
Graphics Hardware (2003)
M. Doggett, W. Heidrich, W. Mark, A. Schilling (Editors)

Texture Compression using Low-Frequency Signal
Modulation

Simon Fenney†

Imagination Technologies Ltd., United Kingdom

Abstract
This paper presents a new, lossy texture compression technique that is suited to implementation on low-cost,
low-bandwidth devices as well as more powerful rendering systems. It uses a representation that is based on the
blending of two (or more) ‘low frequency’ signals using a high frequency but low precision modulation signal.
Continuity of the low frequency signals helps to avoid block artefacts. Decompression costs are kept low through
use of fixed-rate encoding and by eliminating indirect data access, as needed with Vector Quantisation schemes.
Good quality reproduction of (A)RGB textures is achieved with a choice of 4bpp or 2bpp representations.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Texture; I.4.2 [Image Processing and Computer Vision]: Compression (Coding)

1. Introduction

Since its introduction by Catmull1, texture mapping has be-
come ubiquitous in computer graphics. Today, even low-cost
consumer devices, such as games consoles, are expected to
support real-time texturing in hardware. In any such system,
two related problems must be addressed. The first is simply
the cost of storing these textures in memory. Despite the de-
creasing cost of RAM, consumer 3D systems still only have
a relatively small amount of memory available for the stor-
age of textures and this resource can rapidly become filled.
This is especially aggravated by the use of true colour tex-
tures which typically have 24 or 32 bits per texel – eight
bits for each of the Red, Green, Blue, and optionally Alpha
(translucency) components.

The second, and more critical problem, is that of data
transfer. During the rendering of the 3D scene, a consid-
erable amount of texture data must be accessed and, in a
real-time system, the memory bus can soon become a signif-
icant performance bottleneck. Texture filtering can increase
the demand on texel fetches and, although a texel cache can
eliminate some of the external fetches, it clearly has to be of
finite size and capability.

One approach to alleviate both of these problems is to

† simon.fenney@powervr.com

use some form of image compression. Several such systems
are employed in image processing and transmission but, as
Beers et al.2 point out, few are suited to real-time 3D com-
puter graphics texturing. They list four factors that should be
considered when evaluating a texture compression scheme
and these are worth reiterating:

Decoding speed: The accessing of texture data is
a critical path in the texturing operation and so the
speed of decode is of paramount importance. The
decode algorithm should also be relatively simple
to keep down the cost of hardware.

Random Access: As objects may be oriented and
obscured arbitrarily, it is therefore a requirement
to be able to quickly access any random texel.

Compression Rate and Visual quality: Because
the important issue is the quality of the rendered
scene rather than the quality of individual textures,
some loss of fidelity in the compressed texture
is tolerable. Lossy compression schemes offer
higher levels of compression than their lossless
counterparts, and so the former are generally
preferred.

Encoding speed: With the exception of, say, dy-

c© The Eurographics Association 2003.

Fenney / Texture Compression using Low-Frequency Signal Modulation

namic environment maps, the majority of textures
are prepared well in advance of the rendering. It is
therefore feasible to employ a scheme where en-
coding is considerably slower than the decoding.

The main problem with the general image compression
schemes, e.g. JPEG, is that they do not permit direct ran-
dom access of pixel data within the compressed format be-
cause the per-pixel storage rate varies throughout. As a re-
sult, many of the texture compression schemes that have
been proposed and/or implemented employ ‘fixed rate’ en-
coding.

Ideally, decompression should also be fast and inexpen-
sive to implement in hardware – this usually eliminates many
of the ‘transform coding’ systems such as the discrete cosine
transform, DCT. When quantised, such transforms occasion-
ally exhibit compression artefacts, such as ‘ringing’, around
sharp edges that occur, particularly, in textures containing
lines or text.

2. Previous Work on Fixed Rate Texture Encoding

Perhaps the most commonly used class of texture compres-
sion system is that based on colour palettes, which are a form
of vector quantisation, or VQ. Colour palettes were origi-
nally used as a means of reducing the memory and band-
width costs of video frame buffers3 and so can address the
same issues in texturing. This method has been used in many
applications ranging from flight simulators down to com-
puter games consoles. In such schemes, each texel is re-
placed by a small number of bits, typically 4 or 8, which is
an index into a table of colours, or palette, with 16 or 256
entries respectively. Numerous methods for converting an
original ‘true colour’ image to this palettised format exist,
including Heckbert’s4 and Wu’s5.

There are, however, several drawbacks to textures com-
pressed with a colour palette system. The first is the indi-
rection involved in decoding each texel – competition for
the memory bus and the latency of access on today’s graph-
ics accelerators can be relatively high and chaining two ac-
cesses only exacerbates the problem. Solutions that reduce
the time delay and bandwidth cost of the double read in-
clude bringing the colour table ‘on chip’ or using dedicated
RAM, but these too incur additional penalties. For example,
each time a new texture is accessed, a dedicated colour ta-
ble must be reloaded. Alternatively, a global palette could be
used for all textures but this would compromise the quality
of the compressed images. Perhaps more damaging though,
are the facts that the storage and bandwidth savings for 8bpp
are not outstanding, and that the quality of 4bpp textures can
sometimes be poor.

Further cost complications arise due to texture filtering.
If we just consider the case of texture magnification, a fil-
ter must be applied to several sampled texels to avoid the
texture appearing ‘blocky’. Even restricting this to a simple

bilinear filter still requires a weighted sum of a 2x2 group
of neighbouring texels, which need to be supplied in parallel
for maximum performance. In a system incorporating colour
palette textures, this would involve fetching the indices for
all four texels and then reading each texel’s corresponding
colour in the table. It can be appreciated that, unless multi-
ported (i.e. more expensive), the palette/colour table RAM
could easily become a bottleneck. This situation only be-
comes worse when more sophisticated filtering, e.g. trilinear
MIP mapping6 is employed.

The low compression rate of palettised textures was ef-
fectively addressed by Beers et al.2 by using a more sophis-
ticated form of vector quantisation. They simulated a sys-
tem that, depending on MIP map level, replaced blocks of
4x4, 2x2, or 1x1 texels with indices into the corresponding
codebook. This achieved significant reductions in the texture
footprint, i.e. 1bpp or 2bpp textures, with an acceptable loss
in quality. Inspired by their research, a simpler VQ system,
without the MIP map level sharing, was co-developed by
the author and implemented in the Sega DreamcastTMgames
console hardware.

Although these forms of VQ do offer high levels of com-
pression at reasonable quality, they still suffer from needing
two memory accesses. Furthermore, the size of the look-up
table is much greater than that of palettised textures and so
any internal storage or caching of the table is correspond-
ingly more expensive. However, unlike the palettised texture
system, supporting bilinear filtering with 2x2 VQ is actually
not unduly costly as the codebook can be split so that each
texel in each 2x2 code can be addressed independently.

Block Truncation Coding, or BTC, as presented by Delp
and Mitchell7 is an alternative compression system that
avoids the indirection of VQ. In BTC, a grey-scale image
is subdivided into non-overlapping rectangular blocks, say,
4x4 pixels in size, and each block is then processed indepen-
dently. Two representative values, e.g. each 8 bits, are chosen
per block and each pixel within the block is quantised to ei-
ther of these two values. The storage cost for each block in
the example is therefore 32 bits, thus giving an overall rate
of 2bpp. Because the blocks are independent, this simplifies
the compression and decompression algorithms, however it
can potentially lead to artefacts at block boundaries.

Campbell et al.8 developed Color Cell Compression,
CCC, which replaces the block representatives in BTC with
indices into a palette, thus encoding colour images at 2bpp.
Despite the need for a colour palette and some example im-
ages showing evidence of colour banding, Knittel et al.9 sug-
gested using CCC in a texturing system.

Iourcha et al.10 further adapt the BTC/CCC methods
to improve colour data encoding. Their system, known in
the industry as S3TCTM(or DXTCTMwithin Microsoft’s Di-
rectX 3D interface), also uses 4x4 texel blocks. As with
BTC, each block is completely independent of every other
block. Each pixel in the 64-bit block is encoded with two bits

c© The Eurographics Association 2003.

Fenney / Texture Compression using Low-Frequency Signal Modulation

which selects one of four colours. Two of these colours are
stored in the block as 16-bit RGB values while the remaining
pair are derived directly from the stored colours. These ad-
ditional colours are usually 1:2 and 2:1 linear blends of the
main representatives but, in some blocks, one of the indices
can be used to indicate a fully transparent, black pixel for
so called ‘punch-through’ textures. The decoding is simple
enough that it can be done ‘on-the-fly’ without the need to
retain decompressed texels.

The quality of the S3TC system is generally much higher
than that given by CCC and it has the advantage of eliminat-
ing the separate colour palette but these gains are achieved at
the cost of doubling the storage to 4bpp. The S3TC system
works well because the colour space of each 4x4 block of-
ten has a very dominant axis which can be approximated by
the linearly-arranged, representative colours. Furthermore,
the signal to noise ratio in each local area will typically stay
constant, since large errors in the representation will usually
only occur when there are correspondingly large changes in
the image. With some textures, however, S3TC can exhibit
artefacts at block boundaries or where the colours change
dramatically. Nevertheless, S3TC has become a leading tex-
ture compression method.

If we now consider the bilinear filtering of an S3TC com-
pressed texture, as shown in Figure 1, we see that in just over
half the cases, the required 2x2 source texels can be sourced
entirely from a single S3TC block. For the remainder, ei-
ther two or four texture blocks must be accessed. A real-time
system that guarantees production of one bilinearly filtered
screen pixel ‘per clock’ should thus be able to access and
decode pixels from four blocks in parallel.

4 adjacent S3TC blocks

S3TC
Block

Worst
caseSimple

Case

Figure 1: Block requirements for various bilinear filtering
cases.

To address the situations where the texels in a block do not
map conveniently to a line segment, Levkovich-Maslyuk et
al.11 allow colours to be chosen from an RGB tetrahedron.
To allow the greater selection of colours, without the size
of the indices ‘ballooning’, they partition pixels within the
block and create sub-palettes for each partition.

One recent system that has instead used a transform cod-
ing approach is that of Pereberin12, which again uses blocks
of 4x4 texels. By assuming that box filtering is used in the
production of MIP map levels, it also encodes texels from
three adjacent levels simultaneously. Each block is mapped
into the YUV colour space and then two passes of a 2D
Haar wavelet transform are applied. All of the low and
mid-frequency coefficients are stored for the Y, U, and V,
channels, but only the five most significant of Y’s highest-
frequency coefficients are kept while the remainder and all
of those for U and V, are assumed to be zero. In total, 96
bits are used for each block which therefore gives an over-
all compression rate of ≈ 4.6bpp. Although the choice of
YUV should work well for natural images, there may be
some problems with high saturation graphics. The separate
encoding of the components also fails to capitalise on the
frequent correlation of the channels (as can be seen by the
effectiveness of S3TC).

Finally, one scheme that mixes a block-based system with
a palette-like approach has been presented by Ivanov and
Kuzmin13. Each block stores at least one base colour but a
larger local palette is implied by allowing access to a certain
set of the neighbouring blocks’ colours. For example, the lo-
cal palette for a particular block may have access to the base
colours from an additional three neighbours, say, from the
the block to right, the one below, and the one to the ‘below
and right’. In this example, each texel would thus be replaced
by a two bit index accessing one of the four available base
colours.

3. Research Aims, Constraints, and Observations

The main aim of the research was to develop a new texture
compression technique that would provide ‘good quality’
compression of (A)RGB images with data rates of around 4
or 2bpp. The target platforms included very low cost devices,
potentially PDAs and mobile phones, and so the scheme also
had to be inexpensive to implement. (Although less signif-
icant, cost is still important in the ‘desktop’ environment
where the increased gate budget is offset by the require-
ment to support multiple pipelines, multiple texture layers,
and complex texture filtering.)

It is well known that low-pass filtered signals are often
good approximations of the original signal, and so some
initial experiments using wavelets14,15 were conducted. In
particular, (bi)linear and (bi)cubic wavelets were tested and
showed some promise as a means of representing the tex-
tures. The difficulty lay with an efficient method of reduc-
ing the wavelet coefficients for the high frequency infor-
mation. A Huffman-based encoding with truncation of in-
significant values within blocks was tried, but it proved dif-
ficult to achieve suitable compression within a small pixel
block ‘window’, e.g. 4x4 texels. Furthermore, for some tex-
ture types, such as those containing lines or text, performing
such transformations often made compression more difficult.

c© The Eurographics Association 2003.

Fenney / Texture Compression using Low-Frequency Signal Modulation

For such images, the simplicity of the direct encoding used
in BTC/S3TC compression schemes was more appealing.

It occurred to the author that, although the BTC-based en-
coding schemes benefit from the similarity of colours in lo-
calised regions, they do not take advantage any correlation
of actual texel position and colour value. Furthermore, most
of these methods treat every block independently which, al-
though simplifying compression, fail to capitalise on the fre-
quent similarity of adjacent blocks, and can also lead to dis-
continuities between blocks.

The requirement of texture filtering was also a prime con-
cern. Since bilinear filtering is often the basic building block
of more advanced schemes such as trilinear and some imple-
mentations of anisotropic filtering, another aim of the design
was to have the chosen decompression process produce a set
of 2x2 neighbouring texels ‘almost’ as cheaply as an indi-
vidual texel.

3.1. Initial trials

Given the resemblance of low-pass filtered signals to their
source textures, research focused on using continuous ‘low
frequency’ signals as the basis for the stored representation
rather than a set of constant per-block colours. The aim was
to use two (or potentially more) low-resolution images, A
and B, generally between 1

4 and 1
8 of the dimensions of the

target texture, along with a full resolution 2bpp modulation
signal, M.

'Full resolution',
low precision

Modulation signal,
MPortion of

low-resolution
image A

Portion of
low-resolution

image B

Bicubic
Upscale

Bicubic
Upscale

Colour A

Colour B

Linear
Blend

Texel

Figure 2: Decompression steps for an individual texel.

The decompression process for the initial test system is
shown in Figure 2. To produce an individual texel, two cor-
responding sets of 4x4 source texels were identified and
read from each of the A and B low resolution images, These
two sets were then bicubicly up-scaled to produce two base
colours, ColourA and ColourB, for the target texel. The mod-
ulation value for the target was read from M, and was then
used to linearly interpolate ColourA and ColourB to pro-
duce the decompressed texel. In the initial design, the low-
frequency data was stored ‘separately’ from the modulation
information allowing the separate data elements to be read in
bursts and cached independently. Figure 3 shows the process
applied to actual data.

It is interesting to note that S3TC can also be viewed as

Image A

Image B

Upscale
 4x4

Upscale
4x4

Virtual Image Au

Virtual Image Bu

L
in

ea
r

B
le

nd

Modulation M

Result

Figure 3: Example decompression with new scheme.

a variant of this scheme in which a step function is used to
upscale the A and B images.

Although the initial results (targeting 2.5∼4bpp) were
very promising, from a hardware standpoint the costs of
bicubic interpolation and of independent colour and modula-
tion caches were considered too great for low-budget hard-
ware. The scheme was thus simplified to use bilinear up-
scaling which then allowed the low-resolution colour data to
be interspersed with the modulation information.

4. 4bpp Texture Mode: Decompressor

As with VQ and S3TC, it is much easier to understand the
system by describing the decompressor, which is designed to
produce the 2x2 set of texels required for subsequent bilinear
filtering. The 4bpp mode is also slightly simpler than the
2bpp, and so will be described first.

The data for the compressed texture consists of a P
4 by Q

4
set of 64-bit blocks, where P and Q are the dimension of the
texture. (The 64-bit block size was chosen to be ‘affordable’
in a low-cost solution.) To minimise page breaks, the P.Q

16
blocks of the texture are arranged in Morton order.

Each block contains two colour values, corresponding to
a pixel from each of the A and B low frequency signals, one
mode bit, and modulation data for a set of 4x4 texels. This is
shown in Figure 4

Although this arrangement bears some similarity to that
used in the BTC-based schemes and, in particular, S3TC,
there are some differences. Unlike S3TC, each of the A and
B base colour entries can be independently set to be either
fully opaque or to have variable levels of alpha. Although
colour precision is sacrificed in the latter case, this should
be less critical when alpha blending is used.

4.1. Optimising the Bilinear Up-scale

The block’s base colours, along with selected neighbouring
colours, must be up-scaled by a factor of four in each dimen-
sion to produce per-texel A and B colours. To increase hard-
ware re-use, the two low precision colour modes are initially

c© The Eurographics Association 2003.

Fenney / Texture Compression using Low-Frequency Signal Modulation

1 R G B
Opaque

Colour Mode

0 R G B
Translucent

Colour Mode
A

Base
Colour B

Base
Colour A

Mod.
Mode

Modulation
Data

MSBs LSBs

T00 T01 T02 T03

T30 T31 T32 T33

T20 T21 T22 T23

T10 T11 T12 T13

Texel
Arrangement

X direction

Y
 direction

Most Sig. Least Sig.

...etc...

32 bits

T33 T00T01

or

Modulation
Data

64bit block
16 bits 15 bits 32 bits1bit

1b 5 bits 5 bits 4/5 bits

1b 4 bits 4 bits 3/4 bits3 bits

2 b 2 b2 b

Figure 4: Structure of 4bpp texture blocks.

expanded to a uniform ARGB 4555 format as follows: For
the red, green, and blue channels, the standard approach of
replicating the MSBs is taken. For alpha, the value is either
set to 0xF for the opaque case or, when translucent, a zero
bit is appended to the stored, 3-bit value.

To further minimise the hardware costs, rather than con-
verting the 4555 colours to their 8-bit equivalents (again via
replication of the MSBs) and then bilinearly up-scaling, the
decompressor reverses the order of operations. This is valid
since the conversion is equivalent to a multiplication by a
constant (i.e., 17

16 or 33
32) and this factor can be moved outside

of the linear filter. The bilinear filtering is thus applied to the
4- or 5-bit values and the results (including the resulting ad-
ditional fractional bits) are finally ‘converted’ to ‘8-bit’ by
multiplying by the appropriate factor.

Additional savings in the hardware are made by treating
each of the bilinear up-scales as a bilinear surface patch. Re-
peated binary subdivision, for example of the four A source
values, will produce the four A colours needed for a 2x2
block of texels. In all, this requires only a handful of mul-
tiplexers and eight ‘add’ units per colour channel.

The ‘phase’ of the bilinear up-scale is also quite impor-
tant for both quality and decode efficiency. For compression
symmetry, it is desirable for the base colours to be represen-
tative of the centres of each block, i.e. the bilinear upscale
would ‘produce’ a base colour at the middle of the corre-
sponding block. For decompression efficiency, it is better to

have the base colour ‘land’ on the centre of a texel, as this
will keep the weighting factors small. As a compromise, the
bilinear up-scale evaluates to the base colours at the texels
immediately to the right and below of the block centre.

Another immediate benefit of this choice is shown in Fig-
ure 5.

� � �
� � �

P00

P022

P055

P066

P77

P07

P70

4 pixels

4
pi

xe
ls

Block (i,j)

Block (i,j+1)

Resulting Pixels
of interest

Figure 5: Region of texels that require data from exactly the
blocks (i,j) thru (i+1, j+1).

Within the grey region of texels, it can be noted that any
set of 2x2 texels, as needed for a bilinear texture filtering
operation, requires data from exactly 2x2 data blocks. This
corresponds to the worst-case situation for schemes such as
S3TC and, since all combinations of 2x2 texels fall into one
such grouping, this therefore imposes no extra cost to de-
compression. At the borders of the texture, the program-
mers/artists can elect whether to ‘wrap’ the bilinear filtering,
or to repeat the representative values.

4.2. Modulation Modes

The modulation data in each block is interpreted in one of
two ways depending on the value of the corresponding ‘mod-
ulation mode’ flag. In the standard setting, ‘0’, each texel’s
2-bit modulation value implies the following choice of blend
value:

Bit Pattern Modulation Value

00 0/8
01 3/8
10 5/8
11 8/8

The reasons for this set of values are twofold. Firstly, the
numerators are small and so the blending operations are in-
expensive to implement in hardware. These values can be
contrasted to the 1

3 and 2
3 values specified for S3TC, al-

though Iourcha et al. do suggest approximating these blend
values. Secondly, the distribution of modulation values was

c© The Eurographics Association 2003.

Fenney / Texture Compression using Low-Frequency Signal Modulation

often found to follow the shape of a normal distribution, and
so it seemed advantageous to bias the representatives slightly
towards the centre.

If the mode flag is set to 1, then a form of ‘punch-through
alpha’ texturing is enabled for the block of pixels. Despite
the numerous drawbacks of such texture formats, this was
included for compatibility with older applications. The mod-
ulation values are then interpreted as:

Bit Pattern Modulation Value

00 0/8
01 4/8
10 4/8♣

11 8/8

♣For the special ‘10’ case, the alpha channel is forced to
be zero. Although it is common to set the colour of punch-
through texels to black (eg. S3TC), this tends to result in
unpleasant halos appearing around the edges of objects when
filtering is applied. For this reason, the average of the A and
B values is chosen instead.

5. 4-bpp Texture Mode: Compressor

Although the decompression process is relatively straight-
forward, that of the compression is far more involved. The
current algorithm will be described but this is an area of on-
going research.

The process begins with the generation of initial values for
the A and B signals, and then performs refinement iterations
on these values.

5.1. Generating Initial Values

The first step applies a low-pass filter of the data. This is
based on a linear wavelet transform15, retaining only the low
frequency coefficients, followed by the 4x4 bilinear upscale.
The initial wavelet transform is modified so that it ‘centres’
the representative values to match the bilinear upscale.

The delta image, i.e. the difference between the original
texture and the filtered data, is computed and then an ‘axis
image’ for the deltas is generated. Several approaches to
generate this data have been evaluated, and two will be de-
scribed here:

The first method finds the principal axis of sets of over-
lapping regions of (delta) texels centred on each texel.
As sometimes used in vector quantisation5 or the S3TC
compressor10, this is done by computing the covariance ma-
trix of each region’s texels and from that deriving the princi-
pal eigenvector16 of the matrix. The second, and far simpler
approach is to optionally ‘flip’ the direction of each delta
vector so that it more closely matches the orientation of its
neighbours.

Note that this axis image is different to the principal axes
required for VQ or S3TC, in that the vectors are computed
from the delta signal rather than to the original texels and,
for want of a better term, are ‘perpendicular’ to the original
texels.

After the axis image has been filtered, it is used to gener-
ate initial full-resolution prototypes for the low-frequency
A and B representatives. One simple approach is to take
the per-texel dot product of the delta value with its corre-
sponding axis direction. Depending on the sign of the result,
the corresponding texels in the prototype A and B images
are alternatively set to the original texel colour and the fil-
tered image value minus the delta. This gives two images
which ‘bound’ the original filtered signal. These prototypes
are then themselves filtered to generate the initial A and B
candidates.

5.2. Iterative improvement

The compressor then begins an iterative refinement process.
In each pass, the appropriate, quantised modulation values
for the texture are computed from the current A and B candi-
dates. These, in turn, are used to produce newer ‘optimum’ A
and B signals by solving for the minimum least squares error
using Singular Value Decomposition, SVD16. Because this
algorithm is too expensive (i.e. O(n3)) to run on the entire
texture in a single pass, the compressor steps through over-
lapping windows of pixels, each approximately 3x3 blocks
wide, that are centred around 2x2 blocks. This is shown in
Figure 6.

TL

Window of ~3x3
texel-blocks

4x4 texel
Block

'Fixed' A&B Reps

A&B pairs to be
optimised

T0

T120

TR

BL BR

Figure 6: Optimising four sets of representative colours for
a window of 121 texels.

This region of 121 texels is affected by exactly 16 pairs of
A and B colour values. The outer set of 12 are assumed to be
held fixed while the refinement step finds the optimum val-
ues for the middle four pairs. A matrix, MW , is constructed
with 121 rows, corresponding to the texels, by 8 columns,
corresponding to the 4 pairs of A and B values to be opti-
mised, i.e.,

c© The Eurographics Association 2003.

Fenney / Texture Compression using Low-Frequency Signal Modulation

MW =

wAT L
0 wBT L

0 wAT R
0 wBT R

0 . . . wBBR
0

wAT L
1 . . .
...

...
wAT L

120 wABR
120

Each entry in MW contains the ‘weight’, wval
n , which

would be applied to the corresponding A and B values when
decoding texel Tn – this takes into account the relative posi-
tion of the texel and the chosen modulation value, and so. . .

MW .

AT L
BT L
AT R

...
BBR

=

P0
P1
...

P120

. . . where the Pn values are the colours of the source image
texels adjusted to remove any contribution due to the fixed
12 pairs.

The SVD algorithm, in effect, computes M−1
W such that

multiplication by the Pn vector produces the optimum val-
ues for the eight centre representatives. These new values
are then used to update the existing A and B texels before re-
peating the iterative process. The current compressor usually
applies 2 to 4 of these passes.

6. 2BPP Mode

The 2bpp mode is similar, in principle, to the 4bpp except
that the low resolution A and B images are scaled by a factor
of eight instead of four in the horizontal dimension, and that
the modulation data for 8x4 texels is packed into the space
that was originally occupied by only 16 texels.

While the scaling of the A and B data is not usually too
critical to the image quality, a reduction in modulation accu-
racy can have a dramatic impact. To address this, the 2bpp
mode also uses two modulation modes. The first is a direct
1bpp encoding which is very similar to CCC’s. This is useful
for regions containing hard edges, such as those with text.

The second mode uses 2-bit modulation values for every
second texel, arranged in a chequerboard pattern. The re-
maining texel modulation values are then obtained, accord-
ing to one of three sub-modes, by averaging the neighbour-
ing two vertical, two horizontal, or all four modulation val-
ues.

7. Comparative Results

Figure 10 shows the behaviour (including flaws in the
current compression tool) of the new method on a ‘typ-
ical’ spread of texture types. Results from S3TC (using
the ATITM‘compressenator’ with default settings) are also
shown for comparison purposes. Some remarks on these re-
sults are given below:

stormsky This image, similar to some used in popular
games, is well suited to the new technique whereas
S3TC can display some blockiness.

lorikeet The multiple colours in each region are handled
quite well by the 4bpp mode, but some loss of fi-
delity is evident in the 2bpp variant.

cottage This image illustrates some serious flaws with
the current compressor especially with the 2bpp
mode. Inappropriate modulation modes have been
chosen, leading to the crenellated pattern around
the window frames. An example (2bpp-mod)
where that particular mode has been forcibly dis-
abled in the compressor shows a marked improve-
ment in that region.

Note that this particular set of images was chosen/generated because
of potential copyright concerns with some other popular images.

Despite RMS error not being an ideal measure of per-
ceived quality, Table 1 gives numeric compression errors
for ‘Lena’, the first five images from the KodakTMPhotoCD
PCD099217, and the images in Figure 10. Results from the
2bpp VQ mode used in the Dreamcast console are also in-
cluded. For compatibility with that compressor, the Kodak
images have been cropped to the top left 512x512 pixels.

Image S3TC DC-VQ 4bpp 2bpp

lena 7.91 12.6 7.11 11.29
kodim01 8.31 13.5 8.98 19.40
kodim02 6.60 9.5 6.20 11.46
kodim03 5.70 10.9 5.61 11.04
kodim04 5.97 11.2 5.76 10.86
kodim05 10.50 19.7 10.59 21.92
stormsky 6.85 11.2 5.79 9.08
lorikeet 9.80 16.6 8.08 12.11
rust 11.35 17.1 10.45 18.82
nemrut 10.08 15.9 10.31 20.72
cottage 11.11 15.4 14.25 27.57

Table 1: Comparative RMS Errors

As mentioned, there are a number of flaws in the current
compressor. It will often get trapped in local minima with
poor choices of modulation values; for example, on transi-
tions between areas of flat colour it will often ‘overshoot’. A
possible solution to this may be to detect areas of constant
colour and force the texels to use the same modulation value.

It is ‘slow’ (≈ 1min/image) which is why the number of
iterations is limited to only a few passes even though more
will decrease the error. This is partly due to it being inef-
ficient in that it re-processes texel data which may already
be represented adequately instead of concentrating on areas
where the error is high.

Finally, the compressor also assumes that the textures ‘tile
seamlessly’ as it mimics the initial, simplified hardware im-
plementation. Clearly not all textures fall into this category
and so some images will have greater than necessary errors

c© The Eurographics Association 2003.

Fenney / Texture Compression using Low-Frequency Signal Modulation

near the boundaries. For example, Reflecting the ‘nemrut’
image about the x and y axes results in a compressed RMS
error of 9.98 for the 4bpp mode.

8. Future Work

With any compression scheme, the quality of the results is
gated by the quality of the compressor and, as can be seen,
the current compressor is in need of improvement.

It is also planned to extend the scheme to support 3 dimen-
sional textures which, due to their size, will definitely benefit
from some form of compression. The interpolation scheme
naturally extends to multiple dimensions and should auto-
matically take advantage of the increasing density of repre-
sentative values that will occur with a 3D data set.

Similarly, reducing the number of colour dimensions
could allow higher precision for certain texture types, such
as perturbed UV maps or light maps. Other options may be
to investigate some combination of the new technique with
either transform coding or VQ, say, for the modulation in-
formation.

9. Conclusions

This paper has presented a new method of compressing tex-
tures that is both relatively inexpensive to implement in
hardware and has the potential to produce good quality im-
ages with both 4bpp and 2bpp compression rates. The de-
compression scheme is optimised for texture filtering (using
bilinear as the basic building block). The compression tool,
however, needs more research.

10. Acknowledgements

The author would like to thank several of his colleagues who
gave support during the research and preparation of this re-
port. In particular I’d like to thank Piers Barber for telling me
that “it’s using too many gates” and pushing me to improve
the method, Carlos Sarria, Nicolas Thibieroz, and the rest of
PowerVR developer relations team for testing the compres-
sor, and Steve Morphet, Mark Butler, and Aaron Burton for
kindly proof reading this paper at very short notice. Finally,
the author would like to thank the reviewers for their feed-
back and suggestions.

References

1. Edwin Catmull. “Computer Display of Curved Sur-
faces”, Proc. IEEE Conf. Computer Graphics, Pattern
Recognition, and Data Structures May 1975, 11–17.

2. Andrew C. Beers, Maneesh Agrawala, and Navin
Chadda. “Rendering from Compressed Textures”,
Computer Graphics, Proc. SIGGRAPH 7(3),
Aug.1996, 373–378

3. James Kajiya, Ivan Sutherland, and Edward Cheadle.
“A Random-Access Video Frame Buffer”, Proc. IEEE
Computer Graphics, Pattern Recognition, and Data
Structures May 1975, 1–6.

4. Paul Heckbert. “Color Image Quantisation for Frame
Buffer Display”, Computer Graphics 16(3), July 1982,
297–307.

5. Xiaolin Wu. “Color Quantization by Dynamic Pro-
gramming and Principal Analysis”, ACM Transactions
on Graphics 11(4), Oct. 1992, 348–372.

6. Lance Williams. “Pyramidal Parametrics”, Computer
Graphics 7(3), July 1983, 1–11.

7. E. Delp and O. Mitchell. “Image Compression Using
Block Truncation Coding”, IEEE Trans. on Communi-
cations. Vol.COM-2 (9), Sept. 1979, 1335–1342.

8. Graham Campbell et al. “Two bit/pixel full color en-
coding”, Computer Graphics 20(4), August 1986, 215–
223.

9. G. Knittel, A. Schilling, A. Kugler, and W. Strasser.
“Hardware for Superior Texture Performance”, Pro-
ceedings of the 10th Eurographics Workshop on Graph-
ics Hardware 1995, 33–39.

10. Konstantine Iourcha, Krishna Nayak, and Zhou Hong.
“System and Method for Fixed-Rate Block-Based Im-
age Compression with Inferred Pixel Values”, US
Patent 5,956,431.

11. L. Levkovich-Maslyuk, P. G. Kalyuzhny, and A.
Zhirkov. “Texture Compression with Adaptive Block
Partitions”, ACM Multimedia 2000 Nov. 2000.

12. A.V. Pereberin. “Hierarchical Approach for Tex-
ture Compression”, Proceedings of GraphiCon ‘99
1999,195–199.

13. Denis Ivanov and Yevgeniy Kuzmin. “Color Distribu-
tion - A New Approach to Texture Compression”, Com-
puter Graphics Forum 19(3), August 2000, 283–289.

14. Eric Stollnitz, Tony DeRose, and David Salesin.
“Wavelets for Computer Graphics. Theory and Appli-
cations”, ISBN 1-55860-375-1

15. Wim Sweldens and Peter Shroeder. “Building your own
Wavelets at Home”, Journal Technical Report 1995:5,
Industrial Mathematics Initiative, Department of Math-
ematics, University of South Carolina

16. Press, Teukolsky, Vettering, and Flannery. “Numerical
Recipes in C”, ISBN 0-521-43108-5

17. http://sqez.home.att.net/thumbs/Thumbnails.html

c© The Eurographics Association 2003.

Fenney / Texture Compression using Low-Frequency Signal Modulation

Original S3TC 4bpp 2bpp Original S3TC 4bpp 2bpp

(a) stormsky (b) lorikeet

Original S3TC 4bpp 2bpp Original S3TC 4bpp 2bpp

(c) rust (d) nemrut

Original S3TC 4bpp 2bpp 2bpp-mod

(e) cottage

Figure 10: Enlargements of S3TC, 4bpp, and 2bpp modes

c© The Eurographics Association 2003.

