Lund University Compiler Construction
Computer Science EDA180/DAT180
Lennart Andersson 2010-03-13

Using the GNU assembler for Intel processors

1 Introduction

This tutorial is a minimal description of what you need to know to generate code for an 80386
(or later) Intel processor using the as [3] assembler on a Linux system. The appendix contains
instructions and modifications for running the example programs using the C library instead of
the Linux kernel for input and output.

There are two kinds of assemblers:

1. Intel style assemblers. The main assembler of this kind is nasm.

2. AT&T style assemblers, mainly the Gnu assembler, as or gas.

The main differences between them are the order of the operands in the instructions, the special
characters indicating constants, registers, contents of memory locations, operand types ([3], sec.
8.8). They both generate the same machine instructions, so the choice is mostly a matter of
taste.

There is a lot of documents on the web describing how to program this processor. A good one,
using the Intel style, is by Carter [6].

2 The processor

There are eight 32 bit general purpose registers: eax, ebx, ecx, edx, ebp, edi, esi, and esp.
The last one, esp, should be reserved for use as a stack pointer. The other registers may be
used freely, but some instructions require the use of specific registers. The letters e and x in
the first four registers just indicates that they are 32 bits long. The base pointer register, ebp,
is conventionally used as a pointer to the current activation record. edi and esi are used as
destination and source pointers by string instructions.

The first four registers may also be used as byte and 16 bits word registers. The name of the
last 8 bits of eax is al, and the last 16 bits may be referred by ax. The first 8 bits of ax are
referred by ah. There are analogous names for parts of the ebx, ecx and edx registers. There
are some one bit flags that are set by the are set as side effects of some instructions and used
by the conditional instructions.

The processor can execute more than 300 different instructions. This document describes about
30 of them. Each instruction has at most two operands. There are four kinds of operands:
registers, memory addresses, and constant data held by the instruction. With few exceptions,
an instruction can refer to at most one memory location.

3 An example

Our first example shows how to compute the number of decimal digits required to print a
nonnegative integer. We will repeatedly divide the number by 10 until it becomes 0.

.data # allocating memory
n: .long 234 # the number
length: .long O # the result
ten: .long 10 # the divisor

.text # instructions

.global _start # make _start globally known
_start: movl $0, Y%ebx # use ebx as counter

movl n, %eax # copy number to eax
nextdigit:

movl $0, Yedx # prepare for long division

idivl ten # divide combined edx:eax registers by 10
quotient to eax, remainder to edx

addl $1, Y%ebx # add 1 to counter

cmpl $0, %eax # compare eax to O

jg nextdigit # jump if eax>0

movl %ebx, length # copy counter to memory

exit to 0S kernel to terminate execution

movl $0, Yebx # first argument: exit code

movl $1, Yeax # sys_exit index

int $0x80 # kernel interrupt

The program has two sections, a .data section that describes how to allocate memory for global
variables, and a .text section with the instructions. The sections may appear in either order.
Each instruction should start a new line. No indentation is required, but improves readability.
Comments start with a # character.

Each variable has a label, a type, and an initial value. The label is a name that denotes the
memory address of the variable. All variables in this example have type .long using 32 bits. n
is the label of the number to analyze, 234, length will contain the number of digits, i.e. 3, on
completion of the execution, and ten is the divisor.

The first line of the .text section is a directive making a label accessible outside this section.
_start is the default label used by the loader for the first instruction to be executed.

All register references start with a percent character. The first instruction,
movl $0, %ebx

will set the ebx register to 0. $0 is a constant operand. The dollar sign is important. Without it
the value at location 0 in memory will be used. We will use the ebx register to count the digits.

The next two movl instructions will prepare for dividing 234 by 10. The first one

movl n, \Jeax

will copy the value at the memory location with label n to the eax register.

Division will be performed on the combined 64 bits of the edx and eax registers. We set the
first register to 0. The idivl instruction performs signed integer division, i.e. it assumes that
negative numbers are represented as two complements. The idivl instruction has one operand,
the divisor. This instruction cannot take constant operands, so the value of the operand is
fetched from memory location ten.

After the execution of the idivl instruction the quotient will be in eax while edx will contain
the remainder.

We add 1 to the ebx in order to count this digit. The actual value of the digit is in edx.

Next 0 is compared to eax and if the contents of eax is greater than 0 the next instruction, jg
nextdigit, will make a jump to nextdigit. Notice the order of the operands!

After another two divisions the comparison will direct the jump not to occur. The value in ebx
will be saved in the memory location length.

The proper way to terminate the execution is to call the exit procedure in the operating system
kernel using an interrupt. The last three lines do that with an exit code equal to 0 signaling
normal return.

The program may now be translated to machine code by the assembler, as, loaded by Id, and
executed with no visible result.

as -o digitl.o digitl.s
1d -o digitl digitl.o
./digitl

vV V V V

4 Debugging with ddd

We may use the debugger ddd to inspect registers and memory during the execution. ddd is a
graphical user interface to the Gnu debugger, gdb. You should invest some time in learning to
use it.

The assembler requires an extra option to keep the symbol table in the executable program.

> as --gstabs -o digitl.o digitl.s
> 1d -o digitl digitl.o
> ddd digitl&

Breakpoints are inserted and deleted by right clicking on the line number and selecting the
appropriate item. A breakpoint at the first instruction will have no effect.

The buttons Run, Step, and Cont are used to execute the program, single step the execution,
and continue the execution after a break point.

Variables are displayed by right clicking in the same way on the label.

The Register window is opened via Status—Registers. Sections of the memory are displayed
through the Data—Memory dialog.

File Edit “iew Program Commands Status Source Data Help
0:|d'ig'it1.s:9§ C 1 e _ 2
Lookup Fifds Clear Walch LRIl LERES e HiTES S BOtale: Set UrdiEH;
= i DL flacisiars =\
) ‘2: 1en: th‘ [x | R || & DD Rlagisiar]
0 |0x8048024 <n>: 234 0 10] nternupt | i
i || tep | stepi pax 00 0 =
Mext | Pescti 9;” gxg g :,E
1 .data # allocating memary il bis 7 -
2 e Jlong 234 # the number MM ehx 0=0 1]
3 length: .long 0O # the result cont | Kl gsp D=bffffaz20 D=bffffazo
4 ten: .long 10 ebp 0x=0 0x=0
g e i MDW’” esi 0x0 i
tex instructions q %0 1
7 .qlobal _start # make _start globally known MM 51.; 0:80480?8 048048079
9 _start: movl $0, %ebw # set ebx register to O Edit | take [H 1 SR e
] vl n, ¥eax # copy number to eax register e =y el lags i
10 nextdigit: s 0x73 115 /
& Don: Eearina Marnony = J 55 027h 123 kil | |l il
Program exite : ’ A1
{gdh) run 4 £ = 1 Integer registers ~ Al registers
Examinel k] = decimal | words (4) | fram | &% i
Breakpoint 1,
(gdb) graph d |
{gdh) graph d Close | Help | J
(gdb) Print Display Close Help | I
e i—.’é
& = =)

5 Memory allocation

Programming languages supporting recursion will have all variables in activation records on a
stack. When using Linux on an Intel based machine there is no need to allocate a stack since
the loader, Id, will reserve 2 Mb of memory for this purpose. The stack pointer register, esp,
will point to the top of this stack.

Constant an global data may be allocated in the .data section. Some examples:

.data
v32: .long O
v16: .word Oxffff
v8: .byte ’-
vs: .ascii "input"
vs0: .asciz "input"
.align 4

stack: .skip 1024
tos =

H OH OH K H H K H

32 bits, initial value O

16 bits, all omnes

8 bits, acsii code for -

string with 5 bytes

string with 6 bytes, last byte is O
align at 32 bit word boundary

allocate 1024 bytes

tos will be the address of the next byte

Most C functions expect strings to be terminated by a 0 byte generated by .asciz.

The directive .align 4 will allocate the next item at a 4*8 bit address boundary. Memory
accesses to 32 bit words should have this alignment.

At the label stack, 1024 bytes are allocated.

6 Operands

An instruction can have four kinds of operands: constant, register, address, and implicit.

A constant is preceded by a dollar sign. Examples: $10, $n. The last operand denotes the
address corresponding to the label n.

A register operand starts with a % character.

An address operand refers to a value at a memory location. The most common example is a
label of a variable or an instruction. The assembler can evaluate simple arithmetic expressions.

’ operand refers to

length value at label length
length+4 | value at 4 bytes after length
length-4 | value at 4 bytes before length
nextdigit | instruction at nextdigit

Some of the following operands are well suited for accessing values in activation records and

arrays.
’ operand refers to
(%ebp) value at address contained in ebp
4 (%ebp) value at 4 bytes after address contained in ebp
stack (%eax) value at stack+eax
(%ebp, heax,4) value at ebp+4*eax
stack (%ebp, %eax,4) | value at stack+ebp+4d*eax

Some instructions have implicit operands, e.g. the idivl instruction uses the eax and edx
registers.

7 Instructions

The following table lists the most common instructions for arithmetic operations and copying
of data. For each instruction the permitted kinds of operands are indicated by the initial letters
of register, memory, constant, and the number of bits taking part in the operation. There are
similar instructions for byte (8 bits) and word (16 bit) operands. The trailing 1 in instruction
names is then replaced by b and w.

An instruction can have at most one operand of the address type.

instruction | operands effect

movl rme32, rm32 rm32 = rmc32

addl rme32, rm32 rm32 = rm32+rmce32

subl rme32, rm32 rm32 = rm32-rme32

negl rm32 rm32 = -rm32

incl rm32 rm32 = rm32+1

decl rm32 rm32 = rm32-1

imull rme32, r32 r32 = r32*rme32

imull rm32 edx:eax = r32%*eax, 64 bit result
idivl rm32 eax = edx:eax/rm32, edx = remainder
notl rm32 rm32 = ! rm32, bitwise, false = 0
andl rme32, rm32 rm32 = rm32 & rmc32, bitwise

orl rmc32, rm32 rm32 = rm32 | rmc32, bitwise

cmpl rmec32q, rme32y | compare by computing rme32s-rme32
leal m32, r32 r32 = location denoted by m32

The leal instruction will compute the address of an operand and save the result in a register.

The cmpl instruction (and some other arithmetic instructions) sets some flags that can be used
by conditional instructions. These are some of the condition codes, cc:

1l |1le|e |ne|g | ge
< | < |=#|>]|2

A byte can be set to 1 or 0 if the condition holds or not and a word can be copied if the condition
holds.

setcec rm& m =cc?71:0

cmovee rm32, r32 | 132 = rm32 if cc

A jump may be unconditional or conditional. The dest operand of these instructions should be
a label.

jmp dest | jump unconditionally
jec dest | jump if cc

8 Stack instructions

As mentioned above the Linux loader, ld, will allocate a stack that is intended for activation
records. The loader will set the stack pointer register, esp, to the top of the stack. The stack
grows towards the bottom of the memory, i.e. to the left in the figure below. The address in the
stack pointer is indicated by a thick line. (%esp) will refer to the topmost value on the stack.

‘ ‘ H‘ value

+— towards address 0

Pushing and popping 32 bit operands are done with the following instructions.

instruction | operand | effect

pushl rme32 push value in rmc32

popl rm32 pop to rm32

It is a convention used by the C compiler that the contents of the ebx register should be restored
to its original value after a procedure call. Hence this value could be pushed on the stack on
entry to a procedure

pushl %ebx

’ ‘ ‘ I” ebx value | value

At the end of the procedure the value shoud be restored. Assuming that the value of the stack
pointer is the same, ebx is restored by

popl %ebx

‘ ‘ ‘ \ ebx value H‘ value

When executing a program under an operating system it may be interrupted by certain events.
During such an interrupt other machine instructions may be executed using the registers and
the stack, but all register contents will be restored before control is returned to your procedure.

9 Procedure calls

There are some instructions that support procedure calls. Most compilers respect the conven-
tions used by the C compiler. This will make it easier to call procedures compiled by different

compilers.
instruction | operands | effect
call dest push return address and jump
ret pop return address and jump
ret c32 pop return address and c32 bytes
int c32 interrupt to kernel

The instruction pointer, eip, holds the address of the next instruction to be executed. The jump
instructions modify this register but it cannot be modified directly by a movl or an arithmetic
instruction.

When a call dest instruction is executed the address of the next instruction will be pushed
onto the stack and jump to the instruction at the dest label will be performed.

To return from a procedure the ret instructions should be used. It assumes that the return
address is at the top of the stack, pops it and jumps to that location.

The ret ¢32 instruction will pop the return address and the specified number of bytes from the
stack and proceed execution at the address. This may be used to deallocate the memory used
by the arguments of the calling procedure.

The C compiler expects the arguments to be pushed onto the stack in the activation record of
the calling procedure before pushing the return address. The arguments should be pushed in
reverse order.

The following diagrams show what happens to the stack during a procedure call with two
arguments. Before the call the stack pointer, esp, points to the topmost word currently in use
indicated by a thick line.

\H current frame

After pushing the two arguments the situation is as follows.

pushl arg?2
pushl argil
H‘ argl arg?2 current frame
Next we call the procedure, p
call p
The return address is pushed onto the stack:
m ret adr argl arg2 current frame

Assuming that the base pointer, ebp, is used to indicate the start of the current activation
record, it should be saved on the stack in order to be restored upon return from the procedure.
The base pointer is reassigned to make it easy to find the arguments and local variables.

pushl %ebp
movl Yesp, %ebp

’ ‘ m dyn link | ret adr ‘ argl ‘ arg?2 current frame

The first argument may now be accessed as 8(%ebp). At the end the procedure restores the
stack pointer and returns:

popl ’ebp
ret

| | | arg2 argl current frame

After the return the arguments must be popped.

addl $8, Yesp

‘ ‘ ‘ \ m current frame

In the following example the code from page 2 has been extended to print the value of the
number and use two procedures. The first procedure computes a string representation of a given
nonnegative number and prints it using the OS kernel and the second one just returns control

to the kernel.

.text
.global _start
_start:
pushl $234 # push argument
call writeint
addl $4, Yesp # pop stack
pushl 30 # push argument
call exit
writeint:
pushl %ebp # save old base pointer
movl hesp, %hebp # set base pointer
movl 8(%ebp), %eax # copy argument to eax
movl $10, %ebx # set divisor to 10
subl $12, Yesp # allocate for result string
movl %hebp, %edi # edi points to previous digit
writedigit:
movl $0, %edx # divide edx:eax ...
idivl %ebx # by 10
addl $°0, %edx # convert remainder to ascii
decl hedi # push ...
movb %dl, (Y%edi) # digit
cmp $0, ‘heax
jig writedigit # jump if eax>0
let the 0S kernel print the string
movl %ebp, %hedx # compute ...
subl hedi, Yedx # third argument: string length
movl hedi, hecx # second argument: string address
movl $1, Yebx # first argument: file descriptor
movl $4, Yeax # sys_write call index
int $0x80 # kernel interupt

addl $12, Y%esp # deallocate result string

popl %ebp # restore base pointer
ret # return
exit:
movl 4(%esp), hebx # first argument: error code
movl $1, Yeax # sys_exit call index
int $0x80 # kernel interrupt

Since these procedures do not use global variables their activation records have no static links.

If you execute this example it may happen that the printed result will not be visible since the
shell prompter overprints the result. Use less or redirection to avoid this.

The file eda180.s shown in an appendix includes versions of printint and readint that can
handle negative numbers and some more procedures that may be useful in the course project.
They respect the C conventions restoring the values of the ebp, ebx, andedi registers upon exit.

10 Representation of memory words

The Intel architecture uses a peculiar representation for a word in the memory called little
endian. It means that the bytes within a word are stored in reverse order.

You may observe this when inspecting the same part of the memory using hexadecimal bytes
and hexadecimal words. Looking at string data using words the character will appear in reverse
order within each word. On the other hand if you inspect 32 bit integer data using bytes the
least significant byte will appear first.

This might be confusing but can usually be ignored.

11 Block structured languages

There are two instructions that support block structured languages by setting up a display of
static links that makes access to global variables efficient.

instruction | operands | effect

enter c32, ¢ set up dynamic and c5 static links, allocate c32 bytes

leave deallocate ditto and restore ebp

The enter instruction will push the contents of the ebp register and follow the statics links
c5 times and push each link on the stack. Then it will allocate c32 bytes for local variables
by decrementing esp. The second argument should be equal to the static nesting level of the
procedure. The main procedure should have level 1.

The leave instruction will deallocate the memory used for the links and local variables and
restore ebp.

The following pseudo code describes in detail the execution of
enter c32, ¢d

when c5>1 using a temporary variable frameptr.

pushl %ebp

movl %esp, frameptr

repeat (c5-1) times {
subl 4, Y%ebp
pushl (%ebp);

}

pushl frameptr

movl frameptr, %ebp

subl c32, %esp

The leave instruction performs

movl %ebp, %esp
popl ’%ebp

There is no illustrating example using these instructions since we believe that it is more instruc-
tive to handle the static links by yourself, but you are free to explore this alternative. Notice
that the offset of the first variable in a frame depends on the frame level.

12 Interfacing C functions

It is easy to call C functions from an assembler program. The following program uses three
functions from the standard C library. It reads a number from the keyboard using scanf, adds
1, prints the result using printf, and terminates by calling exit.

.text
.global main
main:
pushl $n # push second arg, address of n
pushl $sfmt # push first arg, address of sfnt
call scanf # call scanf("%d", &n)
addl $8, Y%esp # pop 2 arguments
addl $1, n
pushl n # push second argument, n
pushl $fmt # push first argument, address of fmt
call printf # call printf("%d\n", eax)
addl $8, Yesp # pop 2 arguments
pushl $0 # push first argument, exit code = 0
call exit # call exit(0)
.data
n: .long O # number
fmt: .asciz "%d\n" # format for printf
sfmt: .asciz "%d" # format for scanf

The scanf function has two arguments. The first argument, "%d", is the format string describing
how the input string should be interpreted as a decimal number. The second argument should
be the address where the resulting number should be saved.

The printf function requires one or more arguments. The first argument is the memory address
of a string describing how to print the other arguments. In this case we use the string ”\%d\n”

10

to indicate that we shall print a decimal number followed by a newline character. The second
argument is the number to be printed.

We terminate the execution by calling the exit function with 0 as an argument. Since this call
will not return it is useless to restore the stack pointer in a subsequent instruction.

The standard C library is a shared library. This means that several processes using the same
library function can share one copy in memory. There is some overhead for this that you should
leave to the compiler. The compiler can take an assembler program as input. It will generate a
small program with the _start label and a call to a procedure called main. This should be the
first label in your assembler program.

By convention, a C function will use the eax register when returning a value. You should assume
that all registers except esp, ebp, ebx, and edi may have changed. You may “compile” the file
writen.s using the gee (or cc) command and execute the program with an option to use ddd:

> gcc -gstabs -o writen writen.s
> ./writen

234

235

A program compiled by the C compiler may call assembler functions. It will then expect the
values in ebx, esi, edi, esp, and ebp to be unchanged upon return.

You may compile a C program and inspect the generated assembler instructions using the -3
option: gcc -S -o main.s main.c

13 64 bit mode

When using 64 bit mode the names of the general registers have an initial r instead of e: rax,
rbx, rcx, rdx, rbp, rdi, rsi, and rsp. The 32 rightmost bits of the first for registers are still
available using their old names: eax, ebx, ecx, and edx. Most instructions have a 64 bit with [
replaced by q. Exceptions are push and pop. An example program:

.text
.global main
.global _start

_start:
call main
movl $0, %ebx
movl $1, Y%eax
int $0x80
main:

pushq %rbp

movq %rsp, %rbp
subq $8, %rsp
movl $1, 16(%rbp)
movq %rbp, %rsp
popq %rbp

ret

For all the details, see [2]

11

14 Mac 0OS

Appendix 14 contains an example that may be assembled using gec under Mac OS.

When calling external functions compiled by gcc like printf and exit the stack must be aligned
on a 16 byte boundary. This means that the last hexadecimal digit of %esp must be 0 when
the call instruction is executed. Otherwise you will get a Segmentation error. See e.g. [4] for
further details.

I believe that it is best to let your compiler generate code to assure proper alignment.

References

[1] Intel, Manuals, developer.intel.com/design/Pentium4/documentation.htm#manuals
[2] Intel, Manuals, www.intel.com/products/processor/manuals/
[3] Gnu, Using as, gnu-mirror.dkuug.dk/software/binutils/manual/gas-2.9.1/as.html

[4] Sanglard, F., IA-32 assembly on Mac OS X, http://www.fabiensanglard.net/
macosxassembly/index.php

[5] Zeller, A., Debugging with ddd, www.gnu.org/manual/ddd/pdf/ddd.pdf
[6] Carter, P.A., PC Assembly Language, www .drpaulcarter.com/pcasm/

[7] The Netwide Assembler, sourceforge.net/projects/nasm

12

Appendix. edal80.s

1002 ‘ZZ 1290100 Aepuon

s'08Teps
IP3 9NEeS # 1pa% |ysnd
X(d 9NEeS # X0q9% |ysnd
J91ui0d 9seq p|o dAeS # dgag, |ysnd
X3~ SAs 1dnuiaiul [aUIdY # 08X0$ I Juipeal
Xapul 1dnudiul IXa SAS # Xeao, ‘I$ |Aow
P09 JoIa Juswnbie 1siy # XYy, ‘(dsavs)yy |Aow winal # 19l
BINC] Jawiod aseq a101sal # dgay, |dod
X09 910}1Sal # Xgay, |dod
winal # 121 Ip9 2I01Sal # Ipa%, |dod
X9 2101Sal # X(qa9, |dod Jaiiod yoels aioisal # dsag, ‘dgag, |Aow
yoels dod # dsay, ‘v$ |ppe UM SAS 1dnuId)uIl [BUIBY # 08x0$
9IIM ™ SAs 1dnuLiul [auley # 08x0$ I xapul }dnuajul UM SAS # Xea, ‘v$ |Aow
Xapul 1dnudiul M SAS # Xeao, ‘v$ |Aow J01duIosap |y Juswnbie 1siy # X0qa% ‘I$ |Aow
J01duIosap ayly uawnbue 1siy # XQa9% ‘'T$ |AowW ssalppe bulls Juswnbie puodas # X299, ‘IpaY, |AOW
ssaippe Bulls ;Juswnbie puodas # x2099, ‘dsag, |Aow yibus| Buiis uswinbre piyl # Xpag, ‘IpaY |gns
yibus| Buis Juswinbre pay) # Xpag, ‘T$ |AowW Xpags, ‘dgag, |Aow :ubisou
Ja10RIRYD BuIMaU ysnd # 0T$ |ysnd —# (pa%) -$ qrow
X9 anes # Xga% |ysnd “ysnd # paYy, [J99p
ujeIIM ubisou abl
¢onebau juswnbire ¢ (dgaw)9T ‘o$ |1dud
winal # 10l nBipaum B[
X(@ 8101Sal # Xqa9 |dod ¢ 0=1uanonb # Xeao, ‘04 |duo
QM SAS 1dnuIBIUl |DUISY # 08X0$ W6ip# (1Ipe%) ‘IP% gAow
Xapul 1dnudiul aIM™ SAS # Xeao, ‘v$ |AowW “oysnd # IpaY, [o9p
Jo)duosap ajy uswnbie 1siy # XQa% ‘I$ |AowW Xpa ulubip 1ose # Xpag, ‘0.$ |ppe
ssalppe Bulls :Juswnbie puodss # X239 ‘(dsags)g |AOW 0T Aq Xae:Xpa apIAIp # X0904 |AIPI
yibua| Buiis Juswinbre pay) # Xpags (dsak)zT |Aow UOISIAIp 1] 9 Jo} dn 13s # Xpag, ‘04 |AowW
X093 9Nes # X08% |ysnd NBipalm
11S9IIM alebau # xeay, |Bau
uBipoyum ob(
101 ¢anebau juswnbie # Xeaw, ‘0¢ |dud
Jawuiod aseq a10isal # dgag, |dod Ipa1as# 1Py, ‘dgags |AoW
X9 2101Sal # Xqa9, |dod Buins [eoo| 1oy aredo|ie # dsaw ‘2T$ 1gns
Ipo 2101Sal # 1pay, |dod 0T 01 JOSIAIP 18S # X099 ‘0T$ |AoW
Jawiod yoeys aloisal # dsag, ‘dgag, |AOW 1sal Xea 0} Juawnbire Adod # xeao, ‘(dgags)9T |AoW
1nsai arebau # xeay, |Bau Jawuod aseqles # dgags ‘dsao, [Aow
1581 aul Ipo anes # 1Pa% |ysnd
¢Jaquinu annebau # (dgav)zT- —$ qdwod X(@ 9AesS # X0q9% |ysnd
uBippeas Bl Ja1u10d 3Se(p|O BAES # dgag, |ysnd
JBus Jopus # X299 ‘Ipag, |duo RITEIT
UBIp 1xaU Jo ssaippe # P39, |oul
JINSa1 0] SN[eA ppe # XedYy, ‘XPaY, |ppe U 9p09 0113 YUM UOINISXS SSTeUIWId) ##
aNn|eA 0} |I0Se LBAUO0D # XpaYy, ‘0.$ Igns (U U)X PIOA ##
POI# 1% ‘(IP9%) QAOW uxa reqo|b*
“ubip Addoo# xpags ‘0% |now
0T Aq ynsai Aldninw # Xeaw, ‘0T$ |Inwi INOSAS U0 J910BIRYD dUIIMAU B SSILIM ##
‘UBippesl Ouiaim plon ##
—odpjs # 1p3Y%, [oul uja)um [eqo|d*
ubippeas aul
élaquinu annebau # (dgaos)zT- ‘- qdwo INOSAS UO J1S WOJ) SIal0RIeYD U SILIM ##
Jolejnwinaoe ynsal # Xeao, ‘0$ |Aow (u ur ‘ns [JJeyd)nsalum pIoA ##
indui asred # nsalum [eqo|b’
1ajoereyd 1se| # X299 |09p
"t JO SSaIppe # X090 'Xedy, |ppe Xea Ul Sl an[eA UInal ##
peal” sAs 1dnuaiul [auIdy # 08X0$ i uisAs wouy Jabajul ue speal ##
Xxapul 1dnuiaiul peal” SAs # Xeao, ‘€$ |AowW (Ouipeas un ##
101duosap oy # X08% ‘0$ |Aow juipeal [eqojb-
ssalppe Bulls # X289% ‘IpaYy, |AoW
yibua| Buis rewixew # Xpagy, ‘ZT$ |Aow INOSAS UO U SAIIM ##
P89, ‘dsag, |AOW (U UIUIBIIM PIOA ##
Alowaw ayeso|e # dsao, ‘2T$ lans JuIR1IM eqolb
Jaiod aseqies # dgags ‘dsag, |Aow X811
sbed S'08Tep 6T:ST L0 ‘T2 PO 2/T obed S'08Teps 6T:ST 20 ‘TZ PO

puy ueuusT Ag pauld

13

Appendix. Using the C library

s oZNbIp ‘s*oTUBIP

9002 ‘02 Iudy AepsinyL

wozubIp; #
s'oguBIp ogubip 0- 206 #
:Buisn uni pue ajidwod #

181

Jawiod yoeys aloisal # dsag, ‘dgag, |AOW
(Ajressaoauun) wawnbie dod # dsaos ‘v$ |ppe
nuud es

Buins Jo ssalppe ysnd # dsaos Jysnd

Buins ay; Juud 0 (dsa)pund |jeo #

o<xes jidwnf# wubipxeu Bl
Xeao, ‘04 dwo
ubIp # (dsav) ‘Ip% gnow

“ysnd # dsag [oop
110Se 0} JopUrewal USAUOD # XPags ‘0% Ippe
0T Aq # XQa% |AIPI
" Xe9:XPa SPIAIP # XpaY ‘0$ |1Aow
bipIxau
Jooereyd inu g (dsev) ‘o grow
“ysnd # dsag, [J9p

IOSINIp # XQ8% ‘0T$ |AowW
xea 0} Juawnbie Adod # xeay, ‘(dgave)y |Aow
Jajulod soers anes # dgags ‘dsag, [AOW

JUIBIIM
IXa |ed
juswnbie ysnd # 0$ ysnd

dod # dsao ‘v$ |ppe
WM |[eo
v€z$ lusnd
urew

X UIBIXD"
auud uisxe:
urew [eqo|b-
1Xal”’

juawnbue ysnd #

ROTUBIP PP #
S"OTUBIp OTUBIP 0- b 206 #
:Buisn Bngap pue ajidwod #

(o)uxa reo # Ixe |ed
0 = 9p092 1xd Juawnbie 1siy # 0$ Jysnd
uonNoaXa leuIWIS) 01 1IX8 uonouny O |[ed #
Alowaw 0} 181unod Adod # Yibus| ‘xqagy |Aow
o<xes y dwnl # nbipixau B[

0 01 Xea asedwod # Xeaw, ‘0¢ |dud
Ja)unod 03 T ppe # Xqa% ‘I$ Ippe

Xpa 0] Japurewal ‘xea 0} Juanonb #

0T Aq s191s1691 Xea:Xpa paulquiod 3PIAIP # ua1 |AIpI
uoisinip Buoj loj aredaid # Xpav, ‘04 |AowW

1B1p1xau
Xxea 0} laquinu Adod # Xeag, ‘U |AoW
J31UN0J Se Xgd asn # XQa% ‘0$ |AOW urew
1IX8 UIaIXa’
urew [eqojb-
X8 1"
JIOSIAIP BU} # 0T buo |- :ual
)nsal sy # 0 bBuo |- 1bua)
Jaquinu ayy # yez Buo |- u
Aowaw Buireoolie # elep-

ey

s ozubIp 8G:6 90 ‘0¢ 1dv

1/T obed s oTubIp 95:6 90 ‘02 1dv

puy ueuusT Ag pauld

14

Appendix. Using the C library under Mac OS

s oewbIp 0102 ‘2| sie|N bepaiq

oewr3T6TP/ #
s-oewlThTp OoPWITHTP O- sqe3sb- 006 #
SO oel I9pun uni pue STTAWOD #
jox
To3urTod XYOP3S 9I03S9I # dsag ‘dgey TAOW
quaumbre dod # P93 Tdod
Jautad TTe2
qusunbre ysnd # P93 Tysnd
soe3s burpped # dseg ‘0x0s Tqns
0<xes IT dum[# 3TbTp3IxXau bC
xeay ‘0¢ duo
ITOIP # (Tpeg) ‘TP% qaou
ce* ysnd # Tpag 108p
TTOSE 03 JI9pPUTPWOI JIDAUOD # xpoag ‘0.,¢ Tppe
0T 4Aq # xXqeg TATPT
©*° XP9:XpO OPTATIP # xpag ‘0% TAOuI
:3TbTPIXaU
I930RIRYD TTNU # (TPosg) ‘0¢ qaour
cec ysnd g TPag To9p
Tpog bursn I1s97ynq # TPoy ‘9T1$ TPpe
e+ dn 38s ¥ Tpag ‘I93Ingg TAou
JTOSTATD # xXqog ‘0TS TAOW
xea 03 jusumbie Adoo # xeag ‘(dgsg)y TAOW
T93uTOd OPIS OABS # dgsag ‘dseg TAOW
$3UT9ITIM
ITX® T2
qusumbre ysnd # 0s Tysnd
xoe3s burpped # dsag ‘gx0$ Tans
quaumbre dod # dsey ‘¥¢ Tppe
JUTSITIM TT®2
qusunbre ysnd # peTs Tysnd
cppp Aq paxrnbax ¥ dou tuTew

suteuwr
utew TqoTb*

393"
zTose*
1I19330q
ejep*

1/ obeg s oewybIp v0:0L O ‘2L /el

puy Leuus Agq paiuld

15

