OH-bilderna finns här, den Octave-kod jag skrev var:
GNU Octave, version 3.6.2 Copyright (C) 2012 John W. Eaton and others. This is free software; see the source code for copying conditions. There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For details, type `warranty'. Octave was configured for "x86_64-pc-linux-gnu". Additional information about Octave is available at http://www.octave.org. Please contribute if you find this software useful. For more information, visit http://www.octave.org/help-wanted.html Read http://www.octave.org/bugs.html to learn how to submit bug reports. For information about changes from previous versions, type `news'. octave> a = 1 a = 1 octave> a = 1; octave> a a = 1 octave> b = 1 + 2 * 3 b = 7 octave> x = 1 / 3 x = 0.33333 octave> format long octave> x x = 0.333333333333333 octave> format short octave> x x = 0.33333 octave> format rat octave> x x = 1/3 octave> pi ans = 355/113 octave> format short octave> pi ans = 3.1416 octave> sqrt(-2) ans = 0.00000 + 1.41421i octave> ans * ans ans = -2.0000 octave> i * i ans = -1 octave> i = 1 i = 1 octave> i * i ans = 1 octave> j * j ans = -1 octave> who Variables in the current scope: a ans b i x octave> clear i octave> who Variables in the current scope: a ans b x octave> i ans = 0 + 1i octave> A = [1 2 > 3 4] A = 1 2 3 4 octave> B = [2, 3; 4, 5]; octave> B B = 2 3 4 5 octave> B = [2, 3; 4 5]; octave> B B = 2 3 4 5 octave> A + B ans = 3 5 7 9 octave> A * B ans = 10 13 22 29 octave> 4 * A ans = 4 8 12 16 octave> 4 + A ans = 5 6 7 8 octave> ones(2, 2) ans = 1 1 1 1 octave> 4 * ones(2, 2) + A ans = 5 6 7 8 octave> ones(2, 3) ans = 1 1 1 1 1 1 octave> ones(2, 3) + ones(2, 2) error: operator +: nonconformant arguments (op1 is 2x3, op2 is 2x2) octave> size(A) ans = 2 2 octave> 4 * ones(size(A)) + A ans = 5 6 7 8 octave> A = [1 2 3; 4 5 6] A = 1 2 3 4 5 6 octave> zeros(2, 4) ans = 0 0 0 0 0 0 0 0 octave> eye(3) ans = Diagonal Matrix 1 0 0 0 1 0 0 0 1 octave> A = [i * eye(3) 4*ones(3,2)] A = 0 + 1i 0 + 0i 0 + 0i 4 + 0i 4 + 0i 0 + 0i 0 + 1i 0 + 0i 4 + 0i 4 + 0i 0 + 0i 0 + 0i 0 + 1i 4 + 0i 4 + 0i octave> format long octave> ans ans = Diagonal Matrix 1 0 0 0 1 0 0 0 1 octave> A A = 0 + 1i 0 + 0i 0 + 0i 4 + 0i 4 + 0i 0 + 0i 0 + 1i 0 + 0i 4 + 0i 4 + 0i 0 + 0i 0 + 0i 0 + 1i 4 + 0i 4 + 0i octave> format short octave> A A = 0 + 1i 0 + 0i 0 + 0i 4 + 0i 4 + 0i 0 + 0i 0 + 1i 0 + 0i 4 + 0i 4 + 0i 0 + 0i 0 + 0i 0 + 1i 4 + 0i 4 + 0i octave> A = [1 2; 3 4] A = 1 2 3 4 octave> A ^ -1 ans = -2.00000 1.00000 1.50000 -0.50000 octave> inv(A) ans = -2.00000 1.00000 1.50000 -0.50000 octave> A * inv(A) ans = 1.00000 0.00000 0.00000 1.00000 octave> a = [1 2 3] a = 1 2 3 octave> a * a error: operator *: nonconformant arguments (op1 is 1x3, op2 is 1x3) octave> a .' ans = 1 2 3 octave> a ' ans = 1 2 3 octave> c = [1 i 2] c = 1 + 0i 0 + 1i 2 + 0i octave> c ' ans = 1 - 0i 0 - 1i 2 - 0i octave> c .' ans = 1 + 0i 0 + 1i 2 + 0i octave> a * a .' ans = 14 octave> a .' * a ans = 1 2 3 2 4 6 3 6 9 octave> a + a ans = 2 4 6 octave> x = 1:1:10 x = 1 2 3 4 5 6 7 8 9 10 octave> x = 1:10 x = 1 2 3 4 5 6 7 8 9 10 octave> t = 0:0.1:1 t = Columns 1 through 7: 0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 Columns 8 through 11: 0.70000 0.80000 0.90000 1.00000 octave> t = 0:0.1:1 .' t = Columns 1 through 7: 0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 Columns 8 through 11: 0.70000 0.80000 0.90000 1.00000 octave> t = (0:0.1:1) .' t = 0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 0.70000 0.80000 0.90000 1.00000 octave> [t t] ans = 0.00000 0.00000 0.10000 0.10000 0.20000 0.20000 0.30000 0.30000 0.40000 0.40000 0.50000 0.50000 0.60000 0.60000 0.70000 0.70000 0.80000 0.80000 0.90000 0.90000 1.00000 1.00000 octave> [t t * t] error: operator *: nonconformant arguments (op1 is 11x1, op2 is 11x1) octave> [t t + t] ans = 0.00000 0.00000 0.10000 0.20000 0.20000 0.40000 0.30000 0.60000 0.40000 0.80000 0.50000 1.00000 0.60000 1.20000 0.70000 1.40000 0.80000 1.60000 0.90000 1.80000 1.00000 2.00000 octave> [t t .* t] ans = 0.00000 0.00000 0.10000 0.01000 0.20000 0.04000 0.30000 0.09000 0.40000 0.16000 0.50000 0.25000 0.60000 0.36000 0.70000 0.49000 0.80000 0.64000 0.90000 0.81000 1.00000 1.00000 octave> [t sqrt(t) t .* t] ans = 0.00000 0.00000 0.00000 0.10000 0.31623 0.01000 0.20000 0.44721 0.04000 0.30000 0.54772 0.09000 0.40000 0.63246 0.16000 0.50000 0.70711 0.25000 0.60000 0.77460 0.36000 0.70000 0.83666 0.49000 0.80000 0.89443 0.64000 0.90000 0.94868 0.81000 1.00000 1.00000 1.00000 octave> [t sqrt(t) t ^ 2] error: for A^b, A must be a square matrix octave> [t sqrt(t) t .^ 2] ans = 0.00000 0.00000 0.00000 0.10000 0.31623 0.01000 0.20000 0.44721 0.04000 0.30000 0.54772 0.09000 0.40000 0.63246 0.16000 0.50000 0.70711 0.25000 0.60000 0.77460 0.36000 0.70000 0.83666 0.49000 0.80000 0.89443 0.64000 0.90000 0.94868 0.81000 1.00000 1.00000 1.00000 octave> [t sqrt(t) t .^ 2 1 ./ t] ans = 0.00000 0.00000 0.00000 Inf 0.10000 0.31623 0.01000 10.00000 0.20000 0.44721 0.04000 5.00000 0.30000 0.54772 0.09000 3.33333 0.40000 0.63246 0.16000 2.50000 0.50000 0.70711 0.25000 2.00000 0.60000 0.77460 0.36000 1.66667 0.70000 0.83666 0.49000 1.42857 0.80000 0.89443 0.64000 1.25000 0.90000 0.94868 0.81000 1.11111 1.00000 1.00000 1.00000 1.00000 octave> c = [1 2 3] c = 1 2 3 octave> 1 ./ c ans = 1.00000 0.50000 0.33333 octave> 1 * ones(size(c)) ./ c ans = 1.00000 0.50000 0.33333 octave> x = 1:5 x = 1 2 3 4 5 octave> exp(x) ans = 2.7183 7.3891 20.0855 54.5982 148.4132 octave> e^x error: for x^A, A must be a square matrix octave> e.^x ans = 2.7183 7.3891 20.0855 54.5982 148.4132 octave> x .^ 2 .* sqrt(x) ans = 1.0000 5.6569 15.5885 32.0000 55.9017 octave> A = [1 2; 3 4] A = 1 2 3 4 octave> A * A ^ -1 ans = 1.00000 0.00000 0.00000 1.00000 octave> sqrt(A) * sqrt(A) ans = 3.4495 4.2426 5.1962 6.4495 octave> A ^ (1/2) ans = 0.55369 + 0.46439i 0.80696 - 0.21243i 1.21044 - 0.31864i 1.76413 + 0.14575i octave> sqrt(A) ans = 1.0000 1.4142 1.7321 2.0000 octave> B = A ^ (1/2) B = 0.55369 + 0.46439i 0.80696 - 0.21243i 1.21044 - 0.31864i 1.76413 + 0.14575i octave> B * B ans = 1.00000 + 0.00000i 2.00000 + 0.00000i 3.00000 + 0.00000i 4.00000 + 0.00000i octave> [t sqrt(t)] ans = 0.00000 0.00000 0.10000 0.31623 0.20000 0.44721 0.30000 0.54772 0.40000 0.63246 0.50000 0.70711 0.60000 0.77460 0.70000 0.83666 0.80000 0.89443 0.90000 0.94868 1.00000 1.00000 octave> sqrt(A) ^ 2 ans = 3.4495 4.2426 5.1962 6.4495 octave> sqrt(A) .^ 2 ans = 1.0000 2.0000 3.0000 4.0000 octave> x = 1:10 x = 1 2 3 4 5 6 7 8 9 10 octave> x .^ 2 - 2 * x - 2 ans = -3 -2 1 6 13 22 33 46 61 78 octave> x .^ 2 - 2 .* x - 2 ans = -3 -2 1 6 13 22 33 46 61 78 octave> 2 x parse error: syntax error >>> 2 x %% vi måste skriva ut * ^ octave> 2i %% utom då vi multiplicerar med i ans = 0 + 2i octave> x = 0:0.1:1 x = Columns 1 through 7: 0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 Columns 8 through 11: 0.70000 0.80000 0.90000 1.00000 octave> n = 10 n = 10 octave> linspace(0, 1, n) ans = Columns 1 through 8: 0.00000 0.11111 0.22222 0.33333 0.44444 0.55556 0.66667 0.77778 Columns 9 and 10: 0.88889 1.00000 octave> x = linspace(0, 1); octave> size(x) ans = 1 100 octave> f = @(x) x .* sqrt(x) f = @(x) x .* sqrt (x) octave> f(1) ans = 1 octave> f(2) ans = 2.8284 octave> f = @(x) x / sqrt(1 + x^2); octave> f(0) ans = 0 octave> f(1) ans = 0.70711 octave> t = (0:0.1:1) .' t = 0.00000 0.10000 0.20000 0.30000 0.40000 0.50000 0.60000 0.70000 0.80000 0.90000 1.00000 octave> [t f(t)] error: for A^b, A must be a square matrix error: evaluating argument list element number 1 error: called from: error: at line -1, column -1 octave> f = @(x) x ./ sqrt(1 + x .^ 2); octave> [t f(t)] ans = 0.00000 0.00000 0.10000 0.09950 0.20000 0.19612 0.30000 0.28735 0.40000 0.37139 0.50000 0.44721 0.60000 0.51450 0.70000 0.57346 0.80000 0.62470 0.90000 0.66896 1.00000 0.70711 octave> plot(t, f(t)) octave> plot(t, f(t), 'o') octave> plot(t, f(t), 'ro') octave> plot(t, f(t), 'gx') octave> t = 0:0.2:1; octave> plot(t, f(t)) octave> t = linspace(0, 1); octave> help plot `plot' is a function from the file /usr/share/octave/3.6.2/m/plot/plot.m -- Function File: plot (Y) -- Function File: plot (X, Y) -- Function File: plot (X, Y, PROPERTY, VALUE, ...) -- Function File: plot (X, Y, FMT) -- Function File: plot (H, ...) -- Function File: H = plot (...) Produce two-dimensional plots. Many different combinations of arguments are possible. The simplest form is plot (Y) where the argument is taken as the set of Y coordinates and the X coordinates are taken to be the indices of the elements starting with 1. To save a plot, in one of several image formats such as PostScript or PNG, use the `print' command. If more than one argument is given, they are interpreted as plot (Y, PROPERTY, VALUE, ...) or plot (X, Y, PROPERTY, VALUE, ...) or plot (X, Y, FMT, ...) and so on. Any number of argument sets may appear. The X and Y values are interpreted as follows: * If a single data argument is supplied, it is taken as the set of Y coordinates and the X coordinates are taken to be the indices of the elements, starting with 1. * If the X is a vector and Y is a matrix, then the columns (or rows) of Y are plotted versus X. (using whichever combination matches, with columns tried first.) * If the X is a matrix and Y is a vector, Y is plotted versus the columns (or rows) of X. (using whichever combination matches, with columns tried first.) * If both arguments are vectors, the elements of Y are plotted versus the elements of X. * If both arguments are matrices, the columns of Y are plotted versus the columns of X. In this case, both matrices must have the same number of rows and columns and no attempt is made to transpose the arguments to make the number of rows match. If both arguments are scalars, a single point is plotted. Multiple property-value pairs may be specified, but they must appear in pairs. These arguments are applied to the lines drawn by `plot'. If the FMT argument is supplied, it is interpreted as follows. If FMT is missing, the default gnuplot line style is assumed. `-' Set lines plot style (default). `.' Set dots plot style. `N' Interpreted as the plot color if N is an integer in the range 1 to 6. `NM' If NM is a two digit integer and M is an integer in the range 1 to 6, M is interpreted as the point style. This is only valid in combination with the `@' or `-@' specifiers. `C' If C is one of `"k"' (black), `"r"' (red), `"g"' (green), `"b"' (blue), `"m"' (magenta), `"c"' (cyan), or `"w"' (white), it is interpreted as the line plot color. `";title;"' Here `"title"' is the label for the key. `+' `*' `o' `x' `^' Used in combination with the points or linespoints styles, set the point style. `@' Select the next unused point style. The FMT argument may also be used to assign key titles. To do so, include the desired title between semi-colons after the formatting sequence described above, e.g., "+3;Key Title;" Note that the last semi-colon is required and will generate an error if it is left out. Here are some plot examples: plot (x, y, "@12", x, y2, x, y3, "4", x, y4, "+") This command will plot `y' with points of type 2 (displayed as `+') and color 1 (red), `y2' with lines, `y3' with lines of color 4 (magenta) and `y4' with points displayed as `+'. plot (b, "*", "markersize", 3) This command will plot the data in the variable `b', with points displayed as `*' with a marker size of 3. t = 0:0.1:6.3; plot (t, cos(t), "-;cos(t);", t, sin(t), "+3;sin(t);"); This will plot the cosine and sine functions and label them accordingly in the key. If the first argument is an axis handle, then plot into these axes, rather than the current axis handle returned by `gca'. The optional return value H is a graphics handle to the created plot. See also: semilogx, semilogy, loglog, polar, mesh, contour, bar, stairs, errorbar, xlabel, ylabel, title, print Additional help for built-in functions and operators is available in the on-line version of the manual. Use the command `doc' to search the manual index. 5 Help and information about Octave is also available on the WWW at http://www.octave.org and via the help@octave.org mailing list. octave> y2 = @(x) exp(-x / 4) .* sin(2 * pi * x); octave> x = linspace(-5, 5); octave> plot(x, y2(x)) octave> grid on octave> y3 = @(x) exp(-x .^ 2) ly3 = @(x) exp (-x .^ 2) octave> plot(x, y3(x)) octave> hold on octave> plot(x, y2(x)) octave> y5 = @(x) 1 ./ (x-1) + 2 * x ./ (x + 1); octave> plot(x, y5(x)) octave> clf octave> plot(x, y5(x)) octave> axes([-5 5 -10 10]) error: axes: expecting argument to be a scalar axes handle error: called from: error: /usr/share/octave/3.6.2/m/plot/axes.m at line 54, column 7 octave> axis([-5 5 -10 10]) octave> grid on octave> pwd ans = /home/public octave> cd pt/spring/matlab octave> ls f1 octave> cd f1 octave> ls matlab1.pdf octave> octave> ls matlab1.pdf plots.m octave> plots octave> plots y = 0.23693 octave> plots octave> 1 > 0 ans = 1 octave> 0 > 1 ans = 0 octave> if 3 > a = 123 > end a = 123 octave> printTable 0.00000: 0.00000 0.10000: 0.31623 0.20000: 0.44721 0.30000: 0.54772 0.40000: 0.63246 0.50000: 0.70711 0.60000: 0.77460 0.70000: 0.83666 0.80000: 0.89443 0.90000: 0.94868 1.00000: 1.00000 octave> x = (0:0.1:1).'; octave> [x sqrt(x)] ans = 0.00000 0.00000 0.10000 0.31623 0.20000 0.44721 0.30000 0.54772 0.40000 0.63246 0.50000 0.70711 0.60000 0.77460 0.70000 0.83666 0.80000 0.89443 0.90000 0.94868 1.00000 1.00000 octave> diary on octave>