraint is violated an exception will occur, which can be
caught and the transaction aborted. (This does not work in MySQL.)

Explicit test. Before commit, select free again and rollback if it has
become < 0.

Actually, select free ... lock in share mode also works. Both
transactions will be granted a read lock. When the table is to be
updated, both locks must be upgraded to write locks. This results in
a deadlock, and one of the transactions will be aborted.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 140 / 360

Per.Andersson@cs.lth.se

Transactions in JDBC

Transaction control in JDBC is performed by the Connection object.
When a connection is created, by default it is in auto-commit mode.
Turn off auto-commit mode (start a transaction) with:

conn.setAutoCommit (false);
// ... a series of statements treated as a transaction

The series of statements can then be committed with:
conn.commit () ;

or rolled back with:
conn.rollback();

After a transaction, auto-commit mode must be turned on again.

Per Andersson (Per.Andersson@cs.lth.se) JDBC 2014/15 141 / 360

Per.Andersson@cs.lth.se

Web Servers
Dynamic Web Pages
HTML Forms

The HT TP Protocol
CGl

PHP Overview

PHP and HTML

Sessions
PHP and MySQL

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15 142 / 360

Per.Andersson@cs.lth.se

A web server services requests from web clients (“browsers”). Servers
must be able to handle several clients simultaneously.

’/ HTTP GET \
(or other) request

Web Client
Server (browser)

Most HTML pages are static. Then, the server's task is easy: find the
requested file, return it unchanged.

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15 143 / 360

Per.Andersson@cs.lth.se

Dynamic Web Pages

There is a need for web pages with dynamic content:

@ answers to database queries,
@ animated web pages,

@ user dialogs,

@ checking user input,

@ etc.

Dynamic content may be handled by the client (Java applets, JavaScript,
VBScript, Flash, Shockwave, ...) or by the server (next slide).

Per Andersson (Per.Andersson@cs.lth.se)

PHP

2014/15

144 / 360

Per.Andersson@cs.lth.se

Server-Side Technologies

Many systems of plug-in modules or scripting languages:
@ CGl — Common Gateway Interface
@ ASP — Active Server Pages
@ PHP — PHP Hypertext Preprocessor (earlier Personal Home Page)
@ Java Servlets
@ Java Server Pages

When the server handles dynamic requests from a client, parameters are
transmitted to the server as part of the URL or as part of the message.

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15 145 / 360

Per.Andersson@cs.lth.se

Supplying Parameters, HTML Forms

This is a static HTML page containing a form:

<html><head><title>CGI-Example</title></head>

<body>
<form method = "get" action = "/cgi-bin/storeaddress.pl">
Your name: <input name = "name" type = "text">

Your email: <input name = "email" type = "text">

<input type = "submit" value = "Submit">
</form>
</body></html>
S&0O6 CCl-Example =
L_P}' @ "?‘ & file:// /Users/perh/Desktop fex1.html ¥ [= *Gn::c:gle Q) 2

Your name: |Per.Holm
Your email: IFer.HDIm@cs.lth.se

Submit |

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15

146 / 360

Per.Andersson@cs.lth.se

Parameters in HT TP Requests

The form on the previous slide generates the following HT TP request:

GET /cgi-bin/storeaddress.pl?name=Per+Holm&email=
Per.Holm%40cs.1lth.se&Submit=Submit HTTP 1.0

GET encodes the parameters in the URL. POST sends the parameters as
part of the message. If POST had been used, the following request would
have been generated:

POST /cgi-bin/storeaddress.pl HTTP 1.0
Content-type: application/x-www—form-urlencoded
Content-length: 54

name=Per+Holm&email=Per.Holm’,40cs.1th.se&Submit=Submit

Usually, you use POST to transfer parameters from HTML forms. It is
necessary if you have many long parameters.

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15

147 / 360

Per.Andersson@cs.lth.se

CGl — Common Gateway Interface

© The web server receives a request for a web page with a special URL
(/cgi-bin/program-name).

© The “CGl script” is started in a new process. The script may be
written in any programming language.

© The script reads the parameters from stdin.
@ The script writes output (HTML-code) to stdout.
© The script terminates.

There are many problems with this. [t is:
@ expensive to start a new process for each request,
e difficult to save state between program executions,

@ difficult to synchronize between processes.

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15 148 / 360

/cgi-bin/program-name
Per.Andersson@cs.lth.se

Reply to a HT TP Request

A reply to a HT TP request contains:
© the MIME type, typically Content-type: text/html,
@ a blank line,
© HTML code.

Example:

Content-type: text/html

<html>

<head><title>Registration completed</title></head>
<body>

<h1>Registration completed</h1>

Per Holm (Per.Holm@cs.lth.se) has been added to
the user database.

</body>

</html>

Per Andersson (Per.Andersson@cs.lth.se) PHP

2014/15

149 / 360

Per.Andersson@cs.lth.se

PHP is an interpreted language. You can use PHP at the console, as a
“normal” programming language, but it is more usual to embed PHP code
in HTML pages. This code can be executed as a CGl program, but the
interpreter can also live “inside” the web server.

When the PHP code is executed by the server, there is no overhead for
process creation and destruction, and it is possible to save state between

executions.
Java Server Pages and Active Server Pages have the same advantages.

The following slides contain an introduction to PHP — but only what's
necessary to do lab 4.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 150 / 360

Per.Andersson@cs.lth.se

Embedding PHP in HTML Files

In a HTML file, HTML code and PHP code may be freely mixed. The
PHP code must be inside <?php and 7> tags. Example:

<html>

<title>Date</title>

<body>

Today 1is

<?php
date_default_timezone_set (’Europe/Copenhagen’) ;
$format = ’1, Y-m-d’; // Weekday, yyyy-mm-dd
print date($format); // Thursday, 2013-11-07

7>

</body>

</html>

The output from the PHP code is inserted into the dynamic HTML page.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 151 / 360

Per.Andersson@cs.lth.se

Data Types and Variables

There are the usual data types: integers, reals, booleans, strings. You
don't declare variables — PHP uses dynamic typing: an assignment to a
variable determines its type. Variable names start with a $.

Examples:

$1 = 0;

$x = 3.5;

$i_less = $i < $x;

$namel = "Bob"; // "parsed" string
$name2 = ’Bob’; // "unparsed" string

Difference between parsed and unparsed strings:

$sum = 123;
print "The sum is $sum"; // prints The sum is 123
print ’The sum is $sum’; // prints The sum is $sum

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 152 / 360

Per.Andersson@cs.lth.se

Expressions

Nothing really strange, but two special operators:

String concatenation (like + in Java). Also .= (like +=in Java).
=== |Like == but both operands must have the same type.

$x = 123;
if ($x == "123") ... // true!
if ($x === "123") ... // false

There is a set of “normal” standard functions like sqrt, strcmp, ...

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 153 / 360

Per.Andersson@cs.lth.se

Control Structures, Functions

if, switch, while, for as in Java. elseif instead of else if. case
labels in a switch statement may have arbitrary type.

Functions:

function sqr($x) {
return $x * $x;

+

print sqr(2);

Functions can be written in separate php-files and include-d (or
require-d).

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 154 / 360

Per.Andersson@cs.lth.se

Arrays are associative: they consist of a number of key/value pairs. Keys
and values may be of arbitrary types. Example:

$arr = array(); // not really necessary
$arr[’a’] = 1;
$arr[’xyz’] = "abc";
foreach ($arr as $key=>$value) {
print "$key , $value
";

+

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15 155 / 360

Per.Andersson@cs.lth.se

PHP and HTML, Example

e 06 Square Roots (&=
@ »p- @ /2% @ hup://localhost:8080/demol /index. htmi v | ([G]* Google Q) 3

Fill in some data

This program works out square roots.

3 Compute root

Done P
806 Square Root Results =
%—J' @ T @hnp:,","Iucalhust:3El3El,"demnlfrums.php?number=3 ¥ | '* Google CL' -

The square root of 3 is 1.7320508075689

Try another:

Compute root |

Done Y

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15 156 / 360

Per.Andersson@cs.lth.se

HTML for First Page (index.html)

<html>

<head><title>Square Roots</title></head>
<body>

<hl align = "center">Fill in some data</h1>

This program works out square roots.

<p>
<form method = "get" action = "roots.php">
<input type = "text" name = "number">
<input type = "submit" value = "Compute root">
</form>
</body>
</html>

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 157 / 360

Per.Andersson@cs.lth.se

PHP Code (roots.php), 1

<html>
<head><title>Square Root Results</title><head>
<body>

<?php
$number = $_REQUEST[’number’];
if (is_numeric($number)) {
if ($number >= 0) {
print "The square root of $number is ";
print sqrt($number) ;
} else {
print "The number must be >= 0.";
+
} else {
print "$number isn’t a number.";

+

7>

Continued on next page.

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15 158 / 360

Per.Andersson@cs.lth.se

PHP Code (roots.php), 2

The remainder of the file is pure HTML:

<p>
Try another:
<p>

<form method = "get" action = "roots.php">
<input type = "text" name = "number">
<input type = "submit" value = "Compute root">
</form>
</body>
</html>

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15 159 / 360

Per.Andersson@cs.lth.se

@ Note the URL in the call to roots.php: .../roots.php?number=3.
GET is used, so the parameter is coded into the URL.

@ The parameter is available in the array $_REQUEST. You could have
used $_GET instead (or $_POST if the method had been POST).

@ The standard function is_numeric checks both that the parameter is
set and that it is numeric.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 160 / 360

.../roots.php?number=3
Per.Andersson@cs.lth.se

Sessions

Often, you need to save user data between calls to different PHP
programs. For this the $_SESSION array is used. You may save only
“serializable” data: numbers, strings, etc., but not “resource” data like
database connections.

It must also be possible to determine which session data that belongs to
which user. PHP uses a “session id" for this purpose. Usually, the session
id is saved in a cookie in the client.

To start or restore a session the function session_start() is called,
before anything else is sent to the client.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 161 / 360

Per.Andersson@cs.lth.se

Sessions, Example

The following variant of the roots program remembers and prints the
number of root computations:

<7php
session_start();
$_SESSION[’computationNbr’]++;
7>

<html>

<head><title>Square Root Results</title><head>

<body>

<?php
$computationNbr = $_SESSION[’computationNbr’];
print "Root computation number $computationNbr<p>";
$number = $_REQUEST[’number’];

same as before

Per Andersson (Per.Andersson@cs.lth.se) 2014/15

162 / 360

Per.Andersson@cs.lth.se

Object-Oriented Programming in PHP

There are classes in PHP:

class BankAccount {
private $balance;

public function __construct() {
$this->balance = 0;

+

public function getBalance() {
return $this->balance;

+

public function deposit($amount) {
$this->balance += $amount;

+
+

$this-> must be used to access attributes.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 163 / 360

Per.Andersson@cs.lth.se

Creating and Accessing Objects

Suppose that the definition of the BankAccount class is in the file
bankaccount.inc.php.

<7php
require_once(’bankaccount.inc.php’);

$myAccount = new BankAccount();

$myAccount->deposit (150) ;

print $myAccount->getBalance();
?>

In PHP 5, all objects are accessed via references, like in Java.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 164 / 360

Per.Andersson@cs.lth.se

More Object-Oriented Programming

Other object-oriented constructs:

Destructors __destruct (). PHP calls destructors during the “script
shutdown phase,” which is typically right before the ex-
ecution of the PHP script finishes.

Inheritance Like in Java, class Subclass extends Superclass.

Interfaces Like in Java.

Type hints The type of parameters can be specified, so the compiler
can check method availability.

function clearAccount (BankAccount $account) {
$account->deposit (- $account->getBalance());

}

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15 165 / 360

Per.Andersson@cs.lth.se

PHP, MySQL and PDO

In PHP there are mysqli functions to access a MySQL database, OCI
functions for an Oracle database, sqlite functions for an SQLite
database, etc. These functions mostly do the same things but they have
different names. PDO (PHP Data Objects) is an abstraction layer which
provides a common API for many different DBMS's (like JDBC for Java).
There are many similar packages in PHP (DB, DB2, MDB2, Zend, ...).

2014/15 166 / 360

Per Andersson (Per.Andersson@cs.lth.se) PHP

Per.Andersson@cs.lth.se

Opening and Closing a Connection

$host = "puccini.cs.lth.se";
$username = "dbO1l";
$password = "abcl123de";
$database = "dbO1";

$conn = new PDO("mysql:host=$host;dbname=$database",
$username, $password);
$conn->setAttribute (PDO: : ATTR_ERRMODE, PDO: :ERRMODE_EXCEPTION) ;

$conn = null;
Errors can be caught with
try { ... } catch (PDOException $e) { ... }

The script is terminated with an error message if an exception is not
caught.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 167 / 360

Per.Andersson@cs.lth.se

Performing a Query

$sql = "select * from PersonPhones order by name";
$stmt = $conn->prepare($sql);

$stmt->execute() ;

$result = $stmt->fetchAll();

The result of fetchAll is an array of rows (like a JDBC ResultSet). A
row is an array of attributes:

foreach ($result as $row) {
foreach ($row as $attr) {

+
+

The array of rows is both associative (with attribute names as keys) and
indexed. Can be changed with PDO: : FETCH_ASSOC or PDO: : FETCH_NUM as
parameter to fetchAll.

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15 168 / 360

Per.Andersson@cs.lth.se

Counting Rows, lastInsertld

When an insert /update/delete statement is executed, rowCount returns
the number of affected rows:

$sql = "insert ...";

$stmt = $conn->prepare($sql);
$stmt->execute ($param) ;
$count = $stmt->rowCount () ;
$id = $conn->lastInsertId();

For a select statement the rows must be counted:

$sql = "select ...";

$stmt = $conn->prepare($sql);
$stmt->execute ($param) ;
$result = $stmt->fetchAll1();
$count = count($result);

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15 169 / 360

Per.Andersson@cs.lth.se

Parameters to Prepared Statements

The parameters to a prepared statement are given in an array:

$sql = "select * from Movies ".

"where studioName = 7 and year = 7";
$stmt = $conn->prepare($sql, array(’Disney’, 1900));
$stmt—->execute() ;

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 170 / 360

Per.Andersson@cs.lth.se

Transactions

Transactions are handled the same way as in JDBC:
$conn->beginTransaction() ;
$conn->commit () ;

// ... or

$conn->rollback();

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15 171 / 360

Per.Andersson@cs.lth.se

Things We Haven't Covered

The following are chapter titles from the book “PHP 5 Unleashed” by
John Coggeshall. We haven't mentioned anything about these subjects:

Regular Expressions Using Templates

PEAR XSLT and Other XML Concerns
Debugging and Optimization User Authentication

Data Encryption Working with HTML/XHTML Using Tidy
Writing Email in PHP Using PHP for Console Scripting

SOAP and PHP Building WAP-enabled Websites

Working with the File System Network /0O

Accessing the Underlying OS Using SQLite with PHP
PHP’'s dba Functions Working with Images
Printable Document Generation

So there’'s more to learn if you want to be a professional PHP programmer

172 / 360

Per Andersson (Per.Andersson@cs.lth.se) PHP 2014/15

Per.Andersson@cs.lth.se

Normalization

Anomalies

Functional Dependencies
Closures

Key Computation
Projecting Relations
BCNF

Reconstructing Information

Other Normal Forms

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 173 / 360

Per.Andersson@cs.lth.se

Normalization, Background

This “feels right”:

0.* stars-in

0.”

Star

This doesn't:

length
filmType
starName

What happens if we

schema Movies(title, year, length, filmType, starName)?

name

convert the second model into a relation with the

Anomalies occur — see next slide.

Normalization

Per Andersson (Per.Andersson@cs.lth.se)

2014/15

174 / 360

Per.Andersson@cs.lth.se

Anomalies

title year length filmType starName
Star Wars 1977 124 color Carrie Fisher
Star Wars 1977 124 color Mark Hamill
Star Wars 1977 124 color Harrison Ford
Mighty Ducks 1991 104 color Emilio Estevez
Wayne's World 1992 95 color Dana Carver
Wayne's World 1992 95 color Mike Myers

@ Redundancy — information is repeated in several tuples (1length,

filmType).

@ Update anomalies — you must be careful to change every occurrence
of a value (the length of Star Wars must be changed in three places).

@ Deletion anomalies — if a set of values becomes empty we may lose
other information (delete Estevez = all information about Mighty

Ducks is lost).

Normalization

Per Andersson (Per.Andersson@cs.lth.se)

2014/15 175 / 360

Per.Andersson@cs.lth.se

Normalization

If we have a relation, e.g., Movies on the previous slide, there exists a
formal procedure to:

@ discover anomalies, and

@ decompose (“split”) the relation into two (or more) relations without
anomalies.

This procedure is called normalization. Normalization builds on the theory
of functional dependencies.

(In the example on the previous slides, common sense would have led us
right — it seems “unnatural” to put the starName attribute in the
Movies entity set. However, there are other examples where common
sense may not suffice.)

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 176 / 360

Per.Andersson@cs.lth.se

Functional Dependencies

A functional dependency, FD, on a relation R is a statement of the form:

If two tuples of R agree on the attributes A1, Ay, ..., A,, then they must
also agree on another attribute, B. Notation:

A1A2...An—>B

V.

A functional dependency is a constraint on a schema and must hold for all
instances of a schema. Example:

Persons (persNo, name, address)

persNo — name
persNo — address

or, shorter:

persNo — name address

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 177 / 360

Per.Andersson@cs.lth.se

FD Example

Relation Movies(title, year, length, filmType, studioName,
starName). The following FD's hold:

title year — length
title year — filmType
title year — studioName

or.

title year — length filmType studioName
but the following FD does not hold:

title year — starName // wrong!

This is because there may be several stars in a movie.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 178 / 360

Per.Andersson@cs.lth.se

FD's Are About the Schema

Notice again that you cannot find FD’s by looking at one specific instance
of a relation. FD's are semantic properties that concern the meaning of

the attributes.

Example: by looking at the instance of the Movies schema below, you
might be led to believe that the FD title — filmType holds. This is not
true (e.g., there are three versions of King Kong, two in color and one in

black-and-white).

title year
Star Wars 1977
Star Wars 1977
Star Wars 1977
Mighty Ducks 1991
Wayne's World 1992
Wayne's World 1992

length
124
124
124
104
95

95

Normalization

filmType
color
color
color
color
color
color

starName
Carrie Fisher
Mark Hamill
Harrison Ford
Emilio Estevez
Dana Carver
Mike Myers

Per Andersson (Per.Andersson@cs.lth.se)

2014/15 179 / 360

Per.Andersson@cs.lth.se

Keys of Relations

We have already defined the concept of a key for a relation informally. A
formal definition:

A set of one or more attributes A1, Ay, ..., A, is a key for a relation R if:
© Those attributes functionally determine all other attributes of R.

@ No proper subset of A;, Ay, ..., A, functionally determines all other
attributes of R.

The last point means that a key must be minimal.

Example: {title, year, starName} is a key for the relation Movies.

A relation may have more than one key. In that case, one of the keys is
chosen as the primary key. A set of attributes that contains a key is called
a superkey (“superset of key").

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 180 / 360

Per.Andersson@cs.lth.se

Simple Rules About FD's

© Transitivity (the most important rule):
A—-BAB—-C=A—-=C
@ Splitting/combining (just a convenient notation):

A—-BANA—-C&sA— BC

© Trivial dependencies that always hold, where the right side of an FD
Is a subset of the left side:

AB — A

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 181 / 360

Per.Andersson@cs.lth.se

Closure of a Set of Attributes

The closure of a set of attributes, {A;1, Az,...,An}, under a set S of FD's
Is the set of attributes B such that A{A> ... A, — B. That is,

Ai1A> ... A, — B follows from the FD's in S.

The closure of {A1, Az, ..., A} is denoted {A1, Ao, ..., An}T.
Closures are used for finding keys (slide 184). The algorithm for
computing closures works by adding attributes on the right side of FD's to

an initial set.

Example on next slide.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 182 / 360

Per.Andersson@cs.lth.se

Closure Computation, Example

Relation R(A,B,C,D, E,F).
FD's: AB— C, BC —- AD, D — E, CF — B.

Compute X = {A, B}™:
@ Start with X = {A, B}
@ AB — C, so C can be added, X = {A, B, C}
© BC — AD, so AD can be added, X = {A, B, C,D}
©@ D — E, so E can be added, X = {A,B,C,D, E}
© Nothing more can be added, so {A,B}* ={A,B,C,D,E}

From this we can infer that AB — D and AB — E follows from the initial
set of FD's. (But not AB — F, so {A, B} is not a key for R.)

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 183 / 360

Per.Andersson@cs.lth.se

Key Computation |

The same relation and FD's as in the previous example:

R(A,B,C,D,E,F)

FD1. AB— C
FD2. BC — AD
FD3. D —= E
FD4. CF — B

What are the keys in this relation? To answer this you have to compute
the closures of all subsets of attributes. The keys are the subsets whose
closure contains all five attributes.

Initial observation: F is not on the right-hand side of any FD. This means
that all keys must contain F.
One-attribute subsets containing F:

{F}T ={F}

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 184 / 360

Per.Andersson@cs.lth.se

Key Computation Il

Two-attribute subsets containing F:

{AF}T = {AF}
{BF}* = {BF}

(CFY* = {cF} "B {crBY & {crBADY "2’ {CFBADE)

{DFY* = {DF} "2 (DFF)

{EF}* = {EF}
This shows that {CF} is a key. So, when we examine three-attribute

subsets we don't have to consider subsets that contain { CF} (such subsets
would be superkeys).

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 185 / 360

Per.Andersson@cs.lth.se

Key Computation Il

Three-attribute subsets containing F but not C:

{ABF}*™ = {ABFCDE}
{ADF}* = {ADFE}
{AEF}* = {AEF}
{BDF}*+ = {BDFE}
{BEF}* = {BEF}
{DEF}* = {DEF}

{ABF} is a key. The four-attribute subsets { ADEF} and {BDEF} are not
keys, so the keys are {CF} and {ABF}.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 186 / 360

Per.Andersson@cs.lth.se

Projecting Relations

An unnormalized relation is normalized by splitting the relation in two (or

more) relations. This is done by eliminating certain attributes from the
relation schema. It is called projection.

Question: what FD’'s hold in the projected relation? Example:

R(A, B, C,D) with FD's A— B, B— C, C — D.

B is removed from R. What FD’s hold in the new relation S(A, C,D)?
{A}t ={A,B,C,D} givesA— C,A— D
{C}T ={C,D} gives C — D

{D}* ={D} gives nothing
{C,D}* ={C,D} gives nothing

Observe that A — C and A — D hold in the projected relation.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 187 / 360

Per.Andersson@cs.lth.se

An Important Note on Projecting

Remember that FD's are semantic statements about the data in the
schema. FD’s hold regardless of the decomposition of data into relations
and cannot disappear just because data items are split over several

relations.
The previous example again:

R(A,B,C,D) with FD's A—- B, B—- C, C — D.
B is removed from R. What FD's hold in the new relation S(A, C, D)?

Wrong reasoning

“A — B cannot hold since B is not in S, B — C cannot hold since B is
not in S, so C — D is the only FD that holds in S§.”

You must take dependencies that have been derived from the transitive
rule into account!

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 188 / 360

Per.Andersson@cs.lth.se

Normalization again

From slide 176. There exists a formal procedure to:
@ discover anomalies, and

@ decompose (“split”) the relation into two (or more) relations without
anomalies.

This procedure is called normalization.

There are several “normal forms” (1st, 2nd, 3rd, Boyce-Codd, 4th, ...).
The most important is Boyce-Codd normal form (BCNF).

Most books start by first defining the first normal form, then the
second, ... Our book defines BCNF directly. Advantages with this:

@ BCNF removes most anomalies, and

@ it is easy to check if a relation is in BCNF.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 189 / 360

Per.Andersson@cs.lth.se

Anomalies again

From slide 175:

title year length filmType starName
Star Wars 1977 124 color Carrie Fisher
Star Wars 1977 124 color Mark Hamill
Star Wars 1977 124 color Harrison Ford
Mighty Ducks 1991 104 color Emilio Estevez
Wayne's World 1992 95 color Dana Carver
Wayne's World 1992 95 color Mike Myers

@ Redundancy — information is repeated in several tuples (1ength,

filmType).

@ Update anomalies — you must be careful to change every occurrence
of a value (the length of Star Wars must be changed in three places).

@ Deletion anomalies — if a set of values becomes empty we may lose
other information (delete Estevez = all information about Mighty

Ducks is lost).

Normalization

Per Andersson (Per.Andersson@cs.lth.se)

2014/15 190 / 360

Per.Andersson@cs.lth.se

BCNF, Boyce-Codd Normal Form

A relation R is in BCNF if and only if: whenever there is a nontrivial FD

A1Ax ... A, — B for R, it is the case that A1, Ay, ..., A, is a superkey for
R.

Example. The relation Movies(title, year, length, filmType,
starName) has the FD's:

title year starName — length filmType
title year — length filmType

{title, year, starName} Is the key.

{title, year} is not a superkey, i.e., it is not a superset of {title,

year, starName}.

Movies is not in BCNF.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 191 / 360

Per.Andersson@cs.lth.se

A Relation in BCNF

Consider the relation Movies1(title, year, length, filmType), i.e.,
Movies without the starName. This relation has the only FD:

title year — length filmType

{title, year} is the key. There are no other non-trivial FD’'s, so Movies1
is in BCNF.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 192 / 360

Per.Andersson@cs.lth.se

Decomposition into BCNF

By repeatedly applying suitable decompositions, we can split any relation
into smaller relations that are in BCNF.

Important: it must be possible to reconstruct the original relation instance
exactly by joining the decomposed relation instances. The reconstruction
will be shown later.

The following decomposition algorithm meets this goal:

BCNF decomposition

@ Start with a BCNF-violating FD, AjA>... A, — BiB> ... B,
Optionally expand the right-hand side as much as possible (closure).

@ Create a new relation with all the attributes of the FD, i.e., all the
A’s and all the B’s.

© Create a new relation with the left-hand side of the FD, i.e., all the
A's, plus all the attributes not involved in the FD.

© Repeat if necessary.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 193 / 360

Per.Andersson@cs.lth.se

BCNF Decomposition, Example

Movies(title, year, length, filmType, starName).

BCNF-violating FD: title year — length filmType
New relation: Moviesl(title, year, length, filmType)
New relation: Movies2(title, year, starName)

We have already checked that Movies1 is in BCNF. Movies2 is also in
BCNF — it contains no FD's at all, so the key is all three attributes.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 194 / 360

Per.Andersson@cs.lth.se

Another BCNF Decomposition

Consider the relation

MovieStudios(title, year, length, filmType, studioName,
studioAddr)

The only key is {title, year}.

An obvious FD is studioName — studioAddr, and studioName is not a
superkey. Decomposition:

BCNF-violating FD: studioName — studioAddr
New relation: MovieStudiosl(studioName, studioAddr)

New relation: MovieStudios2(title, year, length,
filmType, studioName)

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 195 / 360

Per.Andersson@cs.lth.se

What Causes non-BCNF?

The causes of BCNF-violations:

@ Putting a many-many relationship in one relation (the first example,
with Movies containing star names).

@ Transitive dependencies (the second example, where studioName —
studioAddr).

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 196 / 360

Per.Andersson@cs.lth.se

Common Sense |

We started our discussion of normalization by saying that the following

E/R diagram “feels right”, but then we did not take it as a basis for the
relations:

Movie
%Zr 0.* stars-in g * Star
IeTgth name
filmType

If we had followed the rules for translating an E/R model into relations we
would have ended up with the following relations:

Movies(title, year, length, filmType)
Stars(starName) [superfluous if every star is in a movie]
StarsIn(title, year, starName)

I.e., exactly the same relations as Movies1 and Movies2 on slide 194.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 197 / 360

Per.Andersson@cs.lth.se

Common Sense ||

The example with movies and their owning studios should be modeled like
this:

Movie
litle 0.r owns 4 | Studio
year studioName
length studioAddr
filmType

By the rules, this would have resulted in the following relations:

Movies(title, year, length, filmType, studioName)
Studios(studioName, studioAddr)

I.e., exactly the same relations as MovieStudios2 and MovieStudios1 on
slide 195.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 198 / 360

Per.Andersson@cs.lth.se

Common Sense |11

Conclusions:

o Careful E/R modeling is essential for proper understanding of a
problem.

@ But careful E/R modeling also results in relations that are better
normalized than if you start with relations directly.

This is not to say that careful E/R modeling always results in normalized
relations. Consider the following model, which “feels right” but gives a
relation that isn't in BCNF:

Person
pNbr
name
streetAddr
postCode
city

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 199 / 360

Per.Andersson@cs.lth.se

Reconstructing Information

We earlier said that “we must be able to reconstruct the original relation
instance exactly from the decomposed relation instances”. Such
decompositions are called “lossless”.

The reconstruction is performed by joining two relations. Two tuples
can be joined if they agree on the values of an attribute (or values of sets
of attributes).

The decomposition algorithm presented earlier, which is based on FD's,
yields relations that may be reconstructed by joining on the attributes on
the left-hand sides of the FD.

Other “ad hoc” algorithms may yield relations that, when joined,
contain spurious (false) tuples (“lossy” decompositions).

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 200 / 360

Per.Andersson@cs.lth.se

Testing for Lossless Join

In the book the chase algorithm, which tests for lossless join, is described.
Not part of the course.

A simpler test, which can be used only for testing decomposition into
two relations, is the following:

| ossless Test

A decomposition of a relation in two relations R1 and R2 is lossless if:
@ R1 N R2 is a superkey of R1, or
@ R1N R2 is a superkey of R2.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 201 / 360

Per.Andersson@cs.lth.se

A Reconstruction Example

A relation R(A, B, C) with only one FD:
FD1. A— B

R is not in BCNF: {A, C} is the only key, FD1 violates the BCNF
condition. A decomposition of R that is not done according to the BCNF
rules is R1(A, B) and R2(B, C). Both R1 and R2 are in BCNF.

Example projection and reconstruction:

reconstruct A B C

A B C proect A B B C (join on B) 1 2 3
1 2 3 = 1 2 2 3 = 1 2 4
2 2 4 2 2 2 4 2 2 3
2 2 4

The tuples (1,2,4) and (2,2, 3) were not in the original relation and are
spurious. Exercise: decompose according to the BCNF rules and then
check the same example.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 202 / 360

Per.Andersson@cs.lth.se

More Reconstruction

The same example as on the previous slide, with better names for the
attributes. People have names and own cars. A person may own many
cars, and a car may be owned by many persons. This is described by the
relation R(pNo, name, carNo), with the FD:

FD1. pNo — name

{pNo, carNo} is the only key, FD1 violates the BCNF condition. A
decomposition of R that is not done according to the BCNF rules is
R1(pNo, name) and R2(name, carNo). Both R1 and R2 are in BCNF,
since they have only two attributes each.

With these attributes, it is obvious that the decomposition in R1 and R2
is stupid. If we instead decompose according to the BCNF rules, we get
the relations S1(pNo, name) and S2(pNo, carNo), which can be joined
on pNo.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 203 / 360

Per.Andersson@cs.lth.se

Other Normal Forms, Motivation

Sometimes, BCNF is “too strong”, in the sense that we may lose
important FD's if we decompose into BCNF.

Example: the relation Bookings(title, theater, city) describes
that a movie plays in a theater in a city. FD's:

FD1. theater — city
FD2. title city — theater

FD1 says (unrealistically) that all theaters have different names. FD2 says
(unrealistically) that two theaters in the same city never show the same
movie.

The keys are {title, city} and {theater, title}. So, FDl is a
BCNF violation. Attempt at decomposition on next slide.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 204 / 360

Per.Andersson@cs.lth.se

Other Normal Forms, cont'd

If we decompose the relation Bookings into BCNF we get the relations:

R1(theater, city)
R2(theater, title)

These relations can be updated independently of each other. But when we
do that, we cannot check that FD2, title city — theater, holds. l.e.,
when we join the relations (on theater) we may get tuples for which FD2

does not hold.

theater city theater title
Guild Menlo Park Guild The Net
Park Menlo Park Park The Net

join (on theater)

theater city title
Guild Menlo Park The Net
Park Menlo Park The Net

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 205 / 360

Per.Andersson@cs.lth.se

3NF, Third Normal Form

Third normal form is a relaxation of BCNF. Definition:

A relation R is in third normal form if and only if: whenever there is a
nontrivial FD A1A> ... A, — B for R, it is the case that A1, A>,..., A, is
a superkey for R, or B is a member of some key.

The definition is the same as for BCNF with the addition “or B is a
member of some key".

In the relation Bookings(title, theater, city) this allows the
BCNF-violating FD:

theater — city

Since city is a member of the key {title, city}, Bookings is in 3NF.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 206 / 360

Per.Andersson@cs.lth.se

Another Example

The following relation is not in BCNF:
Persons(persNo, name, street, postCode, city)
The problem is with the postal code. FD's:

FD1. persNo — name street postCode city
FD2. postCode — city
FD3. street city — postCode

FD2 and FD3 are BCNF violations. Notice that the relation is not even in
3NF, since neither city nor postCode is a member of a key.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 207 / 360

Per.Andersson@cs.lth.se

Decomposition 1

We can decompose the Persons relation into BCNF relations. |f we start
with FD2, we get:

R1(postCode, city)
R2(persNo, name, street, postCode)

Both R1 and R2 are in BCNF.

This decomposition eliminates the redundancy that the city has to be
mentioned several times for each postal code. And if we change the city

for a postal code, we only have to perform the change in one place.
In the decomposition we have lost the possibility to check FD3, street

city — postCode.

2014/15 208 / 360

Per Andersson (Per.Andersson@cs.lth.se) Normalization

Per.Andersson@cs.lth.se

Decomposition 1 Comments

In practice, you probably wouldn't bother to decompose the Persons
relation:

@ How often are postal codes changed? Probably never or very seldom.
@ How costly is the extra storage requirement? Probably not very costly.
@ How often do you wish to check FD3?7 Probably never.

There is also an advantage to keeping the original relation. If you
decompose, you have to perform a join on two tables every time you wish
to access a person'’s full address.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 209 / 360

Per.Andersson@cs.lth.se

Decomposition 2

If we instead start decomposing with FD3 we get:

R1(street, city, postCode)
R2(persNo, name, street, city)

R1 is in 3NF, R2 is in BCNF. We do not wish to decompose R1 further —

we would need to join three tables in order to access a person’s full
address.

Conclusions:

@ Sometimes, unnormalized relations and the resulting redundancy are
acceptable.

@ But you must be able to motivate why you choose to use

unnormalized relations (and to be able to realize that you are using
them ...).

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 210 / 360

Per.Andersson@cs.lth.se

More Redundancy

Some redundancy is not detected by the BCNF condition.
Consider the relation StarMovie (name, street, city, title,

year): a star has a name, may have several addresses, and may star in
several movies. Example instance:

name street city title year
C. Fisher 123 Maple St. Hollywood Star Wars 1977
C. Fisher 5 Locust Ln. Malibu Star Wars 1977
C. Fisher 123 Maple St. Hollywood Empire Strikes Back 1980
C. Fisher 5 Locust Ln. Malibu Empire Strikes Back 1980
C. Fisher 123 Maple St. Hollywood Return of the Jedi 1983
C. Fisher 5 Locust Ln. Malibu Return of the Jedi 1983

There Is obvious redundancy in this relation, but the relation is still in
BCNF (it has no FD's at all).

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 211 / 360

Per.Andersson@cs.lth.se

Common Sense Again

In the relation StarMovie we have put two many—many relationships in
one relation:

Address Movie
Star :
street title
= name -
city — year

Per Andersson (Per.Andersson@cs.lth.se)

Normalization

Naturally, this is not a reasonable thing to do, but it illustrates the need
for yet another normal form.

2014/15

212 / 360

Per.Andersson@cs.lth.se

Multivalued Dependencies

In the relation StarMovie there are no FD's at all. For example, name —
street city does not hold, since a star may have several addresses.
However, for each star there is a well-defined set of addresses. Also, for
each star there is a well-defined set of movies. Furthermore, these sets are

independent of each other.
This is called a multivalued dependency (MVD) and is denoted (note

the two-headed arrows):

name —» street city
name —» title year

MVD's always come in pairs.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 213 / 360

Per.Andersson@cs.lth.se

A Formal Definition of MVD

In a relation R, the MVD
A1A> ... A, - B1B>... B,

holds if: for each pair of tuples t and u of relation R that agree on all the
A's, we can find in R some tuple v that agrees:

O With both t and u on the A's,
@ With t on the B's,
© With u on all attributes of R that are not among the A’s or the B’s.

v

Note that v may be =t or = u.

t ai b1 ci
\Y; ai b1 c2
u ai b2 c2

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 214 / 360

Per.Andersson@cs.lth.se

Reasoning About MVD's

Some rules about MVD's are similar to the FD rules.
@ Trivial dependencies have the same definition.
@ The transitive rule is the same.
@ The splitting rule for FD’s does not hold for MVD's.
@ Every FD is a MVD.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 215 / 360

Per.Andersson@cs.lth.se

ANF, Fourth Normal Form

A relation R is in fourth normal form if and only if: whenever there is a
nontrivial MVD A1A> ... A, — B for R, it is the case that A1, A, ..., A,

is a superkey for R.

|.e., the same definition as BCNF but FD is changed to MVD.

The decomposition into 4NF is analogous to BCNF decomposition. When
the StarMovie relation is decomposed into 4NF relations, the relations

become:

R1(name, street, city)
R2(name, title, year)

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 216 / 360

Per.Andersson@cs.lth.se

Normal Forms Hierarchy

Relations in 4NF C BCNF C 3NF (C 2NF C 1NF).

Property 3NF BCNF 4NF
Eliminates redundancy due to FD's Most Yes Yes
Eliminates redundancy due to MVD's No No Yes
Preserves FD's Yes Maybe Maybe
Preserves MVD's Maybe Maybe Maybe

You should aim for at least BCNF for all relations. In some cases, 3NF is
acceptable.

Again: you have to know what normal form your relations are in, and to
know why if you choose a lower form than BCNF.

Per Andersson (Per.Andersson@cs.lth.se) Normalization 2014/15 217 / 360

Per.Andersson@cs.lth.se

SQL — Stored Programs

@ You Can Not Do Everything in SQL
o SQL/PSM

@ Cursors

@ Recursion

o Triggers

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 218 / 360

Per.Andersson@cs.lth.se

Stored Programs

SQL is not “Turing complete” so there are things that you cannot express
in SQL — for example if statements and while statements.
In most practical situations such constructs are necessary. Alternative

solutions:

© Write a "normal program” in Java or some other programming

language, call SQL from this language.
This can result in a lot of data being shuffled between the database

and the application program, and this is expensive.
© Write the program and store the program in the database. This is

called SQL/PSM, Persistent Stored Modules.
In PSM, you can mix “normal” programming language statements

with SQL.

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 219 / 360

Per.Andersson@cs.lth.se

Example

Employees in a company are described by the following relation:

Employees (nbr, name, bossNbr)

nbr is the employee number, name is the employee’s (unique) name.
bossNbr is the employee number of the employee’s boss. A boss may have
a boss, ... A top-level boss has 0 as bossNbr. There may be many
top-level bosses.

Example:

8/Anna/0

9/Jan/11

13/Erik/9

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 220 / 360

Per.Andersson@cs.lth.se

@ Who are the top-level bosses?

select name from Employees where bossNbr = O;

@ Who is Jan’s immediate boss?

select el.name

from Employees el, Employees e2

where e2.name = ’Jan’ and
e2.bossNbr = el.nbr;

@ Who is Jan's top-level boss?
cannot answer in SQL

(In the latest SQL standard there is a provision for recursive queries
which would solve this problem. This is not available in MySQL.)

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 221 / 360

Per.Andersson@cs.lth.se

JDBC Solution

The answer to the last question is easy to obtain if you use Java (details
regarding statement creation and deletion, and exceptions, are omitted):

public String getTopLevelBossName(String empName) {
ResultSet rs = stmt.executeQuery
("select bossNbr from Employees where name = " +
empName + "o ||) ;
String bName = empName;
rs.next(); int bNbr = rs.getInt("bossNbr");
while (bNbr != 0) {
rs = stmt.executeQuery
("select name, bossNbr from Employees where nbr = " +
bNbr) ;
rs.next () ;
bName = rs.getString("name");
bNbr = rs.getInt("bossNbr");
+

return bName;

+

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 222 / 360

Per.Andersson@cs.lth.se

PSM Solution

create function getTopLevelBossName(in empName varchar(10))
return varchar(10)

begin
declare bNbr int;
declare bName varchar(10);

set bName = empName;
select bossNbr into bNbr from Employees where name = empName;
while bNbr <> 0 do
select name, bossNbr
into bName, bNbr
from Employees
where nbr = bNbr;
end while;
return bName;
end;

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 223 / 360

Per.Andersson@cs.lth.se

Comments

Note the following:

@ Many syntactic differences from other programming languages
(declare to declare local variables, set to assign a value, no
parentheses around the condition in the while loop, etc.).

@ You can mix PSM statements with SQL statements, and you use
select into to assign the result of an SQL query to a PSM variable.

@ The data types are the usual SQL types.

@ You cannot have relations as parameters (the relation Employees in
the example is “global” and must exist when the function is defined).

2014/15 224 / 360

Stored Programs

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

Running in MySQL

This you must try at home; you don't have the privileges to create stored
functions at the LTH installation.

mysql and PSM both use a semicolon as delimiter. You must change the
mysql delimiter before you define the function, and restore it afterwards.

delimiter //
create function getTopLevelBossName (empName varchar(10))

return varchar(10)
begin

end;

//

delimiter ;
Call the function:

select getTopLevelBossName(’Jan’) ;

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 225 / 360

Per.Andersson@cs.lth.se

Cursors

When you wish to examine all tuples in a relation, you use a cursor. A
cursor is a variable that runs through the tuples of a relation. Compare
with ResultSet objects in JDBC and the next () function.

@ Cursors must be declared as local variables.
@ Cursors must be opened and closed.
@ A tuple is fetched with the fetch statement.

@ To detect that there are no more tuples, you declare a “continue
handler” that checks for a specific SQL error code (SQLSTATE).
Similar to an exception handler.

The procedure copyToStaff on the next slide copies all employee names
from Employees to the Staff table. It is an example only, you could have
copied like this in pure SQL:

insert into Staff select name from Employees;

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 226 / 360

Per.Andersson@cs.lth.se

A Cursor Example

create procedure copyToStaff ()
begin

end;

Per Andersson (Per.Andersson@cs.lth.se)

declare done int default O;
declare eName varchar(10);
declare empCursor cursor for
select name from Employees;
declare continue handler for SQLSTATE ’02000’ set done = 1;

delete from Staff;

open empCursor;

fetch empCursor into eName;

while not done do
insert into Staff values(eName);
fetch empCursor into eName;

end while;

close empCursor;

Stored Programs 2014/15 227 / 360

Per.Andersson@cs.lth.se

Recursive Procedures

PSM allows recursive procedures.

Example: Find all staff that are managed by a boss. Store the staff names
in a relation Staff (name).

8/Anna/0
10/Peter/8

12/Andrzej/11

9/Jan/11

13/Erik/9

call findStaff (’Eva’);

=> Staff = {’Andrzej’, YA1i’, ’Jan’, ’Erik’}
call findStaff(’Jan’);

=> Staff = {’Erik’}
call findStaff(’Peter’);

=> Staff = {}

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 228 / 360

Per.Andersson@cs.lth.se

Do the following in mysql:
© Create the Staff table (once):

create table Staff (
name varchar(10)

);

@ Create the procedures findStaff and findStaffRecursive (once,
see following slides).

© Execute the procedure findStaff:

call findStaff(’Eva’);

@ Study the result:

select * from Staff;

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 229 / 360

Per.Andersson@cs.lth.se

Set up for the recursion (clear the Staff table and call the recursive
procedure):

create procedure findStaff(in bName varchar(10))
begin
declare bNbr int;
delete from Staff;
select nbr into bNbr from Employees where name = bName;

call findStaffRecursive(bNbr) ;
end;

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15

230 / 360

Per.Andersson@cs.lth.se

create procedure findStaffRecursive(in bNbr int)
begin

end;

Per Andersson (Per.Andersson@cs.lth.se)

declare done int default O;
declare eName varchar(10);
declare eNbr int;
declare empCursor cursor for
select nbr, name from Employees where bossNbr = bNbr;
declare continue handler for SQLSTATE 02000’ set done = 1;

open empCursor;
fetch empCursor into eNbr, eName;
while not done do
insert into Staff values (eName);
call findStaffRecursive(eNbr);
fetch empCursor into eNbr, eName;
end while;
close empCursor;

Stored Programs 2014/15 231 / 360

Per.Andersson@cs.lth.se

PSM Types and Statements

Types

Assignment

If statement

Per Andersson (Per.Andersson@cs.lth.se)

Same as the SQL data types. Local variables must
be declared with declare.

set empName = ’Bosse’;

select name into empName
from Employees where nbr = 10;

1f <condition> then
<statements>
else
<statements>
end if;

Use elseif for else if.

Stored Programs 2014/15

232 / 360

Per.Andersson@cs.lth.se

PSM Loops

Loop [label:] loop
1f ... leave label;
end iéép;
While loop while <condition> do

<statements>
end while;

For loop Not implemented in MySQL.

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 233 / 360

Per.Andersson@cs.lth.se

Debugging Stored Procedures

It is not easy to debug stored procedures. It may be difficult even to find
compilation errors, since the error messages are not very informative
(usually “you have an error in your SQL syntax”).

There is no “stored procedure debugger” where you can follow the
execution of a stored procedure. What you can do is to insert “normal”
select statements in a procedure (not select into). The results from
such statements are sent directly to the database client (usually mysql).

2014/15 234 / 360

Stored Programs

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

Why Use PSM?

Some reasons for using stored procedures instead of client code:

@ Essential to have the “business logic” in one place, instead of spread
out over client programs. (For instance, banks often don't give
applications access to database tables directly, they must perform all
database actions via stored procedures.)

@ More efficient.

@ Clients in different languages on different platforms can perform the
same database actions.

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 235 / 360

Per.Andersson@cs.lth.se

A trigger is an active database element that is executed whenever a
triggering event occurs. The triggering event can be an insertion, deletion
or modification of a tuple in a relation.

Typical uses of triggers:

@ make sure that an attribute contains a reasonable value (you can also
use check on an attribute value when a table is defined, but only for
simple cases),

@ insert an audit tuple in another table when something is modified,

@ perform checks so new information is consistent, and if it is not, roll
back the transaction.

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 236 / 360

Per.Andersson@cs.lth.se

Trigger Example

A table which records texts with author and creation/modification date:

create table Comments (
author varchar(10),
text varchar (1000) ,
modified date

);

A trigger that ensures that the modified field always contains the date of
the modification:

create trigger commentsModified
before insert or update on Comments
for each row
begin
new.modified := now();
end;

2014/15 237 / 360

Stored Programs

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

MySQL Trigger Syntax

create trigger <trigger-name>

[before | after] [insert | update | delete]
on <table-name>

for each row

<trigger body in PSM>

Notes:

@ for each row means “for each modified row". The trigger body is
executed for each modified tuple. The new and old tuples are
accessed with new and old.

@ Note that the syntax before insert or update is not available in
MySQL. You have to write one insert trigger and one update

trigger. If the trigger body is complex, write a stored procedure and
call it from both triggers.

e MySQL trigger support is still rudimentary. Standard SQL provides
more possibilities.

Per Andersson (Per.Andersson@cs.lth.se) Stored Programs 2014/15 238 / 360

Per.Andersson@cs.lth.se

Object-Oriented Databases, NoSQL

Motivation

Object-Oriented Features
Object-Relational Databases
Persistence

Java Data Objects

NoSQL

The CAP Theorem

Products

MapReduce

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 239 / 360

Per.Andersson@cs.lth.se

Object-Oriented Databases

Object-oriented databases are better than relational databases at handling
complex data that arise in many applications:

@ Images, video, sound, ... (multimedia in general)

@ Spatial data (GIS, Geographical Information Systems)
@ Biological data (DNA strings)

o CAD data (Computer Aided Design)

@ Virtual worlds, games, ...

Object-oriented databases provide persistent storage for objects. The
ODBMS and the application programming language are integrated.

Object-oriented databases may provide a query language, indexing,
transaction support, distributed objects, ...

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 240 / 360

Per.Andersson@cs.lth.se

Shortcomings of RDBMS's

In a relational database system:

@ Everything must be a relation — the logical model must be
“flattened”. E.g., a many-many relationship becomes a relation.

@ There are no complex objects, apart from BLOB's (Binary Large
Objects). BLOB's cannot be type checked.

@ [here is no inheritance.

@ There is a mismatch between the data access language (SQL) and the
host language (Java, C++, ...). You need a lot of time-consuming
code to convert from tuples to objects, and vice-versa.

In an object-oriented database system the objects are moved “unchanged”
between the program and the database.

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 241 / 360

Per.Andersson@cs.lth.se

Future of ODBMS's

When should you use an ODBMS?
When you have a need for high performance on complex data.

Are ODBMS's ready for production applications?
Yes, many new applications use ODBMS's.

Are there any commercial ODBMS products?
Objectivity, Gemstone, POET, Jasmine, ... All are very small
compared to Oracle or IBM . ..

Will ODBMS's replace RDBMS's?
Certainly not. ODBMS's are mainly used in new development.

Can ODBMS's and RDBMS's coexist?

Certainly, and this is what you usually see. OO is good for many
things, relational also but for different things.

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 242 / 360

Per.Andersson@cs.lth.se

There is not much standardization in the object-oriented database world.
Most vendors provide their own solutions to different problems.

One standards body:

ODMG, Object Data Management Group. Started in 1990, died
in 2001. Standardized ODL (Object Definition Language) and
OQL (Object Query Language).

Java standards:

JDO (Java Data Objects). Has the goal to standardize data
store access in Java, but is broader in scope than the ODMG
attempts and does not follow ODL or OQL standards.

JDBC and SQLJ will continue to exist but are limited to
relational databases with SQL as the query language.

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 243 / 360

Per.Andersson@cs.lth.se

Object-Relational Databases

The latest SQL standard has extended SQL with object-oriented features.
Relations are still the basis, but in the new standard:

@ there are objects with data and methods,
@ the objects may contain explicit references to other objects,
@ an attribute in a tuple may contain an object.

MySQL does not support objects.

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 244 / 360

Per.Andersson@cs.lth.se

Persistence

When you use a programming language together with an ODBMS the

objects you create are (may be) persistent, i.e., they outlive the execution
of a program.

In an object-oriented database the objects are stored in “object format”,
instead of being stored as tuples in a relation, or even worse spread out
over several relations.

Objects are loaded from the database when they are accessed by the
program. Pointers (references) are automatically translated (“swizzled")

back and forth between two representations: memory address or disk
address.

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 245 / 360

Per.Andersson@cs.lth.se

Approaches to Persistence

Class based: persistent objects must be of a class that inherits from a
Persistent class.

Object based: any object may be marked as persistent.
Reachability based: one “root” object is marked as persistent, all objects
that can be reached from this object are also persistent.

In JDO (Java Data Objects, see for example db.apache.org/jdo/)
reachability-based persistence is implemented.

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 246 / 360

db.apache.org/jdo/
Per.Andersson@cs.lth.se

Persistent Objects in Java

Different approaches:

Serialization: save/restore objects with explicit commands.
JDBC, SQLJ: interface to a relational database using standard SQL.

JDO: transparent persistence. Automatic persistence, persistent
objects are treated the same as transient objects. The

underlying data store may be a file system, a spreadsheet, a
relational DBMS, an object-oriented DBMS, . ..

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases

2014/15 247 / 360

Per.Andersson@cs.lth.se

Java Data Objects (JDO)

The primary participants in the JDO model are:

PersistenceCapable classes: the actual objects that are stored and fetched.

PersistenceManager: negotiates accesses, stores, transactions, and queries
between applications and the underlying data store.
Transaction: handles ACID transactions.

Query: handles language-independent queries.

Per Andersson (Per.Andersson@cs.lth.se)

Object-Oriented Databases 2014/15

248 / 360

Per.Andersson@cs.lth.se

PersistenceCapable Classes

All user-defined classes can be made persistent. Some system classes are
persistent, e.g., the java.util.Collection classes.

Persistent classes must implement the PersistenceCapable interface,
but this is not visible in the user code. Instead:

@ the class author provides an XML file with details about the class,
e.g. which of the attributes that are persistent,

@ a Class Enhancer tool processes the class file.

During runtime, objects of PersistenceCapable classes can be made
persistent by calling the PersistenceManager. Each persistent object
has its own unique identity in the data store and hence can be shared
between different applications concurrently.

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 249 / 360

Per.Andersson@cs.lth.se

Managing Persistence

The PersistenceManager class contains the following methods to make
objects persistent:

void makePersistent(Object pc);
void makePersistent(Object[] pcs);
void makePersistent(Collection pcs);

And methods to find and fetch persistent objects:

Object getObjectById(Object oid_or_pc, boolean validate);
Object getObjectId(0Object pc);

And methods to delete persistent objects and to make persistent objects
transient:

void deletePersistent(0Object pc);
void makeTransient(Object pc);

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 250 / 360

Per.Andersson@cs.lth.se

Transactions

Transactions are handled by the class Transaction. Methods:

void begin();
void commit () ;
void rollback();

Almost the same as in SQL.

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 251 / 360

Per.Andersson@cs.lth.se

Queries in JDO are handled by the Query class. The methods for
specifying select, from, and where are language independent (SQL,
OQL, ...). Example:

class Employee {
String name;
Integer salary;
Employee manager;

+

Collection extent = persistMgr.getExtent
(Class.forName ("Employee"), false);
Query q = persistMgr.newQuery(
Class.forName ("Employee"), // class
extent, // candidates
"salary > 50000"); // filter
Collection resultSet = q.execute();

Compare: select * from Employees where salary > 50000;

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 252 / 360

Per.Andersson@cs.lth.se

More Complex Queries

SQL query:

select el.name
from Employees el, Employees e2
where el.salary > 7 and
el .manager.name = e2.name and
e2.salary > 7;

JDO query:

q.declareParameters("int sal");
q.setFilter("salary > sal and manager.salary > sal");
resultSet = query.execute(new Integer(50000)); // sal = 50000

Notice that joins are handled transparently. It is up to JDO to translate
the filter specification into SQL (or OQL, ...).

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 253 / 360

Per.Andersson@cs.lth.se

NoSQL Overview

@ Relational databases can be used to solve all kinds of problems.

@ But are maybe not the right solution to all problems.

@ New applications (often web-centric) have new requirements.

o Huge amounts of data (terabytes or petabytes)

o Simple data structure (often)

@ Must scale well

@ NoSQL = “Not only SQL". A better name would be “Not only

relational”.

@ A mixture of ideas, concepts, tools, products, ...

Per Andersson (Per.Andersson@cs.lth.se)

Object-Oriented Databases

2014/15

254 / 360

Per.Andersson@cs.lth.se

Examples, Lots of Data

Twitter 95 million tweets per day (1100 per second) must be stored.
Only simple queries (based on primary key, no joins). Used
MySQL earlier, now Cassandra (and more).
Facebook 500 million active users, half of them log in every day. Each
user has 130 friends (on average). 30 billion pieces of

content (links, texts, blog posts, photo albums) accessed
every day. (Cassandra)

LinkedIn More than 90 million members, one new member every
second. Two billion people searches per year. (Voldemort)

(The figures are from 2009-2010, may have grown ...)

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 255 / 360

Per.Andersson@cs.lth.se

Buy a Bigger Computer Instead?

@ Big computers can store lots of data ...

@ Big computers are expensive

@ And you have to pay big license fees for a big Oracle installation

@ Even big computers can fail

@ Better to use a lot of cheap commodity PC-s

@ And replicate data so one or a few failing nodes don't matter

@ Design the storage system so it can be expanded (during uptime) by
adding PC-s

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 256 / 360

Per.Andersson@cs.lth.se

Is It New?

@ Yes: the term NoSQL is from 2009.
@ But NoSQL databases have been around longer than that.

@ And before anything NoSQL there were object-oriented databases,
hierarchical databases, network databases, . ..

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 257 / 360

Per.Andersson@cs.lth.se

Different Types of Data Stores

Key—Value A distributed hash table. Arbitrary key type; the value is a

“blob”. The application program must be aware of the
structure of the value. (Amazon Dynamo)

Document As key—value, but the value is a document, and the DBMS
knows that. (MongoDB, CouchDB)

Columns The value is a set of columns, like in a relational database,

but they do not necessarily follow a schema. (Google
BigTable, Cassandra)

Graph The database is a set of nodes with properties, and a set of
connections between the nodes (with properties). (Neo4J)

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 258 / 360

Per.Andersson@cs.lth.se

The CAP Theorem

The CAP Theorem says that you cannot have all three of Consistency,
Availability. and Partition tolerance.

@ Strong Consistency: all clients see the same version of the data, even

on updates to the dataset — e.g. by means of the two-phase commit
protocol,

@ High Availability: all clients can always find at least one copy of the
requested data, even if some of the machines in a cluster is down,

@ Partition-tolerance: the total system keeps its characteristic even
when being deployed on different servers, transparent to the client.

Many NoSQL systems sacrifice consistency and go for BASE (next slide).

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 259 / 360

Per.Andersson@cs.lth.se

No ACID, BASE Instead

Transactions are no longer guaranteed to be ACID: atomic, consistent,

isolated, durable). BASE is almost the opposite: basically available, soft
state, eventually consistent.

BASE is optimistic and accepts that the database consistency is in a state
of flux. “Eventual consistency” (actually more like durability) means that
inaccurate reads are permitted just as long as the data is synchronized
“eventually.” (Compare with DNS, it takes time for changes to propagate.)

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 260 / 360

Per.Andersson@cs.lth.se

Amazon Dynamo

Dynamo was developed by Amazon.

First used for the shopping cart, now also for other applications.
Goal: always available, writes never fail.
Key—value store. Records are replicated on several computers.

Read & write: only single records.

Operations: get(key) returns a value or a list of several versions of a
value. The application must solve problems with inconsistencies.

@ put(key,value) writes a value. The key is hashed, the hash code
determines on which nodes the value should be stored (“consistent

hashing’).

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 261 / 360

Per.Andersson@cs.lth.se

Cassandra

First developed by Facebook, now a top-level Apache project.

@ Key—value & replication like in Dynamao.

@ But the value has structure: it contains columns (which are stored in
column families which may be stored in super columns). A column
has a name, a value, and a timestamp. Columns may be sorted on
value or on timestamp.

@ Inbox search at Facebook: 50+ TB of data stored on 150 machines.

e Term search: the user id is the key. Words in messages are the super

columns, message id's become the columns.
e Interaction search: the user id is the key. Recipient id's are the super
columns, message id's become the columns.

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 262 / 360

Per.Andersson@cs.lth.se

Computing Model

Not only storage should be distributed, but also computing. It is difficult
to write parallel programs ... MapReduce is a new programming model.

@ All data is treated as sets of key—value pairs. The key is a string, the
value is a blob.
@ All programs are sequences of alternating map and reduce functions.

@ The map function processes a key—value pair and generates one or
more intermediate key—value pairs.

@ The reduce function merges all intermediate values associated with
the same intermediate key.

@ Map functions run in parallel on many computers, as do reduce
functions

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 263 / 360

Per.Andersson@cs.lth.se

MapReduce Example

Compute word counts within a set of documents.

map (key, value):
// key: document name
// value: document text
for each word w in value:
emitIntermediate(w, 1)

reduce (key, values)
// key: a word
// values: a list of counts
result = 0
for each v in values:
result += v
emit (result)

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 264 / 360

Per.Andersson@cs.lth.se

MapReduce Data Flow

ShufflefSort

Input

t}utEut

t}utEut

/LN

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 265 / 360

Per.Andersson@cs.lth.se

MapReduce Figures (From Google)

Execution on a cluster of 1800 machines, 2 x 2GHz processors, 4GB
memory, 320GB disk, Gigabit Ethernet. The figures are from the original
MapReduce paper, 2004.

Grep Scan through 10'° 100-byte records, searching for a
three-character pattern. 150 seconds, including 60 seconds
startup overhead.

Sort Sort 10'% 100-byte records. 15 minutes.

Google Google web search uses an index which is created with
MapReduce.

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 266 / 360

Per.Andersson@cs.lth.se

MapReduce vs Traditional Databases

@ Data has no explicit schema

e The map and reduce functions must “understand” the data format.

e Users have to write procedural code to interpret and process the data.
e A step backwards?

o Higher-level programming languages for MapReduce: PIG, Hive.

@ Data is stored in files in a distributed file system.

@ All processing is sort based — makes the programming easier, but
may be a performance concern.

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 267 / 360

Per.Andersson@cs.lth.se

More Information

@ http://en.wikipedia.org/wiki/Nosql
@ http://nosql-databases.org/
@ http://nosql.mypopescu.com/

@ http://www.vineetgupta.com/2010/01/
nosql-databases—-part-1-landscape/

Per Andersson (Per.Andersson@cs.lth.se) Object-Oriented Databases 2014/15 268 / 360

http://en.wikipedia.org/wiki/Nosql
http://nosql-databases.org/
http://nosql.mypopescu.com/
http://www.vineetgupta.com/2010/01/nosql-databases-part-1-landscape/
http://www.vineetgupta.com/2010/01/nosql-databases-part-1-landscape/
Per.Andersson@cs.lth.se

Logical Query Languages

Datalog

Predicates

SQL and Datalog

Recursive Queries

)
)
@ Datalog Rules
)
)

Per Andersson (Per.Andersson@cs.lth.se) Logical Query Languages 2014/15 269 / 360

Per.Andersson@cs.lth.se

Logical Query Languages

SQL is an “implementation” of an abstract programming language for
relations called relational algebra. We will study relational algebra later
(page 309).

In relational algebra (and in SQL) there are operations to manipulate
sets (or bags) of tuples (selection, projection, joins, ...). There is a close
relationship between set theory and logic, so the necessary operations can
also be expressed in logic.

We will describe (parts of) the logical query language Datalog. Datalog
Is a subset of the logical programming language Prolog.

Per Andersson (Per.Andersson@cs.lth.se) Logical Query Languages 2014/15 270 / 360

Per.Andersson@cs.lth.se

Predicates, Atoms, Facts

These are facts (or “atoms”):

parent_of(bill, mary) // the parent of bill is mary
parent_of (mary, john) // the parent of mary is john

parent_of is a predicate, a boolean valued function which returns true for
the arguments in the example. For any other combination of arguments it
returns false. This can be seen as a relation:

child motherorfather
bill mary
mary john

An arithmetic atom is a comparison, for example x < y or x = 1.

Per Andersson (Per.Andersson@cs.lth.se) Logical Query Languages 2014/15 271 / 360

Per.Andersson@cs.lth.se

Datalog Rules

A movie relation (or predicate):
Movies(title, year, length, genre, studioName, producerC#)

A Datalog rule which defines a new predicate containing long movies (like
an SQL view):

LongMovie(t,y) ¢ Movies(t,y,l,g,s,p) AND 1 > 100

The body (right-hand side) of a rule consists of subgoals (atoms)
connected by AND. Each subgoal may be negated with NOT.

Variables that occur only once in a rule may be replaced by anonymous
variables:

LongMovie(t,y) ¢ Movies(t,y,l,_,_,_) AND 1 > 100

Per Andersson (Per.Andersson@cs.lth.se) Logical Query Languages 2014/15 272 / 360

Per.Andersson@cs.lth.se

Safe Rules

A Datalog rule must produce a finite relation. These rules are not correct:

Large(l) < 1 > 100
P(x,y) + Q(x)
R(x) < NOT S(x)

Definition (Safety Condition)

Every variable that appears anywhere in the rule must appear in some
nonnegated, relational subgoal of the body.

The following rule is safe but forbidden by the condition (doesn't matter,
the rule wouldn't be used in practice):

P(x) < x =1

2014/15 273 / 360

Per Andersson (Per.Andersson@cs.lth.se) Logical Query Languages

Per.Andersson@cs.lth.se

Extensional and Intensional Predicates

Two kinds of predicates:

@ Extensional predicates, which are predicates whose relations are stored
in a database, and

@ Intensional predicates, whose relations are computed by applying one
or more Datalog rules.

The extensional predicates define the current instance of a relation.

2014/15 274 / 360

Per Andersson (Per.Andersson@cs.lth.se) Logical Query Languages

Per.Andersson@cs.lth.se

SQL and Datalog

The basic SQL operations (actually relational algebra operations) can all
be expressed in Datalog. For example the set operations union,
intersection, and difference. Two relations, R(A,B,C) and S(A,B,C):

R union S U(x,y,z) < R(x,y,z)
U(x,y,z) < S(x,y,z)
R intersect S I(x,y,z) < R(x,y,z) AND S(x,y,z)
R except S D(x,y,z) < R(x,y,z) AND NOT S(x,y,z)

Per Andersson (Per.Andersson@cs.lth.se) Logical Query Languages 2014/15 275 / 360

Per.Andersson@cs.lth.se

Projection and Selection

Projection:

select title, year P(t,y) « Movies(t,y,_,_,_,_)
from Movies

Selection:

select title, year S(t,y) ¢ Movies(t,y,l,_,_,_) AND 1 > 100
from Movies
where length >= 100

Per Andersson (Per.Andersson@cs.lth.se) Logical Query Languages 2014/15 276 / 360

Per.Andersson@cs.lth.se

Joins

Two relations, R(A,B) and S(B,C,D). Natural join:

select * J(a,b,c,d) < R(a,b) AND S(b,c,d)
from R natural join S

Theta join:
select * J(a,rb,sb,c,d) + R(a,rb) AND S(sb,c,d)
from R inner join S AND a < d
on A <D

Per Andersson (Per.Andersson@cs.lth.se) Logical Query Languages 2014/15 277 / 360

Per.Andersson@cs.lth.se

Recursive Queries

Datalog has one big advantage over SQL (relational algebra), namely that
it is easy to express recursive queries (SQL-99 also has recursive queries,
but this is not implemented in most DBMS's). Example:

// facts (define a tree)
parent_of (bill, mary)
parent_of (mary, john)
parent_of (ann, john)
parent_of (bob, mary)

// rules

ancestor_of(x,y) ¢ parent_of(x,y)

ancestor_of (x,y) < parent_of(x,z) AND ancestor_of(z,y)
descendant_of (x,y) < ancestor_of(y,x)

Per Andersson (Per.Andersson@cs.lth.se) Logical Query Languages 2014/15 278 / 360

Per.Andersson@cs.lth.se

@ Overview

Semistructured Data

Valid XML and Well-Formed XML
DTD’s

XML Parsers

XPath, XSLT

XML and Databases

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 279 / 360

Per.Andersson@cs.lth.se

XML (eXtensible Markup Language) is a World-Wide Web Consortium
(www.w3.org) standard for defining the structure and meaning of data
stored in text documents. It's still under development.

Some Google search results:

XML 461 million hits
"XML Tutorial” 131 000 (!)
XML & Database 13 million

java.sun.com search:

XML 35000

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 280 / 360

www.w3.org
java.sun.com
Per.Andersson@cs.lth.se

Digesting the Alphabet Soup

The names of the following important XML standards and technologies
have been fetched from the XML tutorial at java.sun. com:

XML, SAX, DOM, JDOM, dom4j, DTD, XSL, XSLT, XPath,
XML Schema, RELAX NG, TREX, SOX, XML Linking, XML
Base, XPointer, XHTML, RDF, RDF Schema, XTM, XLink,

XPointer, SMIL, MathML, SVG, DrawML, ICE, ebXML, cxml,
CBL, UBL.

So there is a lot to learn ... This is an introduction to get a feeling of
what's it all about.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 281 / 360

java.sun.com
Per.Andersson@cs.lth.se

The Structure of Data

In the relational, object-oriented and object-relational data models data is
structured according to a schema (or class, ...). This makes searchable

databases possible and is important for efficiency.

In the real world data often is unstructured. It can be of any type and it
doesn’t necessarily follow any organized format or sequence.

You sometimes need to handle unstructured data, but your programs
must know something of the data to be able to handle it.

A new invention iIs semistructured data.

2014/15 282 / 360

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

Semistructured Data

Semistructured data is organized enough to be predictable:
@ Data is organized in semantic entities.
@ Similar entities are grouped together.
But:
@ Entities in the same group do not necessarily have the same
attributes.

@ The order of the attributes is not necessarily important.
@ The presence of some attributes may not always be required.

@ The type and size of attributes of entities in the same group may not
be the same.

An HTML document is an example of semistructured data.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 283 / 360

Per.Andersson@cs.lth.se

Semistructured Data, Example

star movie
star

name city _
name address strelot title year
Carrie
Fisher
_ Mark Oak Rd. B'wood Star 1977
street /- city\ Hamill Wars

Maple st. H'wood

This is a tree. You may introduce links (with attribute id's and idref’s) to
express a graph.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 284 / 360

Per.Andersson@cs.lth.se

XML Basics

XML:
@ is a language, like HTML, for markup of data,

@ the markup is, unlike HTML, for the semantic meaning of data, not
just for presentation,

@ has no predefined tags,

@ but extensible tags can be defined and extended based on applications
and needs,

@ and tags can have attributes.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 285 / 360

Per.Andersson@cs.lth.se

Rules for XML Documents

Rules:
@ An XML document must have one root.
@ XML is case sensitive.
@ All tags must be terminated: <FirstName>Jennifer</FirstName>

@ Tags must be properly nested: <Author> <name>Widom</name>
</Author>

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 286 / 360

Per.Andersson@cs.lth.se

Two Modes of XML

Well-formed XML.:
Allows you to invent your own tags. Entirely schemaless.

Valid XML:

Involves a Document Type Definition (DTD) that specifies the
allowable tags and how they may be nested. That is, a schema,
but more flexible than a relational schema.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 287 / 360

Per.Andersson@cs.lth.se

Well-Formed XML Example

<?xml version = "1.0" standalone = "yes" 7>
<Star-Movie-Data>
<Star> <Name>Carrie Fisher</Name>
<Address> <Street>123 Maple St.</Street>
<City>Hollywood</City>
</Address>
</Star>

<Star> <Name>Mark Hamill</Name>
<Street>456 0Oak Rd.</Street> <City>Brentwood</City>
</Star>

<Movie> <Title>Star Wars</Title> <Year>1977</Year>
</Movie>
</Star-Movie-Data>

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 288 / 360

Per.Andersson@cs.lth.se

Document Type Definition (DTD)

A valid XML document follows a DTD, which is a “grammar” for XML
documents. Example:

<!DOCTYPE Stars [
<!ELEMENT Stars (Star*)>
<!ELEMENT Star (Name, Address+, Movies)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (#PCDATA | (Street, City))>
<!ELEMENT Street (#PCDATA)>
<!ELEMENT City (#PCDATA) >
<!ELEMENT Movies (Moviex)>
<!ELEMENT Movie (Title, Year)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Year (#PCDATA)>
1>

* means 0—many times, + means 1-many times, | means “or’, PCDATA is
character data.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 289 / 360

Per.Andersson@cs.lth.se

A Document Following a DTD

<?xm]l version = "1.0" standalone = "no" 7>
<IDOCTYPE Stars SYSTEM "star.dtd">
<Stars>

<Star> <Name>Carrie Fisher</Name>
<Address> <Street>123 Maple St.</Street>
<City>Hollywood</City>
</Address>
<Address>5 Locust Ln. Malibu</Address>
<Movies>
<Movie><Title>Star Wars</Title>
<Year>1977</Year> </Movie>
<Movie><Title>Empire Strikes Back</Title>
<Year>1980</Year> </Movie>
</Movies>
</Star>

</Stars>

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 290 / 360

Per.Andersson@cs.lth.se

More About DTD's

@ An XML document is validated against a DTD by an XML parser.
@ Any element or attribute not defined in the DTD generates an error.

@ SYSTEM indicates that the DTD is intended for private use, PUBLIC
references a public DTD.

@ Importing external DTD's:

<IDOCTYPE rss PUBLIC
"-//Netscape Communications//DTD RSS 0.91//EN"
"http://my.netscape.com/publish/formats/rss-0.91.dtd">

(Rich Site Summary, XML format for sharing headlines and other web
content.)

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 291 / 360

Per.Andersson@cs.lth.se

Attribute Lists

It should be clear that well-formed XML can describe a tree of data.
However, it is possible to label XML nodes with attributes (ID’s), and to
use other attributes (IDREF's) to link to these nodes. In this way, an
arbitrary graph may be described. A DTD with ID's and IDREF's:

<!DOCTYPE Stars-Movies [
<!ELEMENT Stars-movies (Star* Moviex*)>
<!ELEMENT Star (Name, Address+)>
<VATTLIST Star
starId ID
starredIn IDREFS>
<!ELEMENT Movie (Title, Year)>
<IATTLIST Movie
movield ID
stars0f IDREFS>
<!-- elements Name, ... as before -->

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 292 / 360

Per.Andersson@cs.lth.se

A Document with ID's and IDREF's

<Stars—-Movies>
<Star starId = "cf" starredIn = "sw, esb, rj">
<Name>Carrie Fisher</Name>
<Address> <Street>123 Maple St.</Street>
<City>Hollywood</City> </Address>
</Star>
<!-- similar for Mark Hamill, "mh" -->
<Movie movield = "sw" starsO0f = "cf, mh">
<Title>Star Wars</Title>
<Year>1977</Year>
</Movie>
<!-- similar for Empire Strikes Back, "esb", and
Return of the Jedi, "rj" -->
</Stars-Movies>

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 293 / 360

Per.Andersson@cs.lth.se

XML Parsers

XML documents are readable for humans but are intended to be handled
by programs. In a program that processes an XML document you need to
convert the XML text into program data structures. There are several
ways to do this (in Java and in other languages that have implemented the
standards). Two examples:

SAX (Simple API for XML):

A “serial access” protocol. Event-driven: you register a handler
with a SAX parser, and the parser invokes your callback methods
whenever it sees a new XML tag, or encounters an error, or
wants to tell you anything else.

DOM (Document Object Model):

Converts an XML document into a tree of objects in your
program. You can then manipulate the data in any way that
makes sense: modify the data, remove it, or insert new data.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 294 / 360

Per.Andersson@cs.lth.se

YAV

The SAX parser calls methods from the ContentHandler interface, which

you must implement in your program (similar to a listener interface in
AWT or Swing). Example:

<priceList> [parser calls startElement]

<coffee> [parser calls startElement]
<name> [parser calls startElement]
Mocha Java [parser calls characters]
</name> [parser calls endElement]
<price>11.95</price> [parser calls startElement,

characters, and endElement]
</coffee> [parser calls endElement]

Notice: with SAX, you can only read an XML document, not modify it in
any way. The parser can check that an XML document is valid (follows a
given DTD).

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 295 / 360

Per.Andersson@cs.lth.se

DOM defines a standard structure of XML documents in memory. The
structure is a tree, with nodes for the different kinds of XML elements.

DOM contains:

@ a parser, so you can parse an existing XML document and build a
DOM representation in memory. Many DOM parsers use SAX parsers
internally,

@ an API to manipulate the DOM tree,
@ an API to create a new XML document from a DOM tree.

Naturally, you can also create a DOM tree in your program and
programmatically create an XML document.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 296 / 360

Per.Andersson@cs.lth.se

Locating Data in a Document

Suppose that you have XML documents containing interesting data, and
you want only specific parts of that data. You could write a program that
parses a document, builds a DOM tree, and then searches that tree using
the DOM API. But this is often not flexible enough.

Another example: in order to write a program that processes different
parts of an XML data structure in different ways, you need to be able to
specify the part of the structure you are talking about at any given time.

The XML Path Language, XPath, provides a syntax for locating specific
parts of an XML document.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 297 / 360

Per.Andersson@cs.lth.se

XPath is an addressing mechanism that lets you specify a path to an
element so that, for example, <article><title> can be distinguished
from <person><title>. That way, you can describe different kinds of
translations for the different <title> elements. Examples:

/h1/h2 select all h2 elements under a hil tag,

/h1[4]/h2[5] select the fourth h1 element, then the fifth h2 element
under that,

/books/book/translation[.=’Japanese’]/../title select the
title element node for each book that has a Japanese translation.

As you can see from the examples, XPath expressions look like search

paths in a tree structured file system. (There is much more to XPath than
this ...)

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 298 / 360

Per.Andersson@cs.lth.se

Transforming XML Documents

XML specifies how to identify data, but you often need to transform the
data in predefined ways.

Examples:
@ Present the data in a readable form, e.g., in HTML, XHTML, plain
text, ... Note that XML is text, but it is not intended to be read.

@ Create another XML document, maybe in a different format.

Naturally, you can do this programmatically, but more often you use
XSLT, Extensible Stylesheet Language for Transformations. XSLT uses

XPath to match nodes.
XSLT is the first part of XSL, Extensible Stylesheet Language. The

second part is XSL formatting objects.

2014/15 299 / 360

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

An XSLT Example

One common use for XSLT is to transform XML documents into HTML.
A stylesheet specifies which transformations that should be applied. A
simple template stylesheet (intro.xsl):

<?xml version = "1.0"7>

<xsl:stylesheet version = "1.0"
xmlns:xsl = "http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match = "myMessage">
<html>
<body><xsl:value-of select = "message"/></body>
</html>

</xsl:template>
</xsl:stylesheet>

XPath is used to find the myMessage element, then the message element.
The value of the message element is placed inside HTML <body> tags.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 300 / 360

Per.Andersson@cs.lth.se

A Stylesheet Applied

An XML document that uses this stylesheet:

<?xml version = "1.0"7>
<?7xml stylesheet type = "text/xsl" href = "intro.xsl"?>
<myMessage>
<message>Welcome to XSLT!</message>
</myMessage>

This is a normal XML document, with the addition of the xml
stylesheet tag. More in XSLT:

@ variables,
@ Iteration, sorting,

@ conditional processing.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 301 / 360

Per.Andersson@cs.lth.se

XSLT Processors

The work necessary for transforming an XML document is performed by
an XSLT processor. Some alternatives:

@ Write your own processor. There are standard classes in Java (JAXP)
and PHP (XSL extension) to do this.

e If all you want is HTML presented in a web browser, use Internet
Explorer and the processor msxml from Microsoft.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 302 / 360

Per.Andersson@cs.lth.se

Custom Markup Languages

XML is used as a markup language in many application areas. Examples:

MathML mathematical formulas (like IATEX, but processor independent)

CML chemical formulas, molecules, ...

SMIL multimedia presentation

SVG scalable vector graphics. Lines, curves, etc.
XBRL business information

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 303 / 360

Per.Andersson@cs.lth.se

XML and Databases

An XML document is a collection of data, so in the strictest sense it Is a
database. It has some advantages as a database:

@ self-describing, portable, can define data in trees or graphs
o flexible schemas (DTD's, XML Schema)
@ query languages (XPath, XQuery, ...)
@ programming interfaces (SAX, DOM, ...)
Also disadvantages:
@ verbose, access to data is slow (needs parsing)

@ lacks indexes, security, transactions, multi-user access, triggers,
queries across multiple documents, ...

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 304 / 360

Per.Andersson@cs.lth.se

XML for Transporting Data

One important use of XML in database systems is not to store data, but
to transport data extracted from a (relational) database.

In commercial database systems there are nowadays applications for this
“serializing” of data.

Example, e-commerce: Use a relational database to store information
about products, customers, etc. Use XML documents to transport this
information. Use an XSL stylesheet to convert the information for
presentation.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 305 / 360

Per.Andersson@cs.lth.se

Extracting XML from a Database

An example of an XSLT template for a query returning XML from a
relational database:

<?7xml version="1.0"7>
<FlightInfo>
<Intro>The following flights are available:</Intro>
<Select>SELECT airline, flightNumber, depart, arrive
FROM Flights</Select>
<Flight>
<Airline>$airline</Airline>
<FltNumber>$flightNumber</FltNumber>
<Depart>$depart</Depart>
<Arrive>$arrive</Arrive>
</Flight>
</FlightInfo>

When the template is processed, the query is executed and an XML
document with the appropriate format is produced.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 306 / 360

Per.Andersson@cs.lth.se

XML for Storing Data

If your data is not structured in a way so it can be conveniently described
by a relational (or object-oriented) schema, you can use a native XML

database.
As an example, suppose you have a Web site built from a number of

XML documents, and you would like to provide a way for users to search
the contents of the site. In this case, you could use a native XML
database and execute queries in an XML query language.

2014/15 307 / 360

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

Native XML Databases

One possible definition of a native XML database is that it:

@ defines a logical model for an XML document, and stores and
retrieves documents according to that model,

@ has an XML document as its fundamental unit of logical storage, just
as a relational database has a tuple in a relation as its fundamental

unit of logical storage,

@ is not required to have any particular physical storage model. For
example, it can be built on a relational database, or an
object-oriented database, or use a normal file system.

Note that it is not required that XML documents be stored as text. They
may equally well be stored in some other format, such as the DOM model.

Per Andersson (Per.Andersson@cs.lth.se) 2014/15 308 / 360

Per.Andersson@cs.lth.se

Relational Algebra

@ Basics

@ Set Operators

@ Relational Operators (7, o, X,)

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 309 / 360

Per.Andersson@cs.lth.se

Relational Algebra

SQL and other query languages have a theoretical basis. This basis is
called relational algebra, “computing with relations”.

Relational algebra is an algebra that operates on sets of tuples. |t must
be modified somewhat to handles bags (multivalued sets), which are used
in commercial DBMS's.

Relational algebra is good for:

@ understanding what queries that can be expressed,
@ expressing queries non-ambiguously and compactly,

@ reasoning about queries, e.g., which queries that are equivalent to
each other,

@ planning and optimizing query execution (only of interest for query
language implementers).

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 310 / 360

Per.Andersson@cs.lth.se

SQL handles bags instead of sets. In a bag, each value may appear several
times. The motivation behind this is that bags are more efficient.
Consider the “union” operation:

@ Take the union of two sets — you have to check each tuple in the
result so it only appears once.

@ Take the union of two bags — you just have to concatenate the bags.

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 311 / 360

Per.Andersson@cs.lth.se

Basics of Relational Algebra

The operands in a relational algebra operation are relations. Basic
operations:

@ Set operations — union, intersection, difference.

@ Operations that remove parts of a relation: “selection” (remove
tuples) and “projection” (remove attributes).

@ Operations that combine the tuples of two relations: Cartesian
product, different join operations.

@ A renaming operation that changes the name of a relation or the
names of attributes.

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 312 / 360

Per.Andersson@cs.lth.se

Set Operations

The set operations operate on two relations R and S:

RUS Union
RNS Intersection
R — S Difference

Naturally, R and $§ must be compatible in the sense that they have the
same attributes with the same types in the same order.

In SQL:

R union S
R intersect S
R except S

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 313 / 360

Per.Andersson@cs.lth.se

Project: remove attributes. Operator 7 (“pi" for “project™).

title year length inColor studioName prodCNbr

Star Wars 1977 124 true Fox 12345

Mighty Ducks 1991 104 true Disney 67390

Wayne's World 1992 95 true Paramount 99999
title year length

Star Wars 1977 124
Mighty Ducks 1991 104
Wayne's World 1992 95

Ttitle,year,length (Movi e)

inColor

7"'inCo/or(IWOV’.e) true

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15

314 / 360

Per.Andersson@cs.lth.se

Projection in SQL

The projection operator corresponds to the “select list” of an SQL select

statement:

select title, year, length
from Movie;

select inColor
from Movie;

But note that the second SQL statement produces a bag with three tuples

Instead of a set:

inColor
true
true
true

select distinct produces a set.

2014/15

315 / 360

Per Andersson (Per.Andersson@cs.lth.se)

Relational Algebra

Per.Andersson@cs.lth.se

Select: choose tuples based on some condition. Operator o (“sigma” for

“select™).
title year length inColor studioName prodCNbr
Star Wars 1977 124 true Fox 12345
Mighty Ducks 1991 104 true Disney 673890
Wayne's World 1992 95 true Paramount 99999

O length>100(Movie)
title year length inColor studioName prodCNbr
Star Wars 1977 124 true Fox 12345
Mighty Ducks 1991 104 true Disney 673890

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 316 / 360

Per.Andersson@cs.lth.se

Selection in SQL

The selection operator corresponds to the “where condition” of an SQL
statement:

select *
from Movie
where length >= 100;

Note that the selection operator of relational algebra has nothing to do
with the select clause of SQL ...

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 317 / 360

Per.Andersson@cs.lth.se

Cartesian Product

Cartesian product, “cross product”: combine every tuple from a relation
with every tuple from another relation. Operator Xx.

A
R= 1
3

&N
V)
|

© &N W

| —
S5~ aln
— oo o O

RB S.B

RxS =

W wwr 4K~ R >
AR BRNONON
© A NO DN
S~ g~Nan
0o Do T

—t
—t

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 318 / 360

Per.Andersson@cs.lth.se

Cartesian Product in SQL

In SQL, when selection from two relations with a * in the select clause
and no where clause, is performed, the result is the Cartesian product
between the relations:

select *
from R, S;

Alternatively:

select x*
from R cross join S;

There is usually not much use for the “unrestricted” Cartesian product.
When you restrict the product with conditions in the where clause, you
get a join instead.

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 319 / 360

Per.Andersson@cs.lth.se

Natural Join

Natural join: take the Cartesian product of two relations, but keep only the
tuples whose values match on attributes with the same name. Operator .

' .
R= 1 2 S =
3 4 4 7 8
9 10 11
A B C D
R<xxS5= 1 2 5 6
3 4 7 8

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 320 / 360

Per.Andersson@cs.lth.se

Natural Join in SQL

In SQL, a natural join is performed when you select from two relations,
give a where condition that expresses equality, and restrict the select
list:

select A, R.B, C, D
from R, S
where R.B = S.B;

or

select *
from R natural join S;

2014/15 321 / 360

Relational Algebra

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

Another Natural Join Example

More than one attribute can participate in a natural join:

A B C B C D
1 2 3 T2 3 4
U= "6 7 3 V=5 3 5
9 7 8 7 8 10
A B C D
1 2 3 4
UxV= 1 2 3 5
6 7 8 10
o 7 8 10

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra

2014/15

322 / 360

Per.Andersson@cs.lth.se

Theta join: join relations on an arbitrary condition. Operator (the

condition is C).

A B C B C D
1 2 3 2 3 34
U= 6 7 3 V=, 3 5
O 7 8 7 8 10

A UB UC VB V.C D

1 2 3 2 3 4

1 2 3 2 3 5

Uk V=17 52 3 7 8§ 10

6 7 8 7 8 10

O 7 8 7 8 10

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra

C

2014/15

323 / 360

Per.Andersson@cs.lth.se

Combining Operations

Relation Movies(title, year, length, filmType, studioName).
What are the titles and years of movies made by Fox that are at least 100
minutes long?

As an expression tree:

L title,year

N
/ \
Olength=100 OstudioName="Fox’

Movies Movies

In linear form:

7"'title,year(O'/ength2100(/\/IOV’.eS) A O'studioName:’Fox’(MOVieS))

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 324 / 360

Per.Andersson@cs.lth.se

Equivalent Queries

7"'title,ye.a)r(O'Iength>:100(/W()Vie~'=7) [UstudioName:’Fox’(MOVies))

< Ttitle,year (Olength>:100/\studioName:’ Fox' (MOVieS))

It is the task of the query optimizer to rewrite queries in the most efficient
form. To do this, it uses:

e relational algebra rules,
@ ad hoc rules, e.g., perform selections as early as possible,

@ usage statistics collected by the DBMS.

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 325 / 360

Per.Andersson@cs.lth.se

Join Example

Two relations:

Moviesl(title, year, length, filmType, studioName)
Movies2(title, year, starName)

Find the stars of movies that are at least 100 minutes long.

TstarName (T length>100(Movies1 1 Movies2))

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 326 / 360

Per.Andersson@cs.lth.se

Independent Operations

The following operations are “independent”, i.e., basic:
@ union
e difference
@ selection
@ projection
@ Cartesian product
@ renaming (operator p, renames a relation or an attribute)

The other operations can be expressed in terms of the basic operations.
Examples:

RNS = R—(R-25)
RDCQS = Jc(RXS)

2014/15 327 / 360

Relational Algebra

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

As described earlier, the purpose of the join operation is to match tuples
from two relations that agree on the values of two attributes.

There are cases when you wish to include “dangling” tuples in the
output, i.e., tuples that fail to match with a tuple in the other relation.
The missing attributes are padded with null.

These cases are handled by different kinds of outerjoins, operator .
In practice, you normally consider one of the relations as the “basis”,
the tuples of which you want included in the output even if they have no
match in the other relation. Then, you use a left or right outerjoin,

indicated with L or R on the operator.

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra 2014/15 328 / 360

Per.Andersson@cs.lth.se

Outerjoin Example

Two relations and the result of their natural left outer join:

A B C B C D
1 2 3 2 3 10
U= 4 5 6 V= 2 3 11
7 8 9 6 7 12
A B C D
. 1 2 3 10
U< V= 1 2 3 11
4 5 6 null
7 8 9 null

2014/15

329 / 360

Per Andersson (Per.Andersson@cs.lth.se) Relational Algebra

Per.Andersson@cs.lth.se

Implementation of DBMS's

Write Your Own DBMS
Disk Storage

Indexes

B-trees

Query Compilation

Query Execution

Algorithms

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 330 / 360

Per.Andersson@cs.lth.se

Write Your Own DBMS

Students take courses:

Students (pNbr, name)
TakenCourses (pNbr, courseCode, grade)

Design your own DBMS for handling these data:

@ Schema information in one file:

Students#pNbr#STR#name#5STR
TakenCourses#pNbr#STR#courseCode#STR#grade#INT

@ Each relation in one file. The student file:

790101-1234#Bo Ek
770403-4321#Eva Alm

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 331 / 360

Per.Andersson@cs.lth.se

Process a Query

select courseCode, grade

from Students, TakenCourses

where name = ’Eva Alm’ and
Students.pNbr = TakenCourses.pNbr;

Your own DBMS must do the following:
© Read the schema file to determine the attributes and their types.
© Check that the where-condition is valid for the relations.
© Read the relation files into memory.

© Perform the join:

for each tuple s in Students
for each tuple t in TakenCourses
if where-condition is true
output the course code and the grade

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 332 / 360

Per.Andersson@cs.lth.se

Your Own DBMS is No Good

Writing your own DBMS is not a good idea:

@ The tuple layout on disk is inadequate, with no flexibility when the
database is modified.

@ Searching is very expensive — you always have to read an entire
relation.

@ Much better ways of doing joins are available.
@ There is no concurrency control.

@ There is no reliability.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 333 / 360

Per.Andersson@cs.lth.se

Disk Storage

tracks read/write
head

sector —7

This disk: one surface, 8 tracks, each track 8 sectors.

Typical: 16 surfaces, 16384 tracks, each 128 sectors (avg.), 4 kB per
sector, 128 GB. Average disk latency (time to read/write a block): 10 ms.

The number of disk accesses must be minimized — the CPU can execute
millions of instructions in 10 ms.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 334 / 360

Per.Andersson@cs.lth.se

Storing Relations

The smallest unit that can be read from or written to a disk is a disk block
(a disk sector). A common block size is a few kilobytes, e.g., 4kB.

Most relations are much larger than 4 kB, so a relation must be stored
in several blocks. Some DBMS's rely on the underlying operating system
(file system) to handle such issues, but most take over the block handling
themselves.

It is advantageous if the blocks that a relation occupies are “close” to
each other. Preferably the blocks should be stored in the same “cylinder”
(same track on many surfaces), in order to minimize head movement.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 335 / 360

Per.Andersson@cs.lth.se

Storing Tuples

The tuples of a relation need to be packed into disk blocks. Example
layout for one block:

header tuple 1 tuple 2 tuple m | free

header attr 1 attr 2 attr n free

A header may contain links to the table schema, length, timestamp,
checksum, ...

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 336 / 360

Per.Andersson@cs.lth.se

Data Modifications

Change contents of a tuple:
@ find the tuple, modify it, write it back.
Insert a tuple:
@ unsorted relation: find space for the tuple, write it.

@ sorted relation: find space in the current block, write it. If no space in
the current block, create overflow block.

Delete a tuple:

@ delete the tuple. May be possible to reclaim a block or to do away
with an overflow block.

Note: it may be advantageous not to fill blocks as much as possible, to
prepare for future insertions.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 337 / 360

Per.Andersson@cs.lth.se

Indexes

As noted before, the DBMS often automatically creates an index on the
primary key of a relation:

create table Stars (
name varchar (20) primary key,
birthDate date

)
Now the following kind of query can be done quickly:

select * from Stars where name = ’Carrie Fisher’;

Indexes also help in joins. We can also create an index on an arbitrary
attribute:

create index BirthDateIndex on Stars(birthDate);

This makes queries of the following kind efficient:

select * from Stars where birthDate = ’1952-01-01;

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 338 / 360

Per.Andersson@cs.lth.se

An ldea for an Index

Key pointer Key other data
The index file (left, arrows are 10 ™ 20
disk addresses): 10 \ 40
) 20 o
@ small, may perhaps be 20] 10
kept in main memory, 20
20
@ sorted on the key, may 30 > 0
use binary search to find a 20 VA 30
key. 50 /
“Key" is not necessarily the = — 10
primary key; it is any attribute 50] >0
that has an index. 50
20

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 339 / 360

Per.Andersson@cs.lth.se

Multi-level Indexes

If the index fits into main memory, you need only one disk access to
retrieve a tuple with a specific value.

If the index does not fit into main memory and you intend to use binary
search, you first have to read the middle block, then read the middle of
the next half, ... Then, you need many disk accesses.

To help in such situations, you can create a multi-level index. In
principle, you have a sparse index for the index file. The most common
type of multi-level index is a B-tree.

A different strategy is to use a hash table for the index. The in-memory
versions of hash tables must be modified for use with secondary memory.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 340 / 360

Per.Andersson@cs.lth.se

A B-tree is a data structure that:

@ automatically maintains as many levels of index as is appropriate
(normally three levels),

@ manages the space on the blocks so that every block is between half
used and completely full. No overflow blocks are needed,

@ automatically balances the tree.

A B-tree is like a balanced binary search tree:

@ you look for key values by traversing the tree, to the left if the key is
less than the node value.

But also unlike a binary tree:
@ packs n key values and n+ 1 pointers in each node,

@ typically, a node is a disk block with space for many (hundreds)
key /pointer pairs.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 341 / 360

Per.Andersson@cs.lth.se

A B-tree Example

A B-tree with integer keys, n = 3:

10

7 23 | 31 | 43
//. ; . | //. \ =
2 3 5 7 |10 13 (17 | 19 23 | 29 31 | 37 | 41 43 | 47

<—
(—_.
<—

<—
<—

<—
<—7
<—7
<—

<—
<—
<—

The first n pointers in a leaf node point at data blocks (or are null if the
node isn't filled). The last pointer points at the next leaf node.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 342 / 360

Per.Andersson@cs.lth.se

B-tree Observations

Some things to observe regarding B-trees:

B-trees supports fast lookup of a specific key. At most three disk
accesses, and normally less since the root node may be kept in
primary memory.

B-trees support range queries on the key, where low<=key and
key<high. Find the leaf node containing the lower limit, then use the
pointer to the next leaf node, etc., until the upper limit is found.

As an extreme, you can get all the keys in sorted order by starting in
the leftmost leaf node.

Insertion is easy. If a leaf node overflows a new leaf node must be
created, and the parent node updated (and maybe split).

Deletion is easy. Some DBMS's don't bother to fix up the node
structure on deletion, on the assumption that most relations grow in
size.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 343 / 360

Per.Andersson@cs.lth.se

Query Compilation and Execution

Input:
SQL query

>

Query /

compilation

Parse query

Select logical

query plan A

Select physical
plan

Execute query

j
-

Parse
tree

Logical query
plan tree

Physical query
plan tree

344 / 360

Per Andersson (Per.Andersson@cs.lth.se)

Implementation of DBMS's

2014/15

Per.Andersson@cs.lth.se

The Need for Optimization

Consider this query (similar to a previous example, but Students and
TakenCourses have been renamed to S and TC):

select x*

from S, TC

where name = ’Eva Alm’ and
S.pNbr = TC.pNbr;

There are many ways to evaluate the query. Alternatives, expressed in
relational algebra:

(1 Uname:’EvaAlm’AS.prr:TC.prr(S X TC)
Q Uname:’EvaAlm’(S > TC)

o Unamez’EvaAlm’(S) >1 TC

These alternatives have different efficiency, and the query compiler has to
choose the most efficient.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 345 / 360

Per.Andersson@cs.lth.se

Estimates of Costs

Suppose that the S relation has 500 tuples. Each student has taken 20
courses, so the TC relation has 10,000 tuples. Further suppose that no
indexes are present and that all intermediate results are written to disk.

@ Read S and TC, 500 4 10,000 disk accesses.
Take the product, write it, 500 - 10, 000.
Read again to check the condition, 500 - 10, 000.
Total 10,010,500 disk accesses.

@ Read S and TC, 500 + 10, 000.
Join, write, 500 - 20.
Read and select, 10,000.
Total 30,500 disk accesses.

© Read S, 500.
Select and write, 1.
Read TC and result of select, then join, 10,000 + 1.
Total 10,502 disk accesses.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 346 / 360

Per.Andersson@cs.lth.se

Parsing a Query

The first phase of query compilation is parsing, i.e., checking that the SQL
query is syntactically correct. Parsing is performed by all compilers,
regardless of language. The result is a parse tree (“syntax tree").

SQL syntax is described by a grammar. The parser checks the query
against the grammar.

Example grammar (much simplified):

SELECT <Sellist> FROM <FromList>
WHERE <Condition>

<SellList> ::= <Attribute> , <SellList> | <Attribute>
<FromList> ::= <RelName> , <FromList> | <RelName>

<Query>

...and so on

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 347 / 360

Per.Andersson@cs.lth.se

The Parse Tree

<Query>
_ T
<SelList> <FromList> <Condition>
/
<Attribute> <RelName> <FromList> <Condition> AND <Condition>
movieTitle StarsIn <RelName> <Attribute> = <Attribute> <Attribute> LIKE <Pattern>
MovieStar starName name birthDate '1960%"'

select movieTitle

from StarsIn, MovieStar

where starName = name and
birthDate like ’1960%°;

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 348 / 360

Per.Andersson@cs.lth.se

Semantic Checks

The parser checks that the SQL query is syntactically correct, i.e., that the
“form” of the query is correct. But other things must be checked as well,

for example:
@ Relation uses: every relation mentioned in the query must exist in the
database schema.
@ Attribute uses: every attribute must be defined in the relation
schemas.
@ Types: all attributes must be of the correct type for the expression in
which they occur.

2014/15 349 / 360

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's

Per.Andersson@cs.lth.se

Logical Query Plans

The next step in query compilation is to transform the parse tree into an
equivalent logical query plan, expressed as an “algebraic expression tree" .
In this tree, the nodes are relational-algebra operators.

Example (query on a previous slide):

I movieTitle

c)s’[arName = name and birthDate like '1960%'

X

TN

Starsin MovieStar

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 350 / 360

Per.Andersson@cs.lth.se

Query Rewriting

The process of transforming the parse tree into a logical query plan is
mechanical, but the result probably isn't the most efficient query plan.
The plan needs to be rewritten using different algebraic laws and heuristic

techniques.
Example rewrite:

T hovieTitle

starName = name

RN

Starsin ObirthDate like '1960%'

MovieStar

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 351 / 360

Per.Andersson@cs.lth.se

Laws for Rewriting

There are rules that can be applied for query rewriting. For instance,
commutative and associative rules:

RUS=SUR
(RUS)UT =RU(SUT)

R<xS=S~R
(R<xS) T =R (S T)
There is a lot of similar laws.

One of the most important rules for optimization is “pushing selection”,
I.e., performing selection as early as possible. The intuitive motivation
behind this is that all other operators will perform better if their operands
are smaller relations.

One such rule:

oc(R>1S)=0c(R)< S

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 352 / 360

Per.Andersson@cs.lth.se

Physical Query Plans

The final step in query compilation is to transform the preferred logical
query plan into a physical query plan.

The input is the algebraic tree that corresponds to the logical query plan.
The output is a similar tree where the operators are physical operators.

Some physical operators have a direct correspondence in relational
algebra, e.g., select, project, and join.

Other operators are necessary as “helpers”:

@ Scan — read an entire relation, or the tuples that match a simple
criterion.

@ Sort-scan — as scan, but produce a sorted result. That the result is
sorted is used by some other algorithms, e.g., some join algorithms.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 353 / 360

Per.Andersson@cs.lth.se

Physical Query-Plan Operators

There are many variants of the physical operators. Some work by reading
the data from disk only once, some read the data twice or more times.
The DBMS determines which variant to use, by examining the sizes of

the operands, the presence of indexes, and the amount of available primary
memory.

As an example, consider sorting a relation (order by in SQL).
Small relation that fits in memory:

@ read the entire relation, sort it with a good in-memory algorithm
(Quicksort, ...).

Large relation:

@ use merge-sort (following slide).

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 354 / 360

Per.Andersson@cs.lth.se

Merge-Sort usually is preferred for external sorting:

© Repeat until the entire relation has been read:
@ Fill all available memory with blocks from the original relation to be

sorted.
@ Sort the records that are in main memory.
© Write the sorted records onto new blocks of secondary memory,

forming one sorted sublist.

© Merge all the sorted sublists into a single sorted list.

2014/15 355 / 360

Implementation of DBMS's

Per Andersson (Per.Andersson@cs.lth.se)

Per.Andersson@cs.lth.se

Join Algorithms

We assume that we shall join two relations R(X,Y) and S(Y,Z) on the
attribute (set of attributes) Y, i.e., natural join.
Several join algorithms are possible:

@ Nested loop (two for statements and a test, as in “your own
DBMS", slide 332). Only suitable for small relations, but may be

used as a subroutine by other algorithms.

@ One relation in memory. Used when one of the relations fits in
memory and there are no indexes.

@ Sort-based join. Used with large relations without indexes.

@ Sort-based index join. For large relations with indexes.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 356 / 360

Per.Andersson@cs.lth.se

One Relation in Memory

Join R(X,Y) and S(Y,Z). At least one of the relations, say S, fits in main
memory. Neither R nor S has an index on Y.
The join can be performed in this way:

© Read all the tuples of S and form them into a main-memory search
structure (hash table, balanced binary tree, ...) with Y as the search
key.

© Read each block of R. For each tuple of R, find the tuples of S that
match. Join the tuples, output them.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 357 / 360

Per.Andersson@cs.lth.se

Sort-Based Join

Join R(X,Y) and S(Y,Z). R and S are large, and there still isn't an index
on the common attribute Y. Then, you can join as follows:

© Sort R, using merge sort.

@ Sort S similarly.

© “Merge-join” the sorted R and S. Use one buffer for the current block
of R, one buffer for the current block of S. Repeat:

e Find the smallest value y that is at the front of the blocks for R and S.

o If y appears only in one of the relations, drop all tuples with value y.

e Otherwise, find all tuples from both relations having this value. If
necessary, read blocks from R and/or S, until it is certain that there are
no more y's in either relation.

e Output tuples that can be formed by joining tuples from R and S with
a common y value.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 358 / 360

Per.Andersson@cs.lth.se

Index-Based Join

When there is a B-tree index on a relation we can obtain the tuples of the
relation in sorted order from the index.

To perform the join between R(X,Y) and S(Y,Z) when there is an index
on one or both of the Y's, we use the sort-join algorithm but we can skip
one or two of the initial sorting steps of the algorithm.

Note that we don't have to read the entire relations, only the tuples
that actually join.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 359 / 360

Per.Andersson@cs.lth.se

Choosing a Physical Query Plan

The logical query plan must be transformed to a physical query plan.
Normally, this is done by considering many different plans and choosing
the one with the least estimated cost.

When enumerating possible physical plans, we select for each plan:

@ An order and grouping for associative and commutative operations.
@ An algorithm for each operation.

e Additional operators (scanning, sorting, ...) that are needed for the
physical plan.

Per Andersson (Per.Andersson@cs.lth.se) Implementation of DBMS's 2014/15 360 / 360

Per.Andersson@cs.lth.se

	Introduction
	SQL
	E/R Modeling
	The Relational Data Model
	JDBC
	PHP
	Normalization
	Stored Programs
	Object-Oriented Databases
	Logical Query Languages
	XML
	Relational Algebra
	Implementation of DBMS's

