
C++ Quotations

“You have been warned.”

Bjarne Stroustrup

“We’re not in Kansas anymore.”

Dorothy

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 1 / 280

History of C++

C++ C + Simula (object orientation) + multiple inheritance +
overloading + templates + exceptions. Invented by Bjarne
Stroustrup.

1980 C with classes

1983 C++ (C with classes + virtual functions + overloading +
more)

Later New versions containing multiple inheritance, templates,
exceptions

1998 ISO standard, defines standard library

2011 New ISO standard, C++11

2014 Cleanup of C++11

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 2 / 280

C++11, the New Standard
⇤⇥ ��C++11

Stroustrup: “C++11 feels like a new language.” C++11 has many
features that makes the language easier to learn and to use.

Work on a new C++ standard started early. Initially the new standard was
called C++0X, and it was hoped that “X would be a decimal digit.” That
didn’t happen, but the standard was finally accepted in 2011.

These slides (and Lippman’s book) describe the new standard. Additions
to the base language and to the library are marked

⇤⇥ ��C++11 .

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 3 / 280

About the Book and the Slides

First, there is a short overview of the language (but with some
important details).

Then, data types, expressions, statements,

and functions, and classes.

More or less the material in chapter 1–7 of Lippman’s book.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 4 / 280

Hello, world . . .

#include <iostream> // input-output library

int main() {
std::cout << "Hello, world" << std::endl;

}

main() is a “free” function, not a method in a class

Can have arguments similar to String[] args in Java

The return type is int, returns the status code. 0 success, != 0

failure (return 0 may be omitted in main, but not in other
functions)

std:: is used to fetch names from the std “namespace” (similar to
the Java package java.lang)

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 5 / 280

Compile, Link and Run

The Hello world program is in a file hello.cc.

g++ -c hello.cc // compile, hello.cc -> hello.o
g++ -o hello hello.o // link, hello.o + library -> hello
./hello // execute

Usually, there are several more options on the command lines

Usually, an executable consists of several .o files

g++ is the GNU C++ compiler

clang++ is another compiler, from the LLVM project

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 6 / 280

Parameters on the Command Line

You can access parameters given on the command line if you define the
main function like this:

int main(int argc, char* argv[]) { ... }

argc is the number of parameters, including the program name. argv is
an array of C-style strings that contains the parameters (more about
strings later). Example:

./myprog -a myfile.txt
argc = 3
argv[0] = "./myprog"
argv[1] = "-a"
argv[2] = "myfile.txt"
argv[3] = 0 // end mark

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 7 / 280

Reading and Writing

#include <iostream>

int main() {
int sum = 0;
int value;
while (std::cin >> value) {

sum += value;
}
std::cout << "The sum is: " << sum << std::endl;

}

cin and cout are input and output streams (stdin and stdout).

>> is the input operator, reads whitespace-separated tokens. Returns
false on end-of-file.

<< is the output operator.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 8 / 280

Reading and Writing Files

You can create stream objects in order to read from or write to files
(ifstream for reading, ofstream for writing). Read from a file whose
name is given as the first argument on the command line:

#include <fstream> // file streams
#include <iostream>

int main(int argc, char* argv[]) {
std::ifstream input(argv[1]);
if (!input) { // "if the file couldn’t be opened"

cerr << "Could not open: " << argv[1] << endl;
exit(1);

}
// ... read with input >> ...
input.close();

}

In C++11, the filename can also be a string object.
⇤⇥ ��C++11

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 9 / 280

A Class Definition

class Point {
public:

Point(double ix, double iy); // constructor
double getX() const; // const: does not modify
double getY() const; // the state of the object
void move(double dx, double dy); // does modify, not const

private:
double x; // attributes
double y;

}; // note semicolon

Methods are called member functions in C++, attributes are called
member variables

Member functions are only declared here, the definitions are in a
separate file

public and private sections, arbitrary order, private is default

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 10 / 280

Definition of Member Functions

Point::Point(double ix, double iy) {
x = ix; // this is ok but there are better ways to
y = iy; // initialize member variables, see next slide

}

double Point::getX() const {
return x;

}

double Point::getY() const {
return y;

}

void Point::move(double dx, double dy) {
x += dx;
y += dy;

}

Point:: indicates that the functions belong to class Point

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 11 / 280

Initialization of Member Variables

Normally, member variables are not initialized using assignments in the
constructor body. Instead, they are initialized in the constructor initializer
list:

Point::Point(double ix, double iy) : x(ix), y(iy) {}

Syntax: member-variable(initializer-expression)

It is usually better to use the initializer list, and sometimes necessary.
Discussed further later.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 12 / 280

Stack, Heap, Activation Records

The (virtual) memory for a program is divided into two areas: the stack for
local variables in functions, the heap for dynamically allocated variables.
When a function is entered, memory is allocated on the stack for

parameters and local variables. This memory area is called an activation

record or stack frame. When the function is exited, the activation record is
deallocated.

int main() {
int x = 5;
f(x + 1);

}

void f(int a) {
int y = 2 * a;

}

a 6

x 5

?

y 12

?

Stack grows
downwards

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 13 / 280

Objects in Java

A Java object is always allocated on the heap, and you need a pointer
(reference variable) to keep track of the object:

void f() {
Point p = new Point(1, 2);
double xLoc = p.getX();
...

}

y 2.0

x 1.0p

xLoc 1.0

When a Java object can no longer be reached (no references point to the
object) it becomes garbage. The garbage collector reclaims memory used
by unreachable objects.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 14 / 280

Objects in C++, Stack Allocation

In C++, objects can be allocated in several di↵erent ways. The two most
common are:

stack allocated (automatic) — like any local variable, accessed by
name

heap allocated — like in Java, accessed through pointer

Stack allocation example:

void f() {
int a = 5;
Point p1(1, 2);
int b = 6;
double xLoc = p1.getX();
...

}

p1.x 1.0

a 5

p1.y 2.0

b 6

xLoc 1.0

p1 (and a, b, and xLoc) are deallocated automatically when f is exited.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 15 / 280

Heap Allocation

An object on the heap is similar to a Java object, but in C++ there is no
garbage collector so you must explicitly delete the object.

void f() {
int a = 5;
Point* p = new Point(1, 2);
int b = 6;
double xLoc = p->getX();
...
delete p;

}

y 2.0

x 1.0
a 5

p

b 6

xLoc 1.0

Point* p means that p is a pointer, p-> is used to access members in the
object. The lifetime of a heap-allocated object is between new and
delete; it has nothing to do with the block structure.
If you forget to delete an object, the result is a memory leak.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 16 / 280

Safe Pointers
⇤⇥ ��C++11

In C++11, there are new library classes that encapsulate “raw” pointers
and make sure that dynamic objects always are deallocated. The two most
important:

unique ptr A pointer which “owns” its object. If a pointer is reassigned,
ownership is transferred.

shared ptr A pointer which counts the number of references to the
object. The object is deleted when it has no more references.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 17 / 280

Do Not Use Dynamic Memory

Java programmers that come to C++ often continue programming in the
Java style. This means, for example, that they create all objects with new

Classname. This is seldom necessary.

It is only necessary to allocate an object on the heap (with new) if the
object shall be shared, if the size of the object is unknown, or if the object
must outlive the current scope. Examples:

Implement a dynamic vector (like a Java ArrayList), or a dynamic
string (like a Java String or StringBuilder), or . . . There are
library classes for such things.

Implement a linked list (where the nodes are created in a member
function), or . . . There are library classes for such things.

Handle polymorphic objects, handle objects that must be shared, . . .

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 18 / 280

A Class Containing Objects

Implement a Line class that uses Point objects (slide 10) to represent the
start and end points:

class Line {
public:

Line(double x1, double y1, double x2, double y2);
...

private:
...

};

The following slides show alternative implementations. The variants with
pointers are for illustration only, there is no reason to use dynamic memory
in this class.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 19 / 280

Class Line, Embedded Objects

Define the Point objects as member variables in the line class. Note not

pointers to the objects:

class Line {
public:

Line(double x1, double y1, double x2, double y2);
...

private:
Point start;
Point end;

};

Line::Line(double x1, double y1, double x2, double y2) :
start(x1, y1), end(x2, y2) {}

start(x1, y1) and end(x2, y2) are constructor calls which
initialize the Point objects.

No delete, no dynamic memory is involved.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 20 / 280

Class Line, Dynamic Objects, C++98 version

Define “raw” pointers to the Point objects as member variables:

class Line {
public:

Line(double x1, double y1, double x2, double y2);
...

private:
Point* start;
Point* end;

};

Line::Line(double x1, double y1, double x2, double y2) :
start(new Point(x1, y1)), end(new Point(x2, y2)) {}

Problem: the Point objects are never deleted, so there is a memory
leak.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 21 / 280

Destructors

The Line class needs a destructor which deletes the Point objects:

class Line {
public:

...
~Line();

private:
Point* start;
Point* end;

};

Line::~Line() {
delete start;
delete end;

}

The destructor is called automatically when the object is destroyed
and is responsible for cleaning up after the object.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 22 / 280

Class Line, Dynamic Objects, Safe Pointers
⇤⇥ ��C++11

Define safe pointers to the Point objects as member variables:

class Line {
public:

Line(double x1, double y1, double x2, double y2);
...

private:
std::unique_ptr<Point> start;
std::unique_ptr<Point> end;

};

Line::Line(double x1, double y1, double x2, double y2) :
start(new Point(x1, y1)), end(new Point(x2, y2)) {}

The dynamic objects are created in the constructor and handed over
to the safe pointers.

No visible delete, the safe pointers delete the objects when the
pointers are destroyed (when the Line object is destroyed).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 23 / 280

Inheritance

Inheritance in C++ is similar to Java inheritance, but member functions
are by default not polymorphic. You must specify this with the keyword
virtual.

class A {
public:

void f();
virtual void g();

};

class B : public A {
public:

void f();
virtual void g() override;

};

override
⇤⇥ ��C++11 is not mandatory but recommended.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 24 / 280

Calling Member Functions

void f() {
A* pa = new A;
pa->f(); // calls A::f
pa->g(); // calls A::g

A* pb = new B;
pb->f(); // calls A::f, f is not virtual
pb->g(); // calls B::g, g is virtual

...
delete pa; // should have used unique_ptr ...
delete pb;

}

Non-virtual: the type of the pointer determines which function is
called.

Virtual: the type of the object determines which function is called.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 25 / 280

Namespaces

Namespaces are used to control visibility of names (same purpose as Java
packages). You can define your own namespaces. In a file graphics.h:

namespace Graphics {
class Point { ... };
class Line { ... };

}

In another file:

#include "graphics.h"

int main() {
Graphics::Point p(1, 2);
...

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 26 / 280

Using Names from Namespaces

There are several ways to access names from namespaces (similar to
importing from Java packages):

Explicit naming:

Graphics::Point p(1, 2);

using declarations:

using Graphics::Point; // "import Graphics.Point"
Point p(1, 2);

using directives:

using namespace Graphics; // "import Graphics.*"
Point p(1, 2);

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 27 / 280

Generic Programming

Java has generic classes:

ArrayList<Integer> v = new ArrayList<Integer>();
v.add(5);
int x = v.get(0);

C++ has generic (template) classes:

vector<int> v;
v.push_back(5);
int x = v[0];

In Java, template parameters are always classes; may be of any type
in C++. An ArrayList always holds objects, even if we use
autoboxing and autounboxing as above.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 28 / 280

Operator Overloading

In Java, operator + is overloaded for strings (means concatenation). In
C++, you can define your own overloads of existing operators.

class Complex {
public:

Complex(double re, double im);
Complex operator+(const Complex& c) const;

private:
double re;
double im;

};

Complex Complex::operator+(const Complex& c) {
return Complex(re + c.re, im + c.im);

}

Now, you can add two complex numbers with c1 + c2.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 29 / 280

General Program Structure

A main program uses a class Stack. The program consists of three
compilation units in separate files:

class Stack {...}; // class definition, in file
// stack.h (header file)

Stack::Stack() { ... } // member function definitions,
// in file stack.cc

int main() { ... } // main function, in file example.cc

It should be possible to compile the .cc files separately. They need access
to the class definition in stack.h, and use an include directive for this:

#include "stack.h" // own unit, note " "
#include <iostream> // standard unit, note < >

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 30 / 280

stack.h

#ifndef STACK_H // include guard, necessary to avoid
#define STACK_H // inclusion more than once
#include <cstddef> // for size_t
class Stack {
public:

Stack(std::size_t sz);
~Stack();
void push(int x);
...

private:
int* v; // pointer to dynamic array
std::size_t size; // size of the array
std::size_t top; // stack pointer

};
#endif

This file is only included, not compiled separately.
Don’t write using namespace in a header file. A file that includes
the header file may not be prepared for this.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 31 / 280

stack.cc

#include "stack.h" // for class Stack

using namespace std; // ok here, this file will not be included

Stack::Stack(size_t sz) : v(new int[sz]), size(sz), top(0) {}

Stack::~Stack() { delete[] v; }

void Stack::push(int x) { v[top++] = x; }

...

This file can be compiled separately:

g++ -c stack.cc // generates object code in stack.o

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 32 / 280

example.cc

#include "stack.h" // for class Stack
#include <iostream> // for cin, cout, ...

using namespace std; // ok here, this file will not be included

int main() {
Stack s(100);
s.push(43);
...

}

Compilation, linking and execution:

g++ -c example.cc // generates example.o
g++ -o example example.o stack.o // generates example
./example

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 33 / 280

Data Types, Expressions, and Such

Data types

Strings, vectors, arrays

Expressions

Statements

Functions

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 34 / 280

Primitive Data Types

Character char, usually one byte; wchar t, char16 t, char32 t⇤⇥ ��C++11 , wide characters.

Integral int, often 32 bits; short, 16 or 32 bits; long, 32 or 64 bits;
long long

⇤⇥ ��C++11 at least 64 bits.

Real double, often 64 bits; float, 32 bits; long double
⇤⇥ ��C++11

often 80 bits.

Boolean bool, true or false; also see next slide.

Sizes are implementation defined.

The operator sizeof gives the size of an object or a type in character
units: sizeof(char) == 1 always, sizeof(int) == 4 typically.

Integral types and characters may be signed or unsigned.
Implementation defined if a plain char is signed or unsigned.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 35 / 280

Booleans

In early C++ standards, int’s were used to express boolean values: the
value zero was interpreted as false, a non-zero value as true. There are
still implicit conversions between booleans and integers/pointers. The
following is correct C++, but shouldn’t be used in new programs:

int a;
cin >> a;
if (a) { ... } // equivalent to if (a != 0)

Point* p = list.getFirstPoint();
while (p) { ... } // equivalent to while (p != 0)

// 0 is C++98 for ’nullptr’

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 36 / 280

Variables and Constants

Rules for declaration of variables are as in Java:

int x; // integer variable, undefined. The compiler
// isn’t required to check the use of
// uninitialized variables

double y = 1.5; // double variable, initial value 1.5

Constant values:

const int NBR_CARDS = 52;

Variables may be defined outside of functions and classes; then they
become globally accessible. Use with great care.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 37 / 280

Enumerations

An enumeration is a type which defines a set of constant names. The new
standard introduced “scoped enums”

⇤⇥ ��C++11 , where the constant names
are local to an enum (similar to constants in a class). Example:

enum class open_mode {INPUT, OUTPUT, APPEND};

An object of an enumeration type may only be assigned one of the
enumerator values:

int open_file(const string& filename, open_mode mode) {
...

}

int file_handle = open_file("input.txt", open_mode::INPUT);

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 38 / 280

References

A reference is an alternative name for an object, an “alias”. It is not the
same as a Java reference (which is a pointer). References are mainly used
as function parameters and as function return values.
A reference must be initialized when it’s created, and once initialized it

cannot be changed. There are no “null references”.

int ival = 1024; // a normal int
int& refval = ival; // refval refers to ival
refval += 2; // adds 2 to ival
int ii = refval; // ii becomes 1026

A const reference may refer to a const object, a temporary object or an
object needing conversion. Not much use for this now, becomes important
later.

const int& r1 = 42;
const double& r2 = 2 * 1.3;
const double& r3 = ival;

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 39 / 280

Pointers

A pointer points to a memory location and holds the address of that
location. Unlike Java, a pointer may point to (almost) anything: a
variable of a basic type like int, a stack-allocated variable, . . . A pointer
is declared with a * between the type and the variable name:

int* ip1; // can also be written int *ip1
Point* p = nullptr; // pointer to object of class Point.

// nullptr is "no object", same as Java’s null.
// nullptr is new in C++11, C++98 used 0

One way (not the most common; the most common is to use new to
create a dynamic variable on the heap) of obtaining a pointer value is to
precede a variable with the symbol &, the address-of operator:

int ival = 1024;
int* ip2 = &ival;

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 40 / 280

Dereferencing Pointers

The contents of the memory that a pointer points to is accessed with the
* operator. This is called dereferencing.

int ival = 1024;
int* ip2 = &ival;
cout << *ip2 << endl; // prints 1024
*ip2 = 1025;

Anything can happen if you dereference a pointer which is undefined or
null. Comparing pointers with references:

Pointers must be dereferenced, not references

Pointers can be undefined or null, not references

Pointers can be changed to point to other objects, not references

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 41 / 280

Type Aliases

A name may be defined as a synonym for an existing type name.
Traditionally, typedef is used for this purpose. In the new standard, an
alias declaration can also be used

⇤⇥ ��C++11 . The two forms are equivalent.

using newType = existingType; // C++11
typedef existingType newType; // equivalent, still works

Examples:

using counter_type = unsigned long;
using table_type = std::vector<int>;

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 42 / 280

The auto Type Specifier
⇤⇥ ��C++11

Sometimes type names are long and tedious to write, sometimes it can be
di�cult for the programmer to remember the exact type of an expression.
The compiler, however, has no problems to deduce a type. The auto
keyword tells the compiler to deduce the type from the initializer.
Examples:

vector<int> v; // a vector is like a Java ArrayList
...
auto it = v.begin(); // begin() returns vector<int>::iterator

auto func = [](int x) { return x * x; }; // a lambda function

Do not use auto when the type is obvious, for example with literals.

auto sum = 0; // silly, sum is int

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 43 / 280

Auto Removes & and const

When auto is used to declare variables, “top-level” & and const are
removed. Examples:

int i = 0;
int& r = i;
auto a = r; // a is int, the value is 0
auto& b = r; // b is ref to int

const int ci = 1;
auto c = ci; // c is int, the value is 1
const auto d = ci; // d is const int, the value is 1

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 44 / 280

The decltype Type Specifier
⇤⇥ ��C++11

Sometimes we want to define a variable with a type that the compiler
deduces from an expression, but do not want to use that expression to
initialize the variable. decltype returns the type of its operand:

sometype f() { ... }

decltype(f()) sum = 0;

vector<Point> v;
...
for (decltype(v.size()) i = 0; i != v.size(); ++i) { ... }

f() and v.size() are not evaluated.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 45 / 280

Strings

As in Java, the string type is a standard class. Unlike Java, strings are
modifiable (similar to Java’s string builders/string bu↵ers).

#include <iostream>
#include <string>

int main() {
std::cout << "Type your name ";
std::string name;
std::cin >> name;
std::cout << "Hello, " + name << std::endl;

}

Overloaded operators: <<, >>, +, < , <=, . . .

Character access: s[index], no runtime check on the index.

Operations: s.size(), s.substr(start, nbr), many more.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 46 / 280

Looping Through a string

string s = ...;

for (string::size_type i = 0; i != s.size(); ++i) {
cout << s[i] << endl;
s[i] = ’ ’;

}

The new standard introduced a range-based for statement
⇤⇥ ��C++11 :

for (auto& c : s) {
cout << c << endl;
c = ’ ’;

}

Note the reference: it is necessary since the characters are modified.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 47 / 280

A Note About != and ++

For statements, Java and C++ style:

for (int i = 0; i < 10; i++) { ... } // Java

for (int i = 0; i != 10; ++i) { ... } // C++

In C++, testing for end of range with != is preferred instead of <. And
pre-increment (++i) is preferred instead of post-increment (i++). When
the loop variable is of a built-in type, like here, both alternatives are
equivalent. But the loop variable can be an object of a more complex
type, like an iterator, and not all iterators support <. And pre-increment is
more e�cient than post-increment.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 48 / 280

Vectors

The class vector is a template class, similar to Java’s ArrayList. A
vector can hold elements of arbitrary type. An example (read words and
print them backwards):

#include <iostream>
#include <vector>
#include <string>

using namespace std;
int main() {

vector<string> v;
string word;
while (cin >> word) {

v.push_back(word);
}
for (int i = v.size() - 1; i >= 0; --i) {

cout << v[i] << endl;
}

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 49 / 280

Vector Notes

A vector is initially empty, elements are added at the end with
push_back.

Storage for new elements is allocated automatically.

Element access with v[index], no runtime check on the index.

Elements cannot be added with subscripting: vector<int> v;

v[0] = 1 is wrong.

The subscript type is vector<T>::size_type; usually this is
unsigned long.

Vectors may be copied: v1 = v2; and compared: v1 == v2.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 50 / 280

Introducing Iterators

vector is one of the container classes in the standard library. Usually,
iterators are used the access the elements of a container (not all
containers support subscripting, but all have iterators).

An iterator “points” to one of the elements in a collection (or to a
location immediately after the last element). It may be dereferenced

with * to access the element to which it points and incremented with
++ to point to the next element.

Containers have begin() and end() operations which return an
iterator to the first element and to one past the end of the container.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 51 / 280

Traversing a vector

vector<int> v;
...
for (vector<int>::iterator it = v.begin(); it != v.end(); ++it) {

*it = 0;
}

Better with auto
⇤⇥ ��C++11 :

for (auto it = v.begin(); it != v.end(); ++it) {
*it = 0;

}

Even better with a range-based for
⇤⇥ ��C++11 :

for (int& e : v) {
e = 0;

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 52 / 280

Iterator Arithmetic

Vector iterators support some arithmetic operations. Find the first
negative number in the second half of the vector v:

auto it = v.begin() + v.size() / 2; // midpoint
while (it != v.end() && *it >= 0) {

++it;
}
if (it != v.end()) {

cout << "Found at index " << it - v.begin() << endl;
} else {

cout << "Not found" << endl;
}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 53 / 280

const Iterators

A “normal” iterator can be used to read and write elements. A
const_iterator may only be used to read elements. cbegin() and
cend(), new in

⇤⇥ ��C++11 , return const iterators.

vector<int> v;
...
for (auto it = v.cbegin(); it != v.cend(); ++it) {

cout << *it << endl;
}

When the container is a constant object, begin() and end() return
constant iterators. Example (more about parameters later):

void f(const vector<int>& v) {
for (auto it = v.begin(); it != v.end(); ++it) {

*it = 0; // Wrong -- ’it’ is a constant iterator
}

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 54 / 280

Arrays

Bjarne Stroustrup: “The C array concept is broken and beyond
repair.”

Modern C++ programs normally use vectors instead of built-in arrays.

There are no checks on array subscripts during runtime (nothing like
Java’s ArrayIndexOutOfBoundsException). With a wrong index
you access or destroy an element outside the array.

There are two ways to allocate arrays: on the stack (next slides) and
on the heap (after pointers).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 55 / 280

Stack-Allocated Arrays

void f() {
int a = 5;
int x[3]; // size must be a compile-time constant
for (size_t i = 0; i != 3; ++i) {

x[i] = (i + 1) * (i + 1);
}
...

}

Activation record:

x[0] 1

a 5

x[1] 4

x[2] 9

i 3

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 56 / 280

More on Arrays

Array elements can be explicitly initialized:

int x[] = {1, 4, 9};

String literals are character arrays with a null terminator:

char ca[] = "abc"; // ca[0] = ’a’, ..., ca[3] = ’\0’

Arrays cannot be copied with the assignment operator or compared
with the comparison operators.

In most cases when an array name is used, the compiler substitutes a
pointer to the first element of the array:

int* px1 = x;
int* px2 = &x[0]; // equivalent

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 57 / 280

Pointers and Arrays

You may use a pointer to access elements of an array, and use pointer
arithmetic to add to/subtract from a pointer. Pointers are iterators for
arrays.

int x[] = {0, 2, 4, 6, 8};
for (int* px = x; px != x + 5; ++px) {

cout << *px << endl;
}

When a pointer is incremented, the increments are in the size of the
addressed data type, so px + 1 means px + sizeof(T) for an array of
type T. You may also subtract two pointers to get the number of array
elements between the pointers.
Accessing array elements with subscripting or through pointers is

equivalent. Actually, subscripting is defined as follows:

x[index] <=> *(x + index)

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 58 / 280

Library begin and end Functions
⇤⇥ ��C++11

In the example on the previous slide we obtained a pointer to the first
element with the array name, a pointer past the last element with the
array name plus the number of elements. For a vector, we would have
used the begin and end members.
Since an array is a built-in type it doesn’t have any member functions.

Instead, there are library functions for this purpose:

int x[] = {0, 2, 4, 6, 8};
for (int* px = begin(x); px != end(x); ++px) {

cout << *px << endl;
}

The global begin and end functions can be used also for other containers.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 59 / 280

C-Style Strings

A C-style string is a null-terminated array of characters. In C++, C-style
strings are almost only used as literals: "asdfg". The C library
<cstring> contains functions to manipulate C-style strings, for example
strlen (string length), strcpy (string copy), strcmp (string compare).
These functions are di�cult to use correctly, since the caller is responsible
for allocating storage for the strings.
C++ strings and C-style strings can co-exist. In class string, most

functions and operators are overloaded to accept C-style strings as
parameters. Examples:

const char* cs = "asdfg";
string s = cs;
s += ".";
string::size_type pos = s.find("df");

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 60 / 280

Heap-Allocated Arrays

Arrays on the heap are similar to Java arrays, but you must delete the
array after use. Example:

void g(size_t n) {
int a;
int* px = new int[n]; // size may be dynamic, >= 0
for (size_t i = 0; i != n; ++i) {

px[i] = (i + 1) * (i + 1);
}
...
delete[] px; // note []

}

px[1] 4

px[0] 1

a

n 5

?

px

i 6

px[2] 9

px[3] 16

px[4] 25

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 61 / 280

Array Notes

A heap-allocated array must be accessed via a pointer.

A heap-allocated array does not contain information about its length.

The global begin() and end() iterator functions cannot be used for
heap-allocated arrays.

delete[] is necessary to delete the array (otherwise the objects in
the array will not be destroyed).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 62 / 280

Operators

Most C++ operators are identical to the corresponding Java operators:

Arithmetic: * / % + -

Relational: < <= = >= > !=

Logical: ! && ||

Bitwise: & bitwise and; ^ bitwise exclusive or; | bitwise inclusive or,
~ complement
<< left shift; >> right shift (implementation defined how the
sign bit is handled, there is no >>> in C++)

Special: ? :

+= -= . . .
++x x++ --x x--

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 63 / 280

The Arrow Operator

To access a member in an object the dot operator is used. If you have a
pointer to the object you use the arrow operator.

Point p1(1, 2);
Point* p = new Point(1, 2);
double xLoc1 = p1.getX();
double xLoc2 = p->getX();

Instead of using the arrow operator you could first dereference the pointer
to get the object pointed to, then use the dot operator: double xLoc2 =

(*p).getX(). This is di�cult to read and shouldn’t be used.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 64 / 280

The sizeof Operator

sizeof(type name) returns the size of an object of the type, in character
units. sizeof(expression) returns the size of the result type of the
expression. Compare:

int a[5];
cout << sizeof(int) << endl; // 4 (if an int has 4 bytes)
cout << sizeof(a) << endl; // 20, 4*5

int* pa = new int[5];
cout << sizeof(pa) << endl; // 8 (the size of the pointer)
cout << sizeof(*pa) << endl; // 4 (points to int)

vector<int> v = { 1, 2, 3, 4, 5 };
cout << sizeof(v) << endl; // 24 (implementation defined,

// size of the object)

sizeof cannot be used to retrieve the number of elements of a
heap-allocated array or of a vector. (But can use vector::size().)

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 65 / 280

Type Conversions

In Java, there are implicit type conversions from “small” types to “large”
types. To convert in the other direction, where precision is lost, an explicit
cast is necessary.

double d = 35; // d == 35.0; implicit
d = 35.67;
int x = (int) d; // x == 35; explicit

In C++, there are implicit conversions in both directions.

d = 35.67;
int x = d; // x == 35; implicit

You should use an explicit cast instead:

int x = static_cast<int>(d);

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 66 / 280

Di↵erent Casts

The C++ rules for implicit type conversions are complex, so it is best to
always use explicit casts. There are other casts besides static cast:

dynamic cast<type>(pointer) for “downcasting” in an inheritance
hierarchy.

const cast<type>(variable) removes “constness” from a variable.
Not often used.

reinterpret cast<type>(expr) converts anything to anything else,
just reinterprets a bit pattern. Only used in low-level systems
programming.

The C (and Java) style of casting, (int) d, is also allowed in C++ but
should not be used; it functions as reinterpret cast.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 67 / 280

Numeric Conversions

A string of digits cannot be converted to a binary number with a cast, nor
can a binary number be converted to a string. In the old standard, “string
streams” were used for this purpose:

string s1 = "123.45";
istringstream iss(s1); // similar to a Java Scanner
double nbr;
iss >> nbr;

The new standard introduced conversion functions
⇤⇥ ��C++11 :

string s1 = "123.45";
double nbr = stod(s1); // "string to double"
...
string s2 = to_string(nbr + 1);

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 68 / 280

Statements

No surprises here:

if, switch, while, do while, for.

The new standard has range-based for
⇤⇥ ��C++11 .

break and continue.

Labeled break and continue are not available in C++ (you can use
goto instead, but don’t).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 69 / 280

Exceptions

Throwing and catching exceptions:

Anything can be thrown as an exception: an object, a pointer, an
int, . . . , but you usually throw an object (not a pointer to an object).

There are standard exception classes: exception, runtime error,
range error, logic error, . . .

In an exception handler, the exception object should be passed by
reference (catch (exception& e)).

If an exception isn’t caught, the library function terminate is called.
It aborts the program.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 70 / 280

Functions

Functions in C++ are similar to Java methods, but C++ functions may
also be defined outside classes (“free”, “stand-alone”, or “global”,
functions).
Functions may be defined as inline. It means that calls of the function

are replaced with the body of the function.

inline int sum(int i, int j) {
return i + j;

}

inline is just a request to the compiler to generate inline code — the
compiler may choose to ignore it. Inline function definitions must be
placed in header files.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 71 / 280

constexpr Functions

In some cases, for example when specifying array bounds, a constant
expression is necessary. A function that is specified constexpr is
evaluated during compilation if possible, and then it generates a constant
expression. Example:

constexpr int sum(int i, int j) {
return i + j;

}

void f(int n) {
int x[sum(4, 5)]; // correct, equivalent to x[9]
int y[sum(n, 5)]; // wrong, array bound isn’t constant

}

constexpr functions are implicitly inline.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 72 / 280

Local Static Variables

A class attribute in C++ (as in Java) may be static. This means that
there is only one variable, which is shared between all objects of the class.
In C++, also functions may have static variables. Such a variable is

created on the first call of the function, and its value is remembered
between successive calls.
Count the number of calls of a function:

void f() {
static int counter = 0;
counter++;
...

}

In C, local static variables are essential. In C++, most functions are class
members and member variables are used to remember values between
function calls.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 73 / 280

Argument Passing

Arguments to functions are by default passed by value, as in Java. This
means that the value of the argument is computed and copied to the
function, and that an assignment to the formal parameter does not a↵ect
the argument.

void f(int x, const Point* p) {
x++;
double y = x + p->getX();

}

int main() {
int x = 2;
Point* q = new Point(5, 10);
f(x, q);
...
delete q;

}

y 10.0

x 5.0
2

3

x

q

x

p

y 8.0

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 74 / 280

Reference Parameters

If you wish to change the value of an argument you must pass the
argument by reference. Example:

void swap(int& v1, int& v2) {
int tmp = v2;
// see figure for memory state here
v2 = v1;
v1 = tmp;

}

int main() {
int i = 10;
int j = 20;
swap(i, j);

}

10

20

i

j

v1

v2

tmp 20

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 75 / 280

How They Do It in C

C doesn’t have references, so to write the swap function in C you must use
pointers. This should be avoided in C++.

void swap(int* v1, int* v2) {
int tmp = *v2;
*v2 = *v1;
*v1 = tmp;

}

int main() {
int i = 10;
int j = 20;
swap(&i, &j);

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 76 / 280

Constant Pass by Reference

Pass by reference is also used when you have a large object that you don’t
wish to copy on each call.

bool isShorter(const string& s1, const string& s2) {
return s1.size() < s2.size();

}

Note that const is essential (if you don’t wish to modify the object):

Without const, you could not pass a constant string as argument, or
an object needing conversion (for example isShorter(s, "abc")).

Without const, you could inadvertently change the state of the
object in the function.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 77 / 280

Parameters — Pointer or Reference

If a program uses stack-allocated objects, which should be the normal
case, write functions with reference parameters. If the program must use
heap-allocated objects, write functions with pointer parameters.

void refPrint(const Point& p) {
cout << p.getX() << " " << p.getY() << endl;

}

void ptrPrint(const Point* p) {
cout << p->getX() << " " << p->getY() << endl;

}

void f() {
Point p1(10, 20);
Point* pptr = new Point(30, 40);
refPrint(p1); // normal usage
ptrPrint(pptr); // also normal usage
...
delete pptr;

}
Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 78 / 280

Pointer or Reference, cont’d

You can pass an object even if you have a pointer, or a pointer if you have
an object, but that should be avoided:

void refPrint(const Point& p) { ... }

void ptrPrint(const Point* p) { ... }

void f() {
Point p1(10, 20);
Point* pptr = new Point(30, 40);
refPrint(*pptr); // possible, but avoid
ptrPrint(&p1); // also possible, also avoid
...
delete pptr;

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 79 / 280

Array Parameters

An array argument is passed as a pointer to the first element of the array.
The size of the array must also be passed as an argument.

void print(const int* ia, size_t n) {
for (size_t i = 0; i != n; ++i) {

cout << ia[i] << endl;
}

}

int main() {
int[] a = {1, 3, 5, 7, 9};
size_t size = sizeof(a) / sizeof(*a);
print(a, size);

}

Note that const int* is a variable pointer to a constant integer. A
constant pointer to a variable integer is written int* const.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 80 / 280

Another Way To Pass Array Parameters

Another way of passing array arguments is inspired by iterators. You pass
pointers to the first and one past the last element:

void print(const int* beg, const int* end) {
for (; beg != end; ++beg) {

cout << *beg << endl;
}

}

int main() {
int[] a = {1, 3, 5, 7, 9};
size_t size = sizeof(a) / sizeof(*a);
print(a, a + size); // or print(begin(a), end(a))

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 81 / 280

Functions with Varying Parameters
⇤⇥ ��C++11

A function with an unknown number of arguments of the same type can
pack the arguments in an initializer list object. An
initializer list has begin() and end() operations. Example:

class MyVector {
public:

MyVector(const initializer_list<int>& il)
: v(new int[il.size()]), size(il.size()) {

size_t i = 0;
for (auto x : il) { v[i++] = x; }

}
private:

int* v;
int size;

};

MyVector v1({1, 2, 3, 4});
MyVector v2 = {5, 6, 7, 8};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 82 / 280

Functions Returning Values

The value that a function returns is copied from the function to a
temporary object at the call site.

string strip(const string& s) {
string ret;
for (char c : s) {

if (c != ’ ’) {
ret += c;

}
}
return ret; // the return value is copied

}

int main() {
string s = strip("Mary had a little lamb") + ".";
...

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 83 / 280

Functions Returning References

A function can return a reference, and if it does, it can be called on either
side of a = operator. This is mainly used when writing operator functions
that overload standard operators, e.g., assignment or subscripting. The
following example would have made more sense if the array had been a
class attribute and element had been an overloaded operator[].

int& element(const int* x, size_t i) {
// ... could insert index check here
return x[i];

}

void f() {
int squares[] = {1, 4, 9, 15, 25};
element(squares, 3) = 16;
...

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 84 / 280

Reference and Pointer Pitfalls

Never return a reference or a pointer to a local object. The return value
will refer to memory that has been deallocated and will be reused on the
next function call.

const string& strip(const string& s) { // note & on the return type
string ret;
...
return ret; // a reference to the local variable is copied

}

int main() {
string s = strip("Mary had a little lamb") + ".";
... disaster

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 85 / 280

Function Declarations

Everything, also functions, must be declared before use. You may write
the declaration separate from the definition of a function. The declaration
consists of the return type, function name, and parameter list (the
parameters need not be named). This information is called the prototype

of the function.

void print(const int*, size_t); // declaration, goes
// in header file

void print(const int* ia, size_t n) { // definition
...

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 86 / 280

Overloaded Functions

There may be several functions with the same name in the same scope,
provided they have di↵erent number of parameters or di↵erent parameter
types (as in Java). Functions cannot be overloaded based only on
di↵erences in the return type (but member functions can be overloaded
based on const).
Use overloading primarily when the number of parameters is di↵erent.

There are complex rules for overload resolution on parameter types (read
section 6.6 in Lippman if you’re interested).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 87 / 280

Default Arguments

Formal parameters may be given default values. If the corresponding
argument is omitted, it is given the default value. Only trailing parameters
may be given default values.

void move(int from, int to = 0, int by = 1);

move(2, 3); // equivalent to move(2, 3, 1)
move(2); // equivalent to move(2, 0, 1)

Default parameters are often used in constructors (reduces the need for
overloading):

Complex(double r = 0, double i = 0) : re(r), im(i) {}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 88 / 280

Pointers to Functions

Functions may be passed as arguments to other functions. A function
argument is passed as a pointer to a function, and you can define variables
of type pointer to function. The syntax is complicated:

return_type (*pointer_name) (parameters);

Type aliases make definitions easier to read. Example:

void f(double x) {
using DDPtrFunc = double(*)(double);
DDPtrFunc fcn[10];
fcn[0] = std::sin;
...
fcn[9] = std::cos;
for (size_t i = 0; i != 10; ++i) {

cout << fcn[i](x) << endl;
}

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 89 / 280

Classes

Basics: members, friends, constructors, type conversions

Destructors, allocators, reference and value semantics

Copy control, copy constructors, assignment

Copying and moving

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 90 / 280

Class Basics

A Point class where coordinates may not be negative:

class Point {
public:

using coord_t = unsigned int;
Point(coord_t ix, coord_t iy);
coord_t get_x() const;
coord_t get_y() const;
void move_to(coord_t new_x, coord_t new_y);

private:
coord_t x;
coord_t y;

};

Note the public type alias: we want users to use that name.

The accessor functions do not change the state of the object. They
shall be declared const.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 91 / 280

Member Functions

Point::Point(coord_t ix, coord_t iy) : x(ix), y(iy) {}

Point::coord_t Point::get_x() const { return x; }

Point::coord_t Point::get_y() const { return y; }

void Point::move_to(coord_t new_x, coord_t new_y) {
x = new_x;
y = new_y;

}

Short member functions like these are often defined inside the class,
not only declared. Such functions are automatically inline.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 92 / 280

const Member Functions

Member functions that are not declared const cannot be used for
constant objects:

void f(const Point& p, Point& q) {
Point::coord_t x1 = p.get_x(); // ok, get_x is const
p.move(10, 20); // wrong, move is not const
...
Point::coord_t x2 = q.get_x(); // ok
q.move(10, 20); // ok
...

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 93 / 280

Some Class Notes

this is a pointer to the current object, as in Java

A struct is the same as a class but all members are public by
default. Structs are often used for internal implementation classes.

If two classes reference each other, you need a class declaration:

class B; // class declaration, "forward declaration"

class A {
B* pb;

};

class B {
A* pa;

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 94 / 280

Selective Protection

In addition to the three protection levels private, protected, and
public, Java has “package visibility”. An attribute or a method with
package visibility is considered to be private to all classes outside of the
current package, public to all classes inside the current package. This
makes it possible to share information between classes that cooperate
closely:

package myListPackage;
public class List {

ListElement first; // package visible
...

}

package myListPackage;
public class ListElement {

ListElement next; // package visible
...

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 95 / 280

Friends

Java’s package visibility gives all classes in a package extended access
rights. The C++ solution is in a way more fine grained: you can hand out
access rights to a specific class or to a specific (member or global)
function. It is also more coarse grained: you hand out the rights to access
all members of a class. This is done with a friend declaration.

class List {
// the function insert may access private members of List
friend ListElement::insert(const List&);

};

class ListElement {
// all members of List may access members of ListElement
friend class List;

};

Friend declarations may be placed anywhere in the class definition. They
are not part of the class interface (not members).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 96 / 280

A Generator Class

This is a “Fibonacci number generator” (the Fibonacci numbers are 1, 1,
2, 3, 5, 8, . . .):

class Fibonacci {
public:

Fibonacci();
unsigned int value(unsigned int n) const;

};

unsigned int Fibonacci::value(unsigned int n) const {
int nbr1 = 1;
int nbr2 = 1;
for (unsigned int i = 2; i <= n; ++i) {

int temp = nbr1 + nbr2;
nbr1 = nbr2;
nbr2 = temp;

}
return nbr2;

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 97 / 280

Mutable Data Members

We wish to make Fibonacci more e�cient by using a cache to save
previously computed values. We add a vector<unsigned int> as a
member. When Fibonacci::value(n) is called, all Fibonacci numbers
up to and including n will be saved in the vector.
The problem is that value is a const function, but it needs to modify

the member. To make this possible the member must be declared as
mutable:

class Fibonacci {
...

private:
mutable vector<unsigned int> values;

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 98 / 280

Fibonacci Implementation

Fibonacci::Fibonacci() {
values.push_back(1);
values.push_back(1);

}

unsigned int Fibonacci::value(unsigned int n) const {
if (n < values.size()) {

return values[n];
}
for (unsigned int i = values.size(); i <= n; ++i) {

values.push_back(values[i - 1] + values[i - 2]);
}
return values[n];

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 99 / 280

Initializing Class Members

Class members can be initialized in three ways:

class A {
...

private:
int x = 123; // direct initialization, new in C++11

};

A::A(int ix) : x(ix) {} // constructor initializer

A::A(int ix) { x = ix; } // assignment

The constructor initializer should be preferred.

Members that are references or const cannot be assigned — must use
initialization.

Also members of class types that don’t have a default constructor.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 100 / 280

Initializing Data Members of Class Types

The initializers in the initializer list are constructor calls, and you may use
any of the type’s constructors.

class Example {
public:

Example(const string& s) : s1(s), s2("abc") {}
private:

string s1;
string s2;

};

If you had omitted the initializers and instead written s1 = s; s2 =

"abc"; in the constructor body, the following would have happened:

s1 and s2 would have been initialized as empty strings.

The assignments would have been performed. This could involve a lot
of work: first the empty strings are destroyed, then the strings are
copied.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 101 / 280

Delegating Constructors
⇤⇥ ��C++11

A constructor may delegate some (or all) of its work to another
constructor by calling that constructor in the initializer list. Example:

class Complex {
public:

Complex(double r, double i) : re(r), im(i) {}
Complex(double r) : Complex(r, 0) {}
Complex() : Complex(0, 0) {}
...

};

In this example, default parameters could have been used:

Complex(double r = 0, double i = 0) : re(r), im(i) {}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 102 / 280

Type Conversion and Constructors

A constructor with one parameter, Classname(parameter), means that
“if we know the value of the parameter, then we can construct an object
of class Classname”, for example in Person p("Joe").
But this is kind of type conversion (from string to Person, in this

example). Another case where type conversion is used:

double x = 2; // know an int value, can construct a double

Single-argument constructors are implicitly used for conversion when a
value of class type is expected and a value of the parameter type is found.

Person p = "Joe"; // compiled to Person p = Person("Joe")

void print(const Person& p) { ... }

print("Bob"); // compiled to print(Person("Bob"));

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 103 / 280

Explicit Constructors

You can disallow implicit conversion to a class type by making the
constructor explicit (write explicit Person(const string&)).
Example, where the second constructor should have been explicit:

class String {
public:

String(const char* s); // initialize with C string
String(size_t n); // string with room for n characters

};

void f(const String& s) { ... }

f("a"); // reasonable
f(’a’); // probably meant "a", but the char is converted to int

// and an empty string with 97 characters is created
f(String(’a’)); // allowed even if the constructor is explicit

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 104 / 280

Static Members

Same as static in Java. A class that counts the number of objects of the
class, using a static attribute:

class Counted {
public:

Counted() { ++nbrObj; }
~Counted() { --nbrObj; }
static unsigned int getNbrObj() { return nbrObj; }

private:
static unsigned int nbrObj;

};

unsigned int Counted::nbrObj = 0;

A static data member must be defined outside the class.

The function is accessed with Counted::getNbrObj().

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 105 / 280

Managing Objects

Recall:

Most classes need at least one constructor. If you don’t write a
constructor, the compiler synthesizes a default constructor with no
parameters that does nothing (almost).

Classes that manage a resource (dynamic memory, most commonly)
need a destructor.

Memory for a stack-allocated object is allocated when a function is
entered, and a constructor is called to initialize the object. When the
function exits, the destructor is called and the memory for the object
is deallocated.

Memory for a heap-allocated object is allocated and a constructor is
called when new Classname is executed. The destructor is called and
memory deallocated when you delete the object.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 106 / 280

Example

A class that describes persons and their addresses:

class Person {
public:

Person(const string& nm, const string& ad) : name(nm),
address(ad) {}

...
private:

string name;
string address;

};

void f() {
Person p1("Bob", "42 Elm Street");
...

}

When the function exists, the object p1 is destroyed. This means that the
attributes also will be destroyed (the string destructors are called).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 107 / 280

Destructors

A destructor is necessary in a class that acquires resources that must be
released, for example dynamic memory. The Person class again, but we
for some reason use a pointer to a dynamic address object instead of the
object itself:

class Person {
public:

Person(const string& nm, const string& ad) : name(nm),
paddress(new string(ad)) {}

~Person() { delete paddress; }
...

private:
string name;
string* paddress;

};

Here, there really is no reason to use a dynamically allocated object.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 108 / 280

Don’t Use Raw Pointers

If you really want to use dynamic memory you should choose a safe
pointer instead — in this case a unique pointer. Class unique ptr has a
destructor which deletes the object that the pointer is pointing to.

class Person {
public:

Person(const string& nm, const string& ad) : name(nm),
paddress(new string(ad)) {}

...
private:

string name;
unique_ptr<string> paddress;

};

This is better since you no longer have to worry about the destructor, but
it’s still unnecessary to use a dynamically allocated object.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 109 / 280

Sharing Objects

A valid reason to use a pointer to an address object is that it should be
possible for several objects to share a common address. But then you must
use a safe pointer that keeps count of how many pointers that point to an
object, and only deletes the object when that number reaches zero.

class Person {
public:

Person(const string& nm, const shared_ptr<string>& pad)
: name(nm), paddress(pad) {}

...
private:

string name;
shared_ptr<string> paddress;

};

Example of use on the next slide.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 110 / 280

Sharing Example

Example, two persons sharing address:

void f() {
shared_ptr<string> common_address(new string("42 Elm Street"));
Person p1("Bob", common_address);
Person p2("Alice", common_address);
...

}

After p1 and p2 have been created, three pointers point to the
dynamically allocated string object. When the function exits, p2, p1, and
common address are destroyed, the use count is decremented three times,
reaches zero, and the dynamically allocated string is deleted.

Another (better) way to initialize a shared pointer:

auto common_address = make_shared<string>("42 Elm Street");

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 111 / 280

new and delete

Usage of the operators new and delete are translated into calls of the
following functions, which allocate/deallocate raw memory:

void* operator new(size_t bytes);
void operator delete(void* p) noexcept;

Example:

Point* p = new Point(10, 20);
// allocate raw memory, initialize the object
// Point* p = static_cast<Point*>(::operator new(sizeof(Point)));
// p->Point::Point(10, 20);

delete p;
// destruct the object, free memory
// p->~Point();
// ::operator delete(p);

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 112 / 280

Allocators

As seen on the previous slide, new combines memory allocation with object
construction, and delete combines destruction with deallocation. This is
true also for arrays of objects: new Point[10] default-constructs 10
objects.
Now consider implementing the library class vector. When

push back(p) is executed on a full vector and a new chunk of memory
must be allocated, no objects should be created. Instead, p should be
copied (or moved) into raw memory.

The library class allocator allocates and deallocates raw memory:

allocator<Point> alloc;
auto p = alloc.allocate(10); // allocates space for 10

// unconstructed Points,
// returns a pointer

...
alloc.deallocate(p, 10); // deallocate

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 113 / 280

Constructing and Destroying Objects

When raw memory has been allocated, objects can be constructed in that
area. Before memory is deallocated, the objects must be destroyed.

allocator<Point> alloc;
auto p = alloc.allocate(10);

auto q = p; // where to start constructing objects
alloc.construct(q++, 10, 20); // Point(10, 20)
alloc.construct(q++, 30, 40); // Point(30, 40)
...
while (q != p) {

alloc.destroy(--q); // execute ~Point() for each object
}

alloc.deallocate(p, 10);

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 114 / 280

Reference Semantics

In Java, all objects are manipulated via reference variables (pointers in
C++). You may assign pointers to pointer variables but assignments never
touch the “inside” of the objects.

Car* myCar = new Car("ABC123");
Car* yourCar = new Car("XYZ789");
...
delete myCar; // my car to the scrapheap
myCar = yourCar; // I buy your car
yourCar = nullptr; // you don’t own a car now

This is called reference semantics, and it is often the preferred way to
manipulate objecs.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 115 / 280

Value Semantics

Reference semantics is not always what you want. Consider manipulating
strings via pointers:

string* s1 = new string("asdfg");
string* s2 = s1; // two pointers to the same object

s1->erase(0, 1); // erase the first character of s1
cout << *s1 << endl; // prints sdfg
cout << *s2 << endl; // also prints sdfg, maybe unexpectedly

// since you haven’t touched s2

In C++ you may copy objects, not only pointers, to get the desired
results. This is called value semantics.

string s1 = "asdfg";
string s2 = s1; // copy the object
s1.erase(0, 1); // only s1 is modified

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 116 / 280

Which Semantics is Best?

Value semantics is preferred for “small”, “anonymous”, objects (numbers,
strings, dates, colors, . . .). When object identity is important, reference
semantics is better. Example:

Car myCar("ABC123");
Car yourCar("XYZ789");

myCar = yourCar; // copy the object => two cars that are
// identical. Not reasonable!

Cars have identity, so they should be manipulated using reference
semantics. However, in C++ value semantics is sometimes used also for
such classes.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 117 / 280

Copying Objects

Objects are copied in several cases:

Initialization

Person p1("Bob");
Person p2(p1);
Person p3 = p1;

Assignment

Person p4("Alice");
p4 = p1;

Parameter by value

void f(Person p) { ... }
f(p1);

Function value return

Person g() {
Person p5("Joe");
...
return p5;

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 118 / 280

Initialization and Assignment

The following statements may look similar, but they are handled by
di↵erent C++ language constructs:

Person p1("Bob");
Person p3 = p1; // initialization

Person p4("Alice");
p4 = p1; // assignment

Initialization A new, uninitialized object is initialized with a copy of
another object. This is handled by the copy constructor of
the class, Classname(const Classname&). It also handles
value parameters and function value return.

Assignment An existing object is overwritten with a copy of another
object. This is handled by the assignment operator of the
class, Classname& operator=(const Classname&).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 119 / 280

The Synthesized Copy Functions

In your own classes, you can implement the copy constructor and
assignment operator to get the desired copy behavior. If you don’t do this,
the compiler synthesizes a copy constructor and an assignment operator
which perform memberwise (“shallow”) copying.
You should not write your own copy constructor or assignment operator

in a class that doesn’t use dynamic resources. Example:

class Person {
public:

// this is the copy constructor that the compiler
// creates for you, and you cannot write a better one
Person(const Person& p)

: name(p.name), age(p.age) {}
private:

string name;
unsigned int age;

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 120 / 280

Preventing Copying
⇤⇥ ��C++11

Some classes shouldn’t allow objects of the class to be copied. This is
achieved by declaring the copy constructor and the assignment operator as
delete-d:

class Person {
public:

...
Person(const Person&) = delete;
Person& operator=(const Person&) = delete;

private:
...

};

In C++98, the same e↵ect was achieved by making the copy constructor
and assignment operator private.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 121 / 280

A String Class

As an example of a class that allocates and deallocates dynamic memory
we will use a simplified string class. The class should have value
semantics. The characters are stored in a C-style string (a null-terminated
char array). The <cstring> function strlen computes the number of
characters in a C-style string, the function strcpy copies the characters.

class String {
public:

String(const char* s) : chars(new char[strlen(s) + 1]) {
strcpy(chars, s); // copy s to chars

}
~String() { delete[] chars; }

private:
char *chars;

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 122 / 280

Without a Copy Constructor, I

We haven’t written a copy constructor for String, so the constructor
generated by the compiler is used. It performs a memberwise copy.

void f() {
String s1("abc");
String s2 = s1; // see figure for memory state after copy

}

s1.chars

s2.chars
a b c 0

When the function exits:

1 The destructor for s2 is called, s2.chars is deleted.

2 The destructor for s1 is called, s1.chars is deleted.

3 This is disaster — you must not delete the same object twice.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 123 / 280

Without a Copy Constructor, II

Value parameter example:

void f(String s) {
...

}

void g() {
String s1("abc");
f(s1);

}

1 In the call f(s1), s1 is copied to s. Now, s.chars and s1.chars

point to the same array.

2 When f exits, the destructor for s is called, s.chars is deleted. Now,
s1.chars points to deallocated memory and s1 cannot be used.

3 When g exits, the destructor for s1 is called and s1.chars is deleted
. . .

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 124 / 280

Defining a Copy Constructor

Class String must have a copy constructor that performs a deep copy,
i.e., copies not pointers but what the pointers point to.

String(const String& rhs)
: chars(new char[strlen(rhs.chars) + 1]) {

strcpy(chars, rhs.chars);
}

void f() {
String s1("abc");
String s2 = s1; // see figure for memory state after copy

}

s1.chars

s2.chars

a b c 0

a b c 0

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 125 / 280

Avoiding Copy Problems

The copy constructor is never invoked if objects always are manipulated
via pointers or references. For strings, this is not possible, since we need
value semantics. But parameter copying can be avoided, and it doesn’t
happen if the parameter is passed by reference.

void f(const String& s) { ... }

void g() {
String s1("abc");
f(s1);

}

s1

s

a b c 0

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 126 / 280

Assignment

Copy problems, with an extra complication, also occur when objects are
assigned.

void f() {
String s1("abc");
String s2("xy");
s2 = s1; // see figure for memory state after copy

}

s1.chars

s2.chars

a b c 0

x y 0

The extra complication is that the array "xy" cannot be reached after the
assignment, which leads to a memory leak. And as before, the destructor
is called twice for the same object.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 127 / 280

Overloading Assignment

To solve the assignment copying problems, you must define your own
version of the assignment operator. This is done by defining an operator

function operator=.

class String {
public:

String& operator=(const String&);
...

};

With this operator function, the statement

s1 = s2;

is converted by the compiler into

s1.operator=(s2);

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 128 / 280

Implementing operator=

Implementation of String::operator=:

String& String::operator=(const String& rhs) {
if (&rhs == this) {

return *this;
}
delete[] chars;
chars = new char[strlen(rhs.chars) + 1];
strcpy(chars, rhs.chars);
return *this;

}

Notice the similarities and dissimilarities to the copy constructor:

Both functions perform a deep copy of the object’s state.

In addition, operator= must 1) delete the old state; 2) return the
object being assigned to; 3) check for self-assignment. Explanations
on next slide.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 129 / 280

Details, operator=

1 Delete the old state (delete[] chars): this is necessary to prevent
memory leaks.

2 Return the object (return *this): this is necessary to make it
possible to chain assignments.

s1 = s2 = s3; // compiled into s1.operator=(s2.operator=(s3))

operator= returns a reference to the assigned object. This is safe,
because the object certainly exists.

3 Check for self-assignment (if (&rhs == this)):

s1 = s1; // compiled into s1.operator=(s1)

Here, *this and rhs are the same object. Without the check, you
would first delete s1.chars, then allocate a new array, then copy
from the uninitialized array.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 130 / 280

Swapping Values

The library defines a function swap which swaps two values (as a template
function that may be called with parameters of arbitrary types):

template <typename T>
inline void swap(T& a, T& b) {

T temp = a;
a = b;
b = temp;

}

For the String class it is expensive to perform one copy and two
assignments. See next slide for a better alternative.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 131 / 280

E�cient Swapping

All you need to do when swapping two String objects is to swap the
pointers to the character arrays:

class String {
friend void swap(String& s1, String& s2);

public:
...

};

inline void swap(String& s1, String& s2) {
using std::swap;
swap(s1.chars, s2.chars);

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 132 / 280

Moving Objects

In the String class, the default copy constructor didn’t work correctly:

String(const String& rhs) : chars(rhs.chars) {}

The copy constructor must perform a deep copy:

String(const String& rhs)
: chars(new char[strlen(rhs.chars) + 1]) {

strcpy(chars, rhs.chars);
}

If we are certain that the object that we’re copying from will not be used
after the copy, we could write the copy constructor like this:

String(String& rhs) : chars(rhs.chars) {
rhs.chars = nullptr;

}

This is called a move constructor.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 133 / 280

When Moving is Possible

But how can we (or rather the compiler) be “certain that the object that
we’re copying from will not be used after the copy?”
The answer is that temporary values can be moved from, since these will

be destroyed after use. And the compiler can recognize temporary values:

String s1("abc");
String s2("def");
String s3 = s1 + s2; // the result of ’+’ is a temporary value

void f(String s);
f("abcd"); // => f(String("abcd")), the argument is a temporary

String g() {
...
return ...; // the return value is a temporary

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 134 / 280

Lvalues and Rvalues, Rvalue References
⇤⇥ ��C++11

An lvalue is persistent (e.g. a variable). An rvalue is not persistent (e.g. a
literal or a temporary). A regular non-const reference can bind only to an
lvalue. In the new standard rvalue references have been introduced. An
rvalue reference can bind only to an rvalue. Examples:

String s1("abc");
String s2("def");

String& sref = s1; // reference bound to a variable

String&& srr = s1 + s2; // rvalue reference bound to a temporary

You obtain an rvalue reference with &&.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 135 / 280

Move Constructors

Now that we have rvalue references, the move constructor can be written.
The copy constructor is still necessary for regular copying.

String(String&& rhs) noexcept : chars(rhs.chars) {
rhs.chars = nullptr;

}

String(const String& rhs)
: chars(new char[strlen(rhs.chars) + 1]) {

strcpy(chars, rhs.chars);
}

noexcept
⇤⇥ ��C++11 informs the compiler that the constructor will not throw

any exceptions. This is only important for move operations.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 136 / 280

Move Assignment Operator

A class whose objects can be moved should also have a move assignment
operator:

String& operator=(String&& rhs) noexcept {
if (&rhs == this) {

return *this;
}
delete[] chars;
chars = rhs.chars;
rhs.chars = nullptr;
return *this;

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 137 / 280

Explicit Moving

Sometimes the programmer, but not the compiler, is certain that it is safe
to move an object rather than copying it. The library function std::move

returns an rvalue reference to its argument:

template <typename T>
inline void swap(T& a, T& b) {

T temp = std::move(a); // a is moved to temp, a is empty

a = std::move(b); // but a isn’t used, instead b is
// moved to a, b is empty

b = std::move(temp); // but b isn’t used, instead temp is
// moved to b, temp is empty

} // but temp isn’t used, instead
// destroyed

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 138 / 280

Canonical Construction Idiom

1 When a class manages a resource, it needs its own destructor, copy
and move constructor, and copy and move assignment operator (“rule
of five”).

2 The constructor should initialize data members and allocate required
resources.

3 The copy constructor should copy every element (deep copy). The
move constructor should move instead, making the right-hand side
empty.

4 The copy assignment operator should release resources that are
owned by the object on the left-hand side of the assignment and then
copy elements from the right side to the left side (deep copy). The
move assignment operator should move instead, making the
right-hand side empty.

5 The destructor should release all resources.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 139 / 280

Vectors of Objects

As we have mentioned earlier, you should almost always use vectors
instead of arrays. If you need to keep track of persons (objects of class
Person), you must decide what to store in the vector: Person objects or
pointers to Person objects.

vector<Person> v; // vector of Person objects
Person p1("Bob");
v.push_back(p1); // p1 is copied
v.push_back(Person("Alice")); // the object is moved
...
for (const auto& p : v) {

cout << p.getName() << endl;
}

Class Person must have a copy (and/or move) constructor.

Large objects can be slow to copy.

You cannot store objects of subclasses of Person.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 140 / 280

Vectors of Pointers to Objects

You can instead store pointers to heap-allocated Person objects.

vector<Person*> pv;
Person* p = new Person("Bob");
pv.push_back(p);
...
for (auto pptr : pv) {

cout << pptr->getName() << endl;
}
...
for (auto pptr : pv) {

delete pptr;
}

Only pointers are copied, no copy constructor is needed.

You can store pointers to objects of subclasses of Person.

But you must delete all objects before the vector goes out of scope.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 141 / 280

Vectors of unique ptrs
⇤⇥ ��C++11

You don’t have to worry about deletion if you use unique pointers:

vector<unique_ptr<Person>> upv;
upv.push_back(unique_ptr<Person>(new Person("Bob")));
...
for (const auto& upptr : upv) {

cout << upptr->getName() << endl;
}

Same advantages as vector of raw pointers, but you don’t have to
worry about deletion.

But you must keep in mind that unique pointers cannot be copied,
just moved.

Shared pointers can naturally also be used.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 142 / 280

Arrays of Objects

Everything becomes much more di�cult if you use arrays instead of
vectors. Consider:

Person v[100]; // the size must be a compile-time constant,
// the class must have a default constructor

If the size isn’t known at compile time, the array must be created on the
heap and later deleted:

size_t size = ...;
Person* pv = new Person[size];
...
delete[] pv;

The brackets on delete informs the compiler that an array is deleted,
rather than a single object. The compiler generates code to call the
destructor for each object in the array.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 143 / 280

Dynamic Array of Pointers to Objects

If you use an array to store pointers to Person objects, and the array
should be dynamic, you must do something like the following:

Person** pv = new Person*[size]; // pointer to first element of
// array, which is a pointer
// to a Person object

size_t nbrObj = 0;
pv[nbrObj++] = new Person("Bob");
...
for (size_t i = 0; i != nbrObj; ++i) {

cout << pv[i]->getName() << endl;
}
...
for (size_t i = 0; i != nbrObj; ++i) {

delete pv[i];
}
delete[] pv;

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 144 / 280

More Advanced Class Concepts

Operator overloading

Inheritance

Templates

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 145 / 280

Operator Overloading

In most programming languages some operators are overloaded. For
instance, the arithmetic operators are usually overloaded for integers and
reals — di↵erent addition operations are performed in the additions 1 + 2

and 1.0 + 2.0. The compiler uses the types of the operands to
determine the correct operation.

In C++, overloading can be extended to user-defined types (classes).
Thus, a + b can mean addition of complex numbers, addition of matrices,
etc.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 146 / 280

Rules for Overloading

All operators can be overloaded except :: (scope resolution),
. (member selection), .* (member selection through pointer to
member), ? :, sizeof.

It is not possible to invent new operator symbols or to change the
priority between operators.

At least one of the operands of an overloaded operator must be an
object (not a pointer to an object). So you cannot redefine the
meaning of operators for built-in types, e.g., int + int.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 147 / 280

Operator Functions

Each usage of an overloaded operator is translated into a call of an
operator function. We have already seen one example, operator=.
Operator functions are “normal” functions with “strange names” like
operator=, operator+, . . .
Operator functions may be members or nonmembers. Rules:

Assignment (=), subscript ([]), call (()), and member access arrow
(->) must be members.

Operators that change the state of their object should be members:
+=, ++, . . .

Operators that don’t change the state of any object should be
nonmembers: +, *, ==, . . .

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 148 / 280

Example, Class Integer

In the following, we will use a class Integer to demonstrate overloading.
The class is merely a wrapper for integer values, but it could easily be
extended, for example to perform modulo arithmetic. Or, add an attribute
to create a Complex class.

class Integer {
public:

Integer(int v = 0) : value(v) {}
private:

int value;
};

The constructor is not explicit, so you can write Integer a = 5 as well
as Integer a(5).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 149 / 280

Input and Output

You should be able to read and write Integer objects just as other
variables, like this:

Integer a;
cin >> a; // compiled into operator>>(cin, a);
cout << a; // compiled into operator<<(cout, a);

The functions operator>> and operator<< must be nonmembers
(otherwise they would have to be members of the istream/ostream
classes, and you cannot modify the library classes).

The input stream should be an istream so input can come from a file
stream or a string stream, the output stream should be an ostream.

The functions must be friends of the Integer class, so they can
access the private member value.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 150 / 280

Implementing operator>>

In the file integer.h:

class Integer {
friend istream& operator>>(istream& is, Integer& i);
...

};

istream& operator>>(istream& is, Integer& i);

In the file integer.cc:

istream& operator>>(istream& is, Integer& i) {
is >> i.value;
return is;

}

Comments on next slide.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 151 / 280

Comments, operator>>

The operator function returns a reference to the stream so operations
can be chained:

cin >> a >> b; // operator>>(operator>>(cin, a), b)

The stream parameter is passed by reference (it is changed by the
function).

The Integer object is passed by reference (it is changed by the
function).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 152 / 280

Implementing operator<<

class Integer {
friend ostream& operator<<(ostream& os, const Integer& i);
...

};

ostream& operator<<(ostream& os, const Integer& i) {
os << i.value;
return os;

}

The function returns a reference to the stream so operations can be
chained (cout << a << b).

The stream is passed by reference (it is changed by the function).

The Integer object is passed by constant reference (it shouldn’t be
copied and not changed by the function).

The function doesn’t do any extra formatting.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 153 / 280

Compound Assignment and Arithmetic Operators

The class Integer should implement the arithmetic operators (+, -, . . .),
and to be consistent with other types also the compound assignment
operators (+=, -=, . . .). The arithmetic operators don’t change the state
of any object and should be non-members, the compound assignment
operators change the state and should be members.
Always start by implementing the compound assignment operators, then

use them to implement the arithmetic operators.
Example:

Integer a, b, sum;
a += b; // compiled into a.operator+=(b);
sum = a + b; // sum = operator+(a, b);

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 154 / 280

Implementing operator+=

class Integer {
public:

Integer& operator+=(const Integer& rhs) {
value += rhs.value;
return *this;

}
...

};

Like operator=, the function returns a reference to the current
object so operations can be chained (a += b += c).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 155 / 280

Implementing operator+

Integer operator+(const Integer& lhs, const Integer& rhs) {
Integer sum = lhs; // local non-constant object
sum += rhs; // add rhs
return sum; // return by value

}

The function returns a new Integer object, not a reference (you
cannot return a reference to a local object).

The parameters are passed by constant reference (not copied and not
changed). (Pass by value would be ok here since the objects are
small, but we use constant reference for all objects to be consistent.)

The function need not be a friend of Integer since it calls
operator+=, which is a member function and has access to the
private member value.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 156 / 280

Increment, Prefix and Postfix

++x Increment x, return the modified value.

x++ Make a copy of x, increment x, return the copy. Since you
have to copy an object, x++ is less e�cient than ++x.

class Integer {
public:

Integer& operator++(); // prefix, ++x
Integer operator++(int); // postfix, x++
...

};

Both functions have the same name; the postfix form has a dummy
parameter (just an indicator, not used in the function).

The prefix function returns a reference to the incremented value.

The postfix function makes a copy of the object and returns the copy.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 157 / 280

Implementing operator++

Integer& Integer::operator++() {
++value;
return *this;

}

Integer Integer::operator++(int) {
Integer ret = *this;
++*this; // use the prefix operator to do the work
return ret;

}

There is no need to give the dummy parameter to the postfix function
a name.

We could just as well have written ++value instead of ++*this in
the second function. But ++*this has the same e↵ect and is better if
incrementing is more complicated.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 158 / 280

Equality Operators

class Integer {
friend bool operator==(const Integer& lhs, const Integer& rhs);
...

};

bool operator==(const Integer& lhs, const Integer& rhs) {
return lhs.value == rhs.value;

}

bool operator!=(const Integer& lhs, const Integer& rhs) {
return ! (lhs == rhs);

}

Global functions since they don’t change any state.

If you implement one of these you should implement both. Implement
one in terms of the other.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 159 / 280

Subscripting

We use the class String from slide 122 for the example on subscripting.

class String {
public:

...
char& operator[](size_t index);
const char& operator[](size_t index) const;

private:
char* chars;

};

Note two versions, for non-const and const objects. Overloading on
const is possible.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 160 / 280

Implementing operator[]

char& String::operator[](size_t index) {
return chars[index];

}

const char& String::operator[](size_t index) const {
return chars[index];

}

It is essential that the non-const version returns a reference, so
subscripting can be used on the left-hand side of an assignment.

Here, the const version could just as well return a value, since the
returned value is small.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 161 / 280

Resource Management

Dynamic memory is an example of a resource that is allocated and must
be released.

void f() {
Point* p = new Point(10, 20);
// ... use p
delete p;

}

If an exception is thrown while the object is used, delete will never
be executed and the resource will never be released.

You could try to catch all exceptions, delete the object and rethrow
the exception, but this is a lot of work.

Instead you should use a unique ptr (see next slide).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 162 / 280

Resource Management With a Unique Pointer

void f() {
unique_ptr<Point> p(new Point(10, 20));
// ... use p

}

A unique ptr is a wrapper around a pointer.

It implements the access operators (operator* and operator->)

It has a destructor that deletes the object. The destructor is executed
when the pointer goes out of scope, even if an exception is thrown.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 163 / 280

Implementing a Unique Pointer Class

There are many issues to consider when implementing a class like
unique ptr. Here we just show how to implement the member access
operators * and -> so that an object of the class can be used as a pointer
(the class is a template so it can be used for arbitrary types):

template <typename T>
class UniquePointer {
public:

UniquePointer(T* p) : handle(p) {}
~UniquePointer() { delete handle; }
T& operator*() const { return *handle; }
T* operator->() const { return handle; }

private:
T* handle;

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 164 / 280

Copying and Moving Unique Pointers

Unique pointers cannot be copied — it would be disastrous if two unique
pointers owned the same object. But unique pointers can be moved.

template <typename T>
class UniquePointer {
public:

...
UniquePointer(const UniquePointer&) = delete;
UniquePointer& operator=(const UniquePointer&) = delete;
UniquePointer(const UniquePointer&& rhs) noexcept

: handle(rhs.handle) {
rhs.handle = nullptr;

}
UniquePointer& operator=(const UniquePointer&& rhs) noexcept {

delete handle;
handle = rhs.handle;
rhs.handle = nullptr;

}
...

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 165 / 280

Implementing a Shared Pointer Class

A shared pointer must keep track of how many pointers that reference the
owned object. This number is called the reference count or use count.
When the reference count becomes zero the owned object is deleted. The
class interface is similar to the unique pointer’s:

class SharedPointer {
public:

SharedPointer(Point* p);
~SharedPointer();
Point& operator*() const { return *handle; }
Point* operator->() const { return handle; }
SharedPointer(const SharedPointer&);
SharedPointer& operator=(const SharedPointer&);

private:
Point* handle;
size_t* use; // pointer to reference count

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 166 / 280

Shared Pointer, Constructor and Destructor

The constructor creates the reference count and initializes it to 1:

SharedPointer(Point* p) : handle(p), use(new size_t(1)) {}

The destructor decrements the reference count and deletes the object and
the reference counter if the reference count has reached zero:

~SharedPointer() {
if (--*use == 0) {

delete handle;
delete use;

}
}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 167 / 280

Shared Pointer, Copy Control

The copy constructor makes a shallow copy and increments the reference
count:

SharedPointer(const SharedPointer& sp)
: handle(sp.handle), use(sp.use) {

++*use;
}

The assignment operator adjusts the counters:

SharedPointer& operator=(const SharedPointer& rhs) {
++*rhs.use;
if (--*use == 0) {

delete handle;
delete use;

}
handle = rhs.handle;
use = rhs.use;
return *this;

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 168 / 280

Overloading Function Call

In the standard library, functions are often passed as arguments to
algorithms. It is possible to pass a pointer to a function, but it is often
better to pass a function object, i.e., an object of a class that overloads
the function call operator, operator(). It is better because calls can be
inlined. Example:

struct Sin {
double operator()(double x) const {

return std::sin(x);
}

};

void f(Sin sin_obj) {
double y = sin_obj(1.0); // calls Sin::operator()(double)

}

See next slide for another example.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 169 / 280

Functions With State

With function objects, something which is used exactly as a function can
have state that is saved between function calls.

class Accumulator {
public:

Accumulator() : sum() {}
double get_sum() const { return sum; }
void operator()(double x) { sum += x; }

private:
double sum;

};

double f(const vector<double>& v) {
Accumulator accum;
for (double x : v) {

accum(x); // looks like a normal function call
}
return accum.get_sum();

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 170 / 280

Conversions to a Class Type

With the Integer class, you should be able to write code like this:

Integer a = 5;
Integer b = a + 6;

When a + 6 is compiled, the compiler searches for a function
operator+(Integer,int). There is no such function, but there is a
function operator+(Integer,Integer) and the single-argument
constructor Integer(int) provides a conversion from int to Integer.

a + 6 // compiled into operator+(a, Integer(6))

In this case the conversion is cheap, but sometimes it is more e�cient to
provide special versions of the mixed-mode operators (but then you have
to write a lot of functions).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 171 / 280

Conversions from a Class Type

There is a problem with using the single-argument constructor for
conversion. Example:

Integer a = 5;
cout << a + 6.9; // prints 11 instead of 11.9

As in the previous example, the expression is compiled into operator+(a,

Integer(6.9)). The implicit conversion from double to int is used for
the constructor argument. Instead, you can use a conversion operator to
convert an Integer object to an int:

class Integer {
public:

operator int() const { return value; }
};

Now, a + 6.9 is compiled into a.operator int() + 6.9.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 172 / 280

Type Conversions, Summary

Two kinds of conversion that you can supply:

to a class type: are performed with single-argument constructors.
They are forbidden if you make the constructor explicit.

from a class type: are performed with conversion operators, member
functions of the form operator int() const.

In the new standard, the conversion operators can be made
explicit.

⇤⇥ ��C++11

Think very carefully before providing class type conversions. The C++
conversion rules are complex enough as they are, without any added
possibilities (read 14.9.1–3 in Lippman if you’re interested). Never provide
both single-argument constructors and conversion operators that convert
from/to the same type.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 173 / 280

Inheritance

C++ terminology: a superclass is a base class, a subclass is a derived
class. Inheritance syntax:

class Vehicle { ... };
class Car : public Vehicle { ... };

The type rules are the same as in Java: a pointer (or reference) of a base
class type may point (refer) to objects of its class and all derived classes.
Di↵erences between inheritance in Java and in C++:

C++ by default uses static binding of method calls.

C++ has public, private, and protected inheritance.

C++ has multiple inheritance.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 174 / 280

Dynamic Binding, Virtual Functions

In Java, the type of the object determines which implementation of a
function that is called. This is called dynamic binding. To achieve this in
C++ you must specify the function as virtual.

class A {
public:

virtual void f() const { ... }
};

class B : public A {
public:

virtual void f() const override { ... }
};

A* pa = new A; pa->f(); // calls A::f
pa = new B; pa->f(); // calls B::f

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 175 / 280

Repeated virtual, override

It is not necessary to repeat virtual on the overriding functions in
derived classes.

override
⇤⇥ ��C++11 checks that there really is a virtual function to

override. This catches many errors (f and g in B do not override f
and g in A, instead new functions are defined):

class A {
public:

virtual void f() const;
virtual void g(int x);

};

class B : public A {
public:

virtual void f(); // not const
virtual void g(double x); // different parameter type

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 176 / 280

Virtual Functions and References

Virtual functions also work as expected when called through a reference.
Example (same classes as on slide 175):

void check(const A& r) { // r may refer to an A object
r.f(); // or a B object

}

void g() {
A a;
B b;
check(a); // will call A::f
check(b); // will call B::f

}

Don’t forget the & on the parameter — if you do, the parameter is called
by value and the object r in check will always be an A object (“slicing”).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 177 / 280

Initializing Objects of Derived Classes

The constructor in a derived class must explicitly call the constructor in
the base class (done with super(...) in Java). The call must be written
in the constructor initialization list.

class Shape {
public:

Shape(int ix, int iy) : x(ix), y(iy) {}
...

};

class Square : public Shape {
public:

Square(int ix, int iy, int is) : Shape(ix, iy), s(is) {}
...

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 178 / 280

Pure Virtual (Abstract) Functions

An operation may be specified as abstract, “pure virtual” in C++, by
adding = 0 after the function signature:

class Shape {
public:

virtual void draw(const Window& w) const = 0; // abstract
...

};

class Square : public Shape {
public:

virtual void draw(const Window& w) const override { ... }
...

};

You cannot create an object of a class that contains pure virtual functions.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 179 / 280

Interfaces

Java has interfaces, classes with only abstract operations and no
attributes. C++ has no separate concept for interfaces; instead you use
classes with only pure virtual functions and public inheritance (multiple
inheritance, if a class implements more than one interface).

class Drawable { // interface
public:

virtual ~Drawable() = default;
virtual void draw(const Window& w) const = 0;

};

class Square : public Drawable { // "implements Drawable"
public:

virtual void draw(const Window& w) const override { ... }
...

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 180 / 280

Type Rules, Runtime Type Information (RTTI)

A pointer (or reference) of a base class type may point (refer) to objects
of its class and all derived classes.

Shape* psh = new Shape(1, 2);
Square* psq = new Square(2, 3, 5);

psh = psq; // always correct, all squares are shapes (upcast)
psq = psh; // not allowed, needs an explicit cast (downcast)

In Java, every object carries information about its type (used in method
dispatch and in tests with instanceof). This type information is called
runtime type identification, RTTI.
In C++, only objects of classes with at least one virtual function have

RTTI. This is because it entails some memory overhead (one extra pointer
in each object).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 181 / 280

Downcasting Pointers and References

Downcasting is performed with dynamic cast:

dynamic_cast<newtype*>(expression)

If the cast succeeds, the value is a pointer to the object. If it fails, i.e., if
the expression doesn’t point to an object of type newtype, the value is
null.

Shape* psh = list.firstShape();
if (Square* psq = dynamic_cast<Square*>(psh)) {

cout << "Side length: " << psq.getSide() << endl;
}

dynamic cast can also be used with references. Since there are no “null
references” the cast throws std::bad cast if it fails, instead of returning
a null value.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 182 / 280

Copying Base Classes and Derived Classes

The rules for upcasting and downcasting concern pointers and references.
There are similar rules for copying objects:

Shape sh(1, 2);
Square sq(2, 3, 5);

sh = sq; // allowed, but Square members are not copied (slicing)
sq = sh; // not allowed, would leave the Square members undefined

Note that slicing can occur if a function argument is passed by value:

void f(const Shape s) { // probably meant Shape&
... // here s is a Shape object,
s.draw(); // Shape::draw is always called

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 183 / 280

Public and Private Inheritance

This is “normal” inheritance:

class A { ... };
class B : public A { ... };

The relationship B “is-an” A holds. Anywhere that an A object is expected,
a B object can be supplied. In C++, there also is private (and protected)
inheritance:

class A { ... };
class B : private A { ... };

B inherits everything from A but the public interface of A becomes private
in B. A B object cannot be used in place of an A object. The relationship is
that B “is-implemented-using” A.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 184 / 280

Private Inheritance, Example

We wish to implement a class describing a stack of integers and decide to
use the standard vector class to hold the numbers (in practice, we would
have used the standard stack class).
We have several alternatives. This one isn’t a serious candidate:

class Stack : public vector<int> { // public inheritance
public:

void push(int x) { push_back(x); }
int pop() { int x = back(); pop_back(); return x; }

};

Not good: we get the functionality we need, but also much more. The
class also inherits, among others, the insert function which can insert an
element at any location in the vector.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 185 / 280

Private Inheritance Example, cont’d

class Stack { // composition, like in Java
public:

void push(int x) { v.push_back(x); }
int pop() { int x = v.back(); v.pop_back(); return x; }

private:
vector<int> v;

};

Good: only push and pop are visible. But note that the operations must
delegate the work to the vector object, which means some overhead.

class Stack : private vector<int> { // private inheritance
public:

void push(int x) { push_back(x); }
int pop() { int x = back(); pop_back(); return x; }

};

Good: only push and pop are visible, no overhead.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 186 / 280

Exposing Individual Members

We wish to add a bool empty() member to the Stack class. It can be
done like this:

class Stack : private vector<int> {
public:

bool empty() const { return vector<int>::empty(); }
...

};

But it’s better to expose the member empty() from vector<int>:

class Stack : private vector<int> {
public:

using vector<int>::empty;
...

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 187 / 280

Copy Control

If a base class defines a copy constructor and an assignment operator, they
must be called from the derived classes:

class A {
public:

A(const A& a) { ... }
A& operator=(const A& rhs) { ... }

};

class B : public A {
public:

B(const B& b) : A(b) { ... }
B& operator=(const B& rhs) {

if (&rhs == this) {
return *this;

}
A::operator=(rhs);
...

}
};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 188 / 280

Destructing Derived Objects

Suppose that classes A and B manage separate resources. Then, each class
needs a destructor:

class A {
public:

~A();
...

};

class B : public A {
public:

~B();
};

When a B object is destroyed and the destructor ~B() is called, the
destructor for the base class, ~A(), is automatically called. This continues
up to the root of the inheritance tree.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 189 / 280

Virtual Destructors

There is a problem with destructors in derived objects. Consider the
following statements:

A* pa = new B;
...
delete pa;

The wrong destructor, ~A(), will be called when pa is deleted, since also
destructors use static binding by default. To correct this error, you must
make the destructor virtual:

virtual ~A();

Most base classes should have virtual destructors.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 190 / 280

Multiple Inheritance

The relationship “is-a” can hold between a class and more than one other
class. A panda is a bear and an endangered species, a teaching assistant is
a student and a teacher, an amphibious vehicle is a land vehicle and a
water vehicle, . . .
In C++, a class may be derived from several base classes:

class TeachingAssistant : public Student, public Teacher {
...

};

Think carefully before you use multiple inheritance. There are problems
with data duplication that must be considered. Multiple inheritance of
interfaces (classes with only pure virtual functions) doesn’t give any
problems.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 191 / 280

Conversions and Member Access

Since public inheritance is used, the normal rules for conversion to a base
class apply:

void f(const Student& s) { ... }
void g(const Teacher& t) { ... }

TeachingAssistant ta1;
f(ta1); // ok, ta1 is a student
g(ta1); // ok, ta1 is a teacher

A derived class sees the union of the members of the base classes. Name
conflicts must be explicitly resolved.

cout << ta1.getProgram() << endl; // from Student
cout << ta1.getSalary() << endl; // from Teacher
ta1.Student::print(); // if both Student and Teacher
ta1.Teacher::print(); // have a print() member

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 192 / 280

Memory Layout

A TeachingAssistant object looks like this in memory:

Student data

Teacher data

TeachingAssistant data

There is an obvious problem: what about duplicated data? If, for example,
both students and teachers have names, a teaching assistant will have two
names. This can be avoided using virtual inheritance.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 193 / 280

Replicated Base Classes

We start by factoring out the common data (name, address, . . .) and
place it in a separate class Person:

class Person { ... };
class Student : public Person { ... };
class Teacher : public Person { ... };
class TeachingAssistant : public Student, public Teacher { ... };

However, this doesn’t solve the problem. A TeachingAssistant object
will contain all Student data, which contains Person data, and Teacher

data, which also contains Person data.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 194 / 280

Virtual Inheritance

The duplication of data can be avoided by specifying the inheritance of the
common base class as virtual:

class Person { ... };
class Student : public virtual Person { ... };
class Teacher : public virtual Person { ... };
class TeachingAssistant : public Student, public Teacher { ... };

When virtual inheritance is used, data from a common base class is only
stored once in an object.
We have only scratched on the surface of multiple inheritance. There is

much more to consider: initialization order, destruction order, virtual
functions, conversions to virtual base classes, . . .

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 195 / 280

Templates

A class that describes a stack of integers is easy to write. If you need a
class of doubles you must write another, very similar, class. With a class

template you can write a stack where the elements are of an arbitrary type
— you supply the actual type as an argument when you instantiate the
template.
The library containers are class templates: you can create a

vector<int>, vector<double>, vector<Point>, . . .

There are also function templates. You can write a function that takes
arguments of arbitrary types.

Note: Lippman mixes the presentation of class templates and function
templates. Here, we first present function templates and then class
templates.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 196 / 280

Defining a Function Template

This is a function template that compares two values of the same type:

template <typename T>
int compare(const T& v1, const T& v2) {

if (v1 < v2) { return -1; }
if (v2 < v1) { return 1; }
return 0;

}

T is a template parameter, which must be a type.

You may write class instead of typename — use typename in new
programs.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 197 / 280

Using a Function Template

When you call a template function, the compiler deduces what types to
use instead of the template parameters and instantiates (“writes”) a
function with the correct types.

void f() {
cout << compare(1, 0) << endl;
// T is int, the compiler instantiates
// int compare(const int&, const int&)

string s1 = "hello";
string s2 = "world";
cout << compare(s1, s2) << endl;
// T is string, the compiler instantiates
// int compare(const string&, const string&)

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 198 / 280

Requirements on Template Parameter Types

A template usually puts some requirements on the argument types. If
these requirements are not met the instantiation will fail. Example:

void f() {
Point p1(10, 20);
Point p2(10, 30);
cout << compare(p1, p2) << endl;
// T is Point, the compiler tries to instantiate
// int compare(const Point&, const Point&),
// this doesn’t compile since Point objects
// cannot be compared with <

}

If class Point implements operator<, everything is ok.

You should try to keep the number of requirements on argument
types as small as possible (see next slide).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 199 / 280

Writing Type-Independent Code

The only requirement placed on the type T in the compare template is
that objects of T can be compared with <. The following implementation
puts more requirements on T and isn’t good:

template <typename T>
int compare(T v1, T v2) {

if (v1 < v2) { return -1; }
if (v1 == v2) { return 0; }
return 1;

}

The arguments are passed by value, so it must be possible to copy
objects of T.

Objects of T must implement comparison with < and ==.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 200 / 280

Concepts and Models

A concept is a set of requirements that a template argument must meet so
that the template can compile and execute properly.

Requirements are specified as generally as possible: instead of saying that
“class T must define the member function operator++”, you say “for any
object t of type T, the expression ++t is defined”. (It is left unspecified
whether the operator is a member or a global function and whether T is a
built-in type or a user-defined type.)

An entity that meets the requirements of a concept is a model of the
concept. For example, the class string is a model of the concept
LessThanComparable, which requires that objects can be compared
with <.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 201 / 280

Basic Concepts

Some important concepts:

DefaultConstructible Objects of type X can be constructed without
initializing them to any specific value.

Assignable Objects of type X can be copied and assigned.

LessThanComparable Objects of type X are totally ordered (x < y is
defined).

EqualityComparable Objects of type X can be compared for equality
(x == y and x != y are defined).

All built-in types are models of these concepts. Note that concepts are
just words that have no meaning in a program. A proposal to incorporate
concepts in the language was rejected at a late stage in the C++11
standardization process, but work continues on a modified proposal.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 202 / 280

Type Parameters Must Match

During template instantiation the argument types must match exactly —
no conversions are performed. The following call to compare will fail:

int i = ...;
double d = ...;
cout << compare(i, d) << endl;

With this version of the template, the instantiation will succeed:

template <typename T, typename U>
int compare2(const T& v1, const U& v2) {

if (v1 < v2) { return -1; }
if (v2 < v1) { return 1; }
return 0;

}

A < operator must exist that can compare a T object and a U object.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 203 / 280

Explicit Instantiation

If a function template instantiation fails because the types of the
arguments don’t match, you can make an explicit instantiation of the
template:

int i = ...;
double d = ...;
cout << compare<double>(i, d) << endl;

Here, i is widened to double in accordance with the usual conversion
rules.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 204 / 280

Return Types

A function to compute the smallest of two values of di↵erent types:

template <typename T, typename U>
T min(const T& v1, const U& v2) {

return (v1 < v2) ? v1 : v2;
}

This is not correct: the return value always has the first argument’s type,
so min(4, 2.3) becomes 2. The return type should be “the most general
of the types T and U”, i.e. the type to which the compiler will convert an
expression containing T and U objects.
This can be expressed in the following way

⇤⇥ ��C++11 :

template <typename T, typename U>
auto min(const T& v1, const U& v2) -> decltype(v1 + v2) {

return (v1 < v2) ? v1 : v2;
}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 205 / 280

Template Compilation

When an “ordinary” function is called, the compiler needs to see only the
function declaration. For an inline function, code will be generated at the
call site, so the function definition must be available at the call.
This means that inline function definitions should be placed in header

files. The same holds for template function definitions.

The most common errors when templates are used are related to types:
trying to instantiate a template with arguments of types that don’t
support all requirements. Such errors are reported during instantiation of
the template.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 206 / 280

Class Templates

A stack template:

template <typename T>
// T must be DefaultConstructible (new T[size]) and
// Assignable (v[top++] = item, return v[--top])

class Stack {
public:

Stack(size_t size) : v(new T[size]), top(0) {}
~Stack() { delete[] v; }
void push(const T& item) { v[top++] = item; }
T pop() { return v[--top]; }
bool empty() const { return top == 0; }
Stack(const Stack&) = delete;
Stack& operator=(const Stack&) = delete;

private:
T* v;
size_t top;

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 207 / 280

Defining Template Class Members

It is possible to write the definition of a class member function outside the
class definition, but then the template information must be repeated:

template <typename T> // this goes in a header file
class Stack {

...
void push(const T& item);
...

};

template <typename T> // this goes in the same header file
void Stack<T>::push(const T& item) { v[top++] = item; }

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 208 / 280

Using a Class Template

With function templates, the compiler can deduce template parameter
types from the function calls. With class templates, the types must be
explicitly supplied when an object is created.

Stack<char> cs(100);
Stack<Point> ps(200);

cs.push(’X’);
ps.push(Point(10, 20));
...
char ch = cs.pop();

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 209 / 280

Nontype Template Parameters

A template parameter need not be a type, it can also be a constant value.
And template parameters may have default values:

template <typename T = int, size_t size = 100>
class Stack {
public:

Stack() : top(0) {}
...

private:
T v[size];
size_t top;

};

void f() {
Stack<double, 200> s1; // 200 doubles
Stack<Point> s2; // 100 Points
Stack s3; // 100 ints
...

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 210 / 280

Types Inside the Template Definition

Template classes often export type aliases:

template <typename T>
class vector {
public:

using value_type = T;
...

};

This means that you can define variables of the vector’s element type:

void sort(vector<int>& v) {
...
vector<int>::value_type tmp = v[i];
...

}

Here, you could just as well have written int — but see next slide.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 211 / 280

Using Exported Types in a Template, typename

Now suppose that the function sort is a template that can sort both
vectors and other containers (of type T). The element type is
T::value type, but before the type specifier you must write typename.
This is because the compiler cannot determine whether T::value type is
a type or a (static) member variable.

template <typename T>
void sort(T& v) {

...
typename T::value_type tmp = v[i]; // C++11: auto tmp =
...

}

Rule: write typename before the type specifier when using a type that
depends on a template parameter.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 212 / 280

Template Metaprogramming

A template can instantiate itself recursively, so the “template language” is
in fact a Turing-complete programming language. Suppose that you in a
program need values of n!, where the n-s are constant:

template <int n> struct Factorial {
static const int value = n * Factorial<n - 1>::value;

};

template <> struct Factorial<1> { // specialization for n = 1
static const int value = 1;

};

int main() {
cout << Factorial<6>::value << endl;

}

The value 720 is computed by the compiler through recursive
instantiations of the class.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 213 / 280

About the Book and the Slides

We return to the standard library, chapters 9–11 of Lippman. However, we
will treat the material in almost the reverse order from Lippman:

Iterators 3.4, 9.2.1–9.2.3, 10.4

Function objects 10.3

Algorithms 10.1–10.2, 10.5–10.6

Containers Chapters 9 and 11

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 214 / 280

Containers, Algorithms, Iterators

The standard library (also called the standard template library, STL)
provides these components:

Containers for homogenous collections of values (vectors, deques, lists,
sets, maps, stacks, queues, priority queues).

Algorithms for operating on containers (searching, sorting, copying, . . .).

Iterators for iterating over containers.

One important design goal for the library was e�ciency. Since everything
builds on templates, there is no execution-time penalty for using the library.
The library is not an object-oriented library, although inheritance is used

internally in the implementation. There is nothing like Java’s strange
Collection hierarchy.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 215 / 280

Iterators

We have already used iterators to traverse vector’s. You can:

set an iterator to the start of a container,

access the value that an iterator “points to”,

increment the iterator to point to the next value,

check if the iterator has reached the end of a container.

A pointer is an iterator for arrays. We have done things like the following:

int ia[] = {5, 7, 2, 3};
for (int* p = ia; p != ia + 4; ++p) {

cout << *p << endl;
}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 216 / 280

An Algorithm Using Pointers

The following function finds the first occurrence of a value in an int array,
from the address beg up to, but not including, end:

int* find(const int* beg, const int* end, int value) {
while (beg != end && *beg != value) {

++beg;
}
return beg;

}

This should be possible to generalize:

The function applies only to arrays of int’s.

The algorithm (linear search) is usable for any linear sequence (array,
vector, linked list, . . .), but as it’s written the function applies only to
arrays.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 217 / 280

A Generic Algorithm

With a function template you can write a generic algorithm:

template <typename InputIterator, typename T>
InputIterator
find (InputIterator beg, InputIterator end, const T& value) {

while (beg != end && *beg != value) {
++beg;

}
return beg;

}

This version of find works equally well as the previous one for int arrays:

int ia[] = ...;
int nbr = ...;
int* p = find(ia, ia + 4, nbr);
if (p != ia + 4) {

cout << nbr << " found at pos " << p - ia << endl;
} else {

cout << nbr << " not found" << endl;
}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 218 / 280

Using the Generic Algorithm

The generic algorithm can be used for arrays of all types (that support
equality checking with !=):

double id[] = ...;
double nbr = ...;
double* p = find(id, id + 4, nbr);

And it can be used for other containers (that have iterators):

vector<int> v = ...;
int nbr = ...;
vector<int>::iterator p = find(v.begin(), v.end(), nbr);

The find algorithm is one of the standard algorithms in the library.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 219 / 280

Requirements on Iterators

The find algorithm places the following requirements on an
InputIterator:

must be Assignable (argument passed by value).

must be EqualityComparable (!=).

must support dereferencing for reading (*).

must support prefix increment (++).

Iterators for other containers must meet these requirements. See the
following slides for an example.
Given a container, it must also be possible to find the begin and end of

the container (like the begin() and end() functions in vector).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 220 / 280

A Linked List (Sketch Only)

In a singly-linked list of int’s, a list and a list node could look like this
(many details are omitted):

class List {
public:

using iterator = ListIterator;
iterator begin() { return iterator(first); }
iterator end() { return iterator(nullptr); }
...

private:
Node* first;

};

struct Node {
int data;
Node* next;

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 221 / 280

An Iterator Class (Sketch Only)

The ListIterator class can look like this:

struct ListIterator {
Node* current;

explicit ListIterator(Node* c) : current(c) {}

bool operator!=(const ListIterator& rhs) const {
return current != rhs.current;

}

int& operator*() { return current->data; }

ListIterator& operator++() {
current = current->next;
return *this;

}
};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 222 / 280

Getting Iterators From Containers

Each library container has two functions begin() and end(). begin()
returns an iterator to the first element of the container, end() returns an
iterator one past the last element.

template <typename T>
class vector {
public:

using iterator = T*;
iterator begin() { return values; }
iterator end() { return values + size; }
...

private:
T* values; // dynamically allocated array of T’s
size_t size; // number of elements

};

This is an example only — it is not guaranteed that a vector iterator is a
pointer.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 223 / 280

Versions of begin() and end()

Each library container class defines two iterator types:

iterator Allows reading and writing (x = *it and *it = x)

const iterator Only allows reading (x = *cit)

The begin() and end() functions are overloaded on const. They return
const iterators for const objects, non-const iterators for non-const objects.
The new library introduced cbegin() and cend() members that always
return const iterators

⇤⇥ ��C++11 . Examples:

void f(const vector<int>& v1) {
vector<int> v2;
auto it1 = v1.begin(); // vector<int>::const_iterator
auto it2 = v2.begin(); // vector<int>::iterator
auto it3 = v1.cbegin(); // vector<int>::const_iterator
auto it4 = v2.cbegin(); // vector<int>::const_iterator

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 224 / 280

Iterator Concepts

The requirements on an input iterator are weak; often more “powerful”
iterators are needed. There is a hierarchy among iterator concepts:

ForwardIterator

RandomAccessIterator

BidirectionalIterator

InputIterator OutputIterator

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 225 / 280

Iterator Concepts, Details

An iterator “points to” a value. All iterators are DefaultConstructible
and Assignable and support ++it and it++. Additional concepts:

InputIterator Can be dereferenced to read a value, is
EqualityComparable.

OutputIterator Can be dereferenced to (over)write a value.

ForwardIterator Can both read and write.

BidirectionalIterator Can move both forwards and backwards.

RandomAccessIterator Allows pointer arithmetic and subscripting.

A built-in pointer is a model of RandomAccessIterator.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 226 / 280

Input and Output Iterators, Example

The following algorithm copies the range [beg, end) (from beg up to
but not including end) to the range starting at dest.

template <typename InIt, typename OutIt>
// InIt is a model of InputIterator
// OutIt is a model of OutputIterator

OutIt copy(InIt beg, InIt end, OutIt dest) {
for (; beg != end; ++beg, ++dest) {

*dest = *beg;
}
return dest;

}

The implementation relies on the fact that the iterators are passed by
value. This is normally the case — iterators are built-in pointers or
“small” objects, so there is no e�ciency penalty.
If the iterators had been passed by constant reference you would have
needed temporary variables in the algorithm.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 227 / 280

Using copy

copy is one of the standard algorithms. It can be used like this:

void f() {
int x[] = {1, 2, 3, 4};
int y[10];
int* last = copy(x, x + 4, y);

vector<int> v = {5, 6, 7, 8, 9, 10};
copy(v.begin(), v.end(), last);

}

Note that there must be enough memory allocated for the destination
range — the copy algorithm cannot allocate any memory (it doesn’t
know how or where). Examples see next slide.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 228 / 280

Iterators Don’t Allocate Memory

The following uses of copy are wrong:

vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int y[5];
copy(v.begin(), v.end(), y); // y is too short

vector<int> destV;
copy(v.begin(), v.end(), destV.begin()); // destV has no elements

The first error must be fixed by creating a longer array.

In the second call to copy all would be ok if the destination iterator
did destV.push back on the values instead of just writing. For this,
the iterator must know which vector it’s supposed to push back on.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 229 / 280

Insert Iterators

Iterators that know about their container and know how to insert a value
are provided by the library in the form of iterator adapters called insert

iterators or inserters. There are three kinds:

Back inserters *it = value: operator= calls push back(value),
operator* and operator++ do nothing.

Front inserters same, but calls push front(value) (insert at front).

General inserters same, but calls insert(pos, value) (insert at position
pos).

The copying problem can be solved with a back inserter:

vector<int> destV;
copy(v.begin(), v.end(), back_inserter(destV));

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 230 / 280

Stream Iterators, Input

The iterator adapter istream iterator functions as an input iterator but
the values are read from a stream. It takes a stream as an argument to the
constructor and the value type as a template argument. The default
constructor creates an iterator that represents the end of a stream.
Example:

istream_iterator<string> input(cin); // read strings from cin
istream_iterator<string> end; // end iterator
vector<string> v;
while (input != end) {

v.push_back(*input++);
}

Better, using the copy algorithm:

copy(input, end, back_inserter(v));

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 231 / 280

Counting Words in a String

This was an exam question: count the number of words in a string s.
Words are separated by whitespace.

Standard solution:

istringstream iss(s);
string temp;
int words = 0;
while (iss >> temp) {

++words;
}

More elegant solution — the library function distance computes the
distance between two iterators:

istringstream iss(s);
int words = distance(istream_iterator<string>(iss),

istream_iterator<string>());

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 232 / 280

Stream Iterators, Output

The iterator adapter ostream iterator functions as an output iterator
but the values are written to a stream. It takes a stream as an argument
to the constructor and the value type as a template argument. Optionally,
a C-style string that will be written between the values can be specified as
a second argument to the constructor.

vector<string> v;
...
copy(v.begin(), v.end(), ostream_iterator<string>(cout, " "));

To write a newline after each value you must use the delimiter "\n", the
linefeed character. You cannot use endl (endl isn’t a character or a
string, but an I/O manipulator).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 233 / 280

Reverse Iterators

A reverse iterator is an iterator that traverses a container backward. ++ on
a reverse iterator accesses the previous element, -- accesses the next
element. The containers have types reverse iterator and
const reverse iterator and functions rbegin() and rend() (and
crbegin() and crend()

⇤⇥ ��C++11).
Example (read words, print backwards):

vector<string> v;
copy(istream_iterator<string>(cin), istream_iterator<string>(),

back_inserter(v));
copy(v.rbegin(), v.rend(),

ostream_iterator<string>(cout, "\n"));

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 234 / 280

Iterator Traits

Sometimes, you must know more about an iterator than just the fact that
it is an iterator. Suppose that you wish to write a function to sort the
values in an iterator range, and that you need to define a temporary
variable to swap two values:

template <typename It>
void sort(It beg, It end) { ... elem_type temp = *beg; ... }

The type of the value to which an iterator points is available from the
class iterator traits:

using elem_type = typename iterator_traits<It>::value_type;

Use auto in C++11.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 235 / 280

Iterator Notes

For e�ciency reasons, use ++x instead of x++ when incrementing an
iterator (--x when decrementing a bidirectional or random-access
iterator).

You must know what kind of iterator you are dealing with. For
instance, this is allowed only for random-access iterators:

Iterator first = ...;
Iterator next = first + 1;

But Iterator next = first; ++next; is legal for all iterators.

The first expression below isn’t legal for any iterator, but the
equivalent second expression is legal for random-access iterators:

Iterator mid = (beg + end) / 2;
Iterator mid = beg + (end - beg) / 2;

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 236 / 280

Functions and Function Objects

Regular functions and function objects (objects of a class that overloads
the function call operator) are equivalent — they are called in the same
way and may both be passed as arguments to other functions. Function
objects (sometimes called functors) may have state and are often more
e�cient to use than regular functions. This is because calls of a function
object can be inlined.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 237 / 280

Algorithms and Functions

Functions and function objects are used to parameterize an algorithm with
an “operation”. The library function for each traverses a range and
performs an operation on all elements:

template <typename It, typename Op>
// It is an InputIterator
// Op is a function with one parameter

Op for_each(It beg, It end, Op op) {
for (; beg != end; ++beg) {

op(*beg);
}
return op;

}

The argument op may be a function or a function object, as long as it has
one parameter.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 238 / 280

for each, Regular Functions

for each can be used with regular functions:

void clear(int& value) { value = 0; }

void print(int value) { cout << value << " "; }

int main() {
vector<int> v = {10, 20, 30, 40, 50};

for_each(v.begin(), v.end(), print);
cout << endl;

for_each(v.begin(), v.end(), clear);

for_each(v.begin(), v.end(), print);
cout << endl;

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 239 / 280

for each, Function Objects

On slide 170 we showed an example of a function object with state. The
same class, now as a class template, and an example of use:

template <typename T>
class Accumulator {
public:

Accumulator() : sum() {}
T get_sum() const { return sum; }
void operator()(const T& x) { sum += x; }

private:
T sum;

};

vector<int> v = {10, 20, 30, 40, 50};
Accumulator<int> accum;
accum = for_each(v.begin(), v.end(), accum);
cout << accum.get_sum() << endl;

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 240 / 280

Function Examples — Finding

The library algorithm find if returns an iterator to the first element for
which the function pred returns true.

template <typename InIt, typename Pred>
InIt find_if(InIt beg, InIt end, Pred pred) {

while (beg != end && !pred(*it)) {
++beg;

}
return beg;

}

We will use find if to find an element smaller than a given value:

bool exists_smaller(const vector<int>& v, int value) {
return find_if(v.begin(), v.end(), ???) != v.end();

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 241 / 280

Finding With a Regular Function

A regular function can be used, but the searched-for value must be stored
in a global variable. This is not an attractive solution.

int global_value;

bool is_less(int x) { return x < global_value; }

bool exists_smaller(const vector<int>& v, int value) {
global_value = value;
return find_if(v.begin(), v.end(), is_less) != v.end();

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 242 / 280

Finding With a Function Object

A solution with a function object is much more flexible:

class Less {
public:

Less(int v) : value(v) {}
bool operator()(int x) const { return x < value; }

private:
int value;

};

bool exists_smaller(const vector<int>& v, int value) {
return find_if(v.begin(), v.end(), Less(value)) != v.end();

}

Also, this solution is more e�cient than the previous one. The call to the
comparison function can be inlined by the compiler. This is not possible
when the argument is a function pointer.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 243 / 280

Finding With a Lambda
⇤⇥ ��C++11

In the new standard, the definition of a function object can be written at
the place of the call. This is called a lambda function.

bool exists_smaller(const vector<int>& v, int value) {
return find_if(v.begin(), v.end(),

[value](int x) { return x < value; }) != v.end();
}

[value] access the variable value in the current scope. Variables can
also be captured by reference: [&value]

(int x) normal parameter list

) { the return type is deduced from the return statement. Can
be specified as -> bool

{ ... } function body

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 244 / 280

The Compiler Generates a Class From a Lambda

When you define a lambda, the compiler writes a function class and
creates a function object:

auto less = [value](int x) -> bool { return x < value; }

This is what the compiler generates (compare with slide 243):

class Less {
public:

Less(int v) : value(v) {}
bool operator()(int x) const { return x < value; }

private:
int value;

};

auto less = Less(value);

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 245 / 280

Library-Defined Function Objects

The algorithm sort(beg,end) sorts an iterator range in ascending order
(values are compared with <). A function defining the sort order can be
supplied as a third argument. To sort in descending order (comparing
values with >):

vector<string> v;
...
sort(v.begin(), v.end(),

[](const string &a, const string& b) { return a > b; });

Simple function objects like greater, less, equal to are available in the
library. They can be used like this:

sort(v.begin(), v.end(), greater<string>());

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 246 / 280

Binding Function Arguments
⇤⇥ ��C++11

The library-defined function objects can often be used together with the
library algorithms, but sometimes they don’t exactly match. We return to
the problem of finding an element less than a given value (slide 241).

bool exists_smaller(const vector<int>& v, int value) {
return find_if(v.begin(), v.end(), ???) != v.end();

}

find if takes each element from the vector and checks if the function
returns true. Here, each element should be checked against value. The
library function object less takes two parameters, and we must bind the
second argument to value:

bool exists_smaller(const vector<int>& v, int value) {
return find_if(v.begin(), v.end(),

bind(less<int>(), _1, value) != v.end();
}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 247 / 280

Algorithms

There are about 100 algorithms in the header <algorithm>. They can be
classified as follows:

Nonmodifying look at the input but don’t change the values or the order
between elements (find, find if, count, . . .).

Modifying change values, or create copies of elements with changed
values (for each, copy, fill, . . .).

Removing remove elements (remove, unique, . . .).

Mutating change the order between elements but not their values
(reverse, random shuffle, . . .).

Sorting a special kind of mutating algorithms (sort, . . .).

Sorted Range require that the input is sorted (binary search, . . .).

Numeric for numeric processing (accumulate, inner product, . . .).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 248 / 280

Algorithm Notes

The input to an algorithm is one or more iterator ranges [beg,end).
If the algorithms writes elements, the start of the output range is
given as an iterator.

Return values are often iterators.

Some algorithms are used for the same purpose and have the same
number of arguments. They are not overloaded, instead they have
di↵erent names. An example is find for finding an element with a
given value, find if for finding an element for which a predicate is
true.

Some containers have specialized algorithms that are more e�cient
than the library algorithms, for instance map::find for finding a
value in a map (binary search tree).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 249 / 280

Finding Algorithms

We have already seen examples of algorithms that find values. These
algorithms return the end iterator if the value isn’t found. Other examples:

vector<string> v = ...;

cout << "There are " << count(v.begin(), v.end(), "hello")
<< " hello’s in v" << endl;

vector<string> v2 = {"hello", "hej", "davs"};
auto it = find_first_of(v.begin(), v.end(), v2.begin(), v2.end());

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 250 / 280

Modifying Algorithms

The following examples use strings — strings have iterators that can be
used with the library algorithms.

string s = "This is a sentence";

// convert the string to lower case. The C function
// tolower(ch) returns ch in lower case
transform(s.begin(), s.end(), s.begin(), ::tolower);

// print all non-blanks
copy_if(s.begin(), s.end(), ostream_iterator<char>(cout),

[](char c) { return c != ’ ’; });

// fill s with blanks
fill(s.begin(), s.end(), ’ ’);

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 251 / 280

Removing Algorithms

The most important fact about the removing algorithms is that they don’t
actually remove elements from a container (since the algorithms have
iterators as input they don’t know which container to remove from, or
how). Instead they reorder the elements based on a criterion.

vector<int> v = {1, 3, 2, 6, 3, 3, 4};

auto it = remove(v.begin(), v.end(), 3);
// v contains {1, 2, 6, 4, ...}, it points after the 4
// vector::erase really removes elements:
v.erase(it, v.end());

v = {1, 3, 3, 5, 7, 7, 7, 8, 9, 9};
v.erase(unique(v.begin(), v.end()), v.end());

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 252 / 280

Mutating and Sorting Algorithms

vector<int> v = {1, 4, 44, 3, 15, 6, 5, 7, 7, 4, 22, 1};
// reorder so odd numbers precede even numbers
partition(v.begin(), v.end(), [](int x) { return x % 2 != 0; });

// shuffle the elements (requires random access iterators)
random_shuffle(v.begin(), v.end());

// sort until the first 5 elements are correct
partial_sort(v.begin(), v.begin() + 5, v.end());

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 253 / 280

Sorted Range Algorithms

These algorithms require that the input range is sorted. Example (insert
unique numbers in a sorted vector):

int main() {
vector<int> v;
int nbr;
while (cin >> nbr) {

auto it = lower_bound(v.begin(), v.end(), nbr);
if (it == v.end() || *it != nbr) {

v.insert(it, nbr);
}

}
...

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 254 / 280

Algorithm Example

Read words from standard input, remove duplicate words, print in sorted
order:

#include <vector>
#include <string>
#include <algorithm>
#include <iterator>
#include <iostream>

int main() {
using namespace std;
vector<string> v((istream_iterator<string>(cin)),

istream_iterator<string>());
sort(v.begin(), v.end());
unique_copy(v.begin(), v.end(),

ostream_iterator<string>(cout, "\n"));
}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 255 / 280

Algorithm Summary

Every C++ programmer should be familiar with the algorithms.

The algorithms are easy to use, well tested and e�cient.

We have only shown a few of the algorithms. Look in a book or at
documentation on the web, for example at

http://en.cppreference.com/w/cpp/algorithm, or
http://www.cplusplus.com/reference/algorithm

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 256 / 280

Di↵erent Kinds of Containers

A container is an object that stores other objects and has methods for
accessing the elements. There are two fundamentally di↵erent kinds of
containers:

Sequences Elements are arranged in linear order. The sequences are
vector, list, and deque. New in C++11 are array and
forward list

⇤⇥ ��C++11 . The library class string supports
most sequence features (for example it has iterators), but it
is usually not used as a container.

Associative Containers Elements are arranged in an order defined by the
container. The associative containers are set, multiset,
map, and multimap (implemented using search trees). New
in C++11 are unordered versions of these containers
(implemented using hash tables)

⇤⇥ ��C++11 .

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 257 / 280

Container Notes

Every container type has associated iterator types and functions that
return iterators.

Containers use value semantics. When an element is inserted into the
container, its value is copied. When an element is removed, its
destructor is called. When a container is destroyed, all its elements
are destroyed.

You usually don’t store raw pointers in containers, since then you
must delete the element when it’s removed from the container. Use
safe pointers if you have to store pointers (when you wish to store
objects in an inheritance hierarchy, when the objects are very
expensive to copy, . . .).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 258 / 280

C++11 Container Notes
⇤⇥ ��C++11

Containers have move constructors (and move assignment operators).
This means, among other things, that it is e�cient to return even a
large container by value from a function:

vector<string> f() {
vector<string> local;
...
return local;

}

In addition to the functions that insert elements by copying (or
moving) them, elements can be constructed in place:

vector<Person> v;
Person p("Bob", "Berlin");
v.push_back(p); // copy
v.push_back(Person("Alice", "Lund")); // move
v.emplace_back("Joe", "London"); // construct in place

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 259 / 280

Types Defined by Containers

Each container class defines a number of types that are associated with
the container. Commonly used are:

const iterator A const iterator (may be used to examine, but not to
modify, elements).

iterator A non-const iterator.

value type The type of the elements stored in the container.

size type A type large enough to represent the size of the container
(usually unsigned long, the same as std::size t).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 260 / 280

Operations on Containers

Operations that are defined for all containers :

X() Create an empty container.

begin() Iterator pointing to the first element, also cbegin().

end() Iterator pointing one past the last element, also cend().

size() Number of elements.

empty() True if size() == 0 (evaluated in constant time).

For almost all containers :

insert(p,t) Insert t before p (not for array and forward list).

clear() Remove all elements (not for array).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 261 / 280

Fixed-Size Arrays
⇤⇥ ��C++11

The new standard introduced the library class array, which is a wrapper
around a built-in array. It has iterators like a vector and operations for
element access. Example:

array<int, 10> v; // the size is part of the type, elements
// are undefined (like a built-in array)

fill(v.begin(), v.end(), 0);
...
int i = find_if(v.begin(), v.end(), [](int x) { return x != 0; })

- v.begin();

Keep in mind that arrays are sequences but fixed size; there are no
“dynamic” operations like push back, pop back, clear, . . . Arrays are
not treated in the rest of the slides.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 262 / 280

Singly-Linked List
⇤⇥ ��C++11

The new standard introduced the library class forward list, which is a
singly-linked list. The operations reflect the fact that the list is singly
linked (only forward iterators, push front but no push back,
insert after but no insert, . . .

Compared to a list (which is doubly-linked), a node in a forward list

saves space for one pointer. Use a forward list only if you need a linked
list and memory is very tight. Forward lists are not treated in the rest of
the slides.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 263 / 280

Sequences

In addition to the common container operations, sequences have the
following operations:

X(n) Create a container with n default-constructed elements.

X(n,t) Create a container with n copies of t.

front() A reference to the first element.

back() A reference to the last element.

push back(t) Append a copy of t.

pop back() Remove (but don’t return) the last element.

erase(p) Remove the element pointed to by p.

resize(n) Resize the sequence to size n, inserting default-constructed
elements at the end or erasing elements at the end.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 264 / 280

Sequence Notes

The reason that there are di↵erent kinds of sequences is e�ciency
considerations:

vector Insertion and deletion at the end is fast, allows random
access (has operator[] and random access iterators).

deque Insertion and deletion at the end and at the front is fast,
allows random access.

list Insertion and deletion anywhere is fast, but you have no
random access to elements and you pay a storage overhead
since each list node has pointers to the next and previous
node.

Use a vector unless you have very special reasons to use one of the other
sequences. Bjarne Stroustrup has demonstrated that a vector nearly
always wins over a list, even in applications where elements are inserted
and removed in the middle.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 265 / 280

Vectors

A vector grows dynamically to accommodate new elements.

A vector has a size (the number of elements currently in the vector)
and a capacity (the maximum size to which the vector can grow
before new storage must be allocated).

A vector’s capacity can be increased (storage can be pre-allocated)
with a call to reserve(n).

vector<int> v; // this works well
for (size_t i = 0; i != 1000000; ++i) { v.push_back(i); }

vector<int> v;
v.reserve(1000000); // but this might be more efficient
for (size_t i = 0; i != 1000000; ++i) { v.push_back(i); }

Note the di↵erence between reserve and resize.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 266 / 280

Iterators May Become Invalidated, Other Notes

When elements are inserted or removed before the end of the vector,
iterators pointing to elements after the insertion points are
invalidated.

When an insertion causes a vector’s capacity to grow, all iterators are
invalidated.

If you really need to shrink a vector’s capacity to its current size, use
the function shrink to fit

⇤⇥ ��C++11 . (It’s just a request that the
system should get rid of excess capacity.)

vector<bool> isn’t a “normal” vector, since the bool values are bits
that are packed (similar to the class Bitset in lab 4).

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 267 / 280

Deques

The class deque (double-ended queue, pronounced “deck”) is
implemented as an array of pointers to arrays of elements.

A deque is like a vector but also provides operations for insertions and
removals at the front:

push front(t) Insert a copy of t at the front.
pop front() Remove the first element.

Deques don’t have the capacity and reserve operations of vectors.
Instead, memory grows and shrinks as necessary. Any insertion or
removal may cause reallocation and consequently invalidation of
iterators.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 268 / 280

Lists

The class list is implemented as a doubly-linked list. Insertion and
removal anywhere is fast.

As deque, list supports push front and pop front.

list iterators are bidirectional (not random access).

In addition to the usual sequence operations, list has splice
operations to move part of a list to another list and e�cient sort
and merge operations. You cannot use the library sort algorithm,
since it needs random-access iterators.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 269 / 280

Don’t Use copy for Insertions

When we discussed iterators, we repeatedly used copy and
back inserter to insert elements in a vector. There are better ways to
do this, which avoid the repeated calls of push back.

array<int, 1000> x = { 1, 2, 3, ..., 1000 };

// copy, 1000 push_backs
vector<int> v;
copy(x.begin(), x.end(), back_inserter(v));

// insert first allocates memory, then copies
vector<int> v;
v.insert(v.end(), x.begin(), x.end());

// same as insert, but at initialization
vector<int> v(x.begin(), x.end());

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 270 / 280

Stacks

A stack is, like queue and priority queue, implemented using one of
the sequence classes. The stack interface (simplified):

template <typename T, typename Container = deque<T>>
class stack {
protected:

Container c;
public:

stack() {}
explicit stack(const Container& s) : c(s) {}
bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
T& top() { return c.back(); }
const T& top() const { return c.back(); }
void push(const T& t) { c.push_back(t); }
void pop() { c.pop_back(); }

};

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 271 / 280

Why Both top() and pop()?

One might wonder why a stack has both top() and pop(), instead of the
more usual pop() that returns and removes the top value. There are two
reasons: 1) the latter variant isn’t exception safe, 2) the latter variant is
ine�cient (it must return a value that must be copied):

value_type pop() {
value_type ret = c.back();
c.pop_back();
return ret;

}

The same reasoning explains why the containers have both back() and
pop back() operations.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 272 / 280

Associative Containers

An associative container contains elements that are identified by a key.

A map stores key/value pairs, a set stores only the keys.

A multimap and a multiset allow multiple elements with the same key.

There are two versions of each class: one “ordered” (implemented
using a search tree), one “unordered” (implemented using a hash
table). Both versions have the same interface.

The key type in an ordered container must support the < operator
(used for sorting).

There must be a hash function for the key type in an unordered
container. The standard types have hash functions.

The unordered containers are new in
⇤⇥ ��C++11 .

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 273 / 280

Creating maps and sets

To create a map, you must specify the type of the key and of the
corresponding value. To create a set, you must specify the key type.

map<string, int> days_in_month; // key = month name,
// value = days in month

set<string> used_emails; // key = e-mail address

unordered_map<string, string> phonebook; // key = name,
// value = phone number

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 274 / 280

Elements in maps

The elements (key/value pairs) in maps are objects of the library class
pair. The pair’s components are stored in the public members first and
second. Examples:

pair<int, double> p1; // both components value-initialized
pair<int, double> p2(1, 2.5);
...
cout << p2.first << "," << p2.second << endl;

The map insert operation takes a pair as parameter. It is convenient to
create the pair on the fly:

map<string, int> daysInMonth;
days_in_month.insert(pair<string, int>("January", 31));
days_in_month.insert(make_pair("February", 28));
days_in_month.insert({"March", 31}); // new in C++11

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 275 / 280

Operations

In addition to the common container operations, associative containers
have the following operations:

insert(t) Insert a copy of t and return an iterator pointing to the new
element. For a unique container, the return value is a pair
with the iterator as the first component and a bool
indicating success or failure as the second component.

find(k) Return an iterator pointing to the element with key k, or
end().

count(k) Return the number of elements with key k.

equal range(k) Return a range containing all elements with key k, as a
pair p of iterators. The range is [p.first,p.second).

erase(k) Destroy and remove all elements with the key k, return the
number of erased elements.

erase(p) Destroy and remove the element pointed to by p.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 276 / 280

Inserting and Finding in a map

Read words, count number of occurrences, print in sorted order:

int main() {
ifstream in("input.txt");
map<string, size_t> word_count;
string word;
while (in >> word) {

auto it = word_count.find(word);
if (it == word_count.end()) {

word_count.insert(make_pair(word, 1));
} else {

it->second++;
}

}
for (const auto& w : word_count) {

cout << w.first << "\t" << w.second << endl;
}

}

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 277 / 280

Using operator[] With Maps

In the map classes, [] is overloaded so the map functions as an associative
array. For a map m, m[key] returns a reference to the associated value if
the key exists in the map. Otherwise, it inserts the key and a
default-constructed value and returns a reference to it.
The code from the previous slide to count the number of word

occurrences can be written in the following way:

string word;
while (in >> word) {

++word_count[word];
}

Only use [] if you really want the insertion to take place if the key doesn’t
exist.

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 278 / 280

Use map-Specific Functions, Not Library Algorithms

map::find uses a tree search with logarithmic time complexity to find an
element in a map, unordered map::find uses a constant-time hash
search. If you used the library find algorithm, the search time would be
linear. Compare:

auto it = word_count.find("Hello");
if (it != words.end()) {

cout << it->first << " occurs " << it->second << " times";
}

it = find_if(word_count.begin(), word_count.end(),
[](const pair<string,int>& e) { return e.first == "Hello"; });

if (it != words.end()) { ... }

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 279 / 280

Using an Unordered Container

If the key type of an unordered container is non-standard, you must supply
a hash function and an equality operator. Example:

class Person {... string get_name() const; ... };

struct Hash {
size_t operator()(const Person& p) const {

return std::hash<string>()(p.get_name());
}

};

struct Eq {
bool operator()(const Person& p1, const Person& p2) const {

return p1.get_name() == p2.get_name();
}

};

unordered_map<Person, string, Hash, Eq> phone_book;

Per Holm (Per.Holm@cs.lth.se) C++ Programming 2014/15 280 / 280

