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ABSTRACT

As robots increasingly integrate into our social environments, from factories to
social spaces, there is a growing need to find ways to effectively collaborate in
these dynamic environments. However, current robotics research is mostly aimed
towards task and environment specific programming. Even the state-of-the-art col-
laborative robotics technologies lack or have a very rudimentary understanding of
the multimodal methods used by human teammates to communicate in real-time.
This leads to an increased workload for human operators and becomes a critical
problem that limits robots to operate in dynamic environments. We focus on one
such dynamic setting of search and rescue (SAR) scenarios. In order to achieve
effective collaboration between humans and robots in this scenario, there is a need
for robots to naturally understand human intentions through the interpretation of
multimodal communication cues such as gaze, gesture, and contextual signals in
real-time. This research aims towards achieving mixed-initiative interaction by
addressing the gap of robots proactively collaborating with humans through a two
step process. The first part of the thesis, following a Design Science approach,
explores the use and integration of non-verbal communication cues to conduct col-
laborative tasks in a SAR environment. Through designing the human-in-the-loop
collaboration system CueSense and testing different collaboration strategies, we
investigate when and how humans and robots can dynamically share control dur-
ing missions. This modular system is capable of tracking gaze to predict task focus
and gesture inputs for nuanced intent interpretation. This is validated through user
studies where participants work alongside the system in different collaborative set-
tings for a simulated search-and-rescue scenario. The results show that the system
successfully assists users in the task and improves task efficiency, performance,
and reduces mental workload. The second part of the thesis focuses on intention
recognition as a foundation of proactive support and mixed-initiative interaction in
human robot collaboration. We present an extensive review of the literature on in-
tention recognition and identify gaps and challenges in implementing robust inten-
tion recognition systems in robotics. In summary, we focus our research on com-
munication modalities, interfaces, and intention recognition for mixed-initiative
interaction to allow efficient and seamless human robot collaboration in dynamic
high-stakes scenarios.
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INTRODUCTION

1 Motivation

Traditionally, robots were kept in factories and within defined safety boundaries
while working on predefined, repetitive tasks. With the emergence of Industry 5.0
came a more human-centric approach in collaboration and automation [DDS19].
This transition put robots right in the middle of human workspaces, which poses
a significant challenge in terms of collaboration. Humans not only started sharing
workspaces with robots, but the workspaces themselves evolved from fixed sta-
tions in factories to more outdoor and social environments, such as public walk-
ways, hospitals, and so on. This shift also facilitated the use of robots in more
critical and high-risk environments such as architectural inspection, nuclear de-
commissioning, and search and rescue scenarios, amongst others. Such collab-
orations in critical environments would not only require robots to have seamless
communication but also adaptable behavior. Robots have to go beyond the role
of just tools and function as adaptive agents that can coordinate through flexible
decision-making to ensure efficient goal execution. These collaborative scenarios
emphasize the need for mixed-initiative interactions, where control is dynamically
shared between humans and robots and each member is allowed to intervene and
seize control of it [JA15].

Over the last decade, the field of Human Robot Interaction (HRI) has made
significant progress at facilitating effective interaction through a broad array of
research aimed towards providing support for collaborative tasks [Bar+24|]. How-
ever, there is still a substantial gap in terms of adaptive, bidirectional communica-
tion and anticipatory support in the search and rescue domain. Robots often follow
pre-programmed responses to assigned tasks. This leads to humans being limited
to the actions they can perform for robots to understand them intuitively. As a re-
sult, humans have to adapt their actions based on the robot’s understanding, rather
than the other way around. This problem becomes critical in time-sensitive and
high stakes scenarios where efficiency and adaptability are essential.
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This thesis is motivated by the challenges identified within the WARA pub-
lic safety arena [And+21]], where critical goal executions require effective bi-
directional human-robot collaboration. Addressing these collaboration challenges
requires advancing beyond traditional reactive human-robot interaction towards
more adaptive, mixed-initiative interaction. To overcome these limitations in bidi-
rectional communication and adaptability, this thesis focuses on the search and
rescue domain with an aim towards achieving mixed-initiative interaction through
proactive support. For such collaboration, robots need the ability to interpret multi-
modal human communicative cues dynamically. Robots can interpret human cues,
such as gaze, gesture, and intent, to enable seamless collaboration by anticipating
actions and combining them with environmental cues, thereby providing context-
aware support. With this mixed-initiative understanding, robots can support hu-
mans to act as proactive teammates, capable of recognizing the user’s intentions
and providing dynamic support.

This thesis addresses the research challenge of enabling natural collaboration
with robots in a dynamic environment through the following research questions:

1. How to design robotic systems for efficient and natural collaboration in real-
time?

2. What are the key factors and behavioural cues that can be used to determine
when and with whom to communicate during interactions?

3. How to model multimodal signals such as gaze, gestures, and full-body cues
to infer human intentions during task execution in dynamic and complex
environments?

To address these research questions, this work begins by identifying the rel-
evant modalities for effective human-robot collaboration. The first of which is
gaze. A robotic interaction system is designed and validated through a user study
in which participants engage in a simulated search and rescue task using a test en-
vironment developed from the 3D template provided by the WASP Research Arena
for Public Safety (WARA-PS) [WP24]. This study evaluates the influence of head
gaze-based control on task performance during critical tasks, highlighting the com-
plex relationship between human intention, gaze direction, and system design in
collaborative settings. Building on these insights, an extensive review of existing
frameworks, architectures, and models for intention recognition is conducted. This
review examines the complexity of intention recognition and provides a foundation
for more systematic and practical approaches to enabling seamless collaboration.
This facilitates an understanding of intentions on various levels. With intention
termed as as an agent’s goal, along with an established dynamic action plan within
a given environment, intention recognition becomes the key that allows us to un-
derstand the desired state and the sequence of actions necessary to achieve this
goal. Having robots equipped with the capabilities of inferring human intent dur-
ing tasks, would facilitate seamless collaboration and uninterrupted support. This
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would facilitate seamless collaboration and mixed-initiative interaction between
humans and robots in high-stakes, dynamic environments. In the next sections, we
go through the background of the work and detail the work done and explain how
it relates to answering the research questions formulated earlier.



Introduction

1.1 Thesis Outline

This thesis consists of 6 chapters, including this one. The following is the brief
outline of each section:

* In Section|[I] we present our motivation behind the work done.

e In Section @ we discuss the background on human robot collaboration,
proactive support, mixed-initiative interaction, associated communication
modalities, and interface systems.

* In Section [3| we talk about our system and its implementation, the user
study conducted with our system, the results from the study, and intention
recognition which is a core part of providing proactive support.

* In Sectiond] we conclude our work and discuss plans for future work.

* In Section 5] we talk about our contributions from each of our paper pre-
sented in this thesis.

* In Section[6] we mention some other papers authored by us which were not
added to this thesis.
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2 Background

In this section, we review and discuss the significant developments in the field of
Human Robot Interaction with a focus on the progress made towards human-in-
the-loop systems, proactive collaboration, mixed-initiative interaction, and multi-
modal communication. We then identify the gaps in the existing research to inform
the work made in this thesis towards furthering the research in the field of human-
robot collaboration.

2.1 Humans as the centre of Robotics

With the advancement of robotics over the years and the transformation of the In-
dustrial Revolution, humans have become central to robotics research. Although
the field of Human Robot Interaction has been around for some decades, the inte-
gration of humans into automated systems in Industry 5.0 has redefined this rela-
tion [DDS19, Xu+21]].

Early robotics development was primarily focused on industrial robots, pro-
grammed for single tasks with a lack of sensors to detect or avoid humans in the
vicinity. The field has evolved over the years, diversifying not only in the roles
robots play in automation but also in the roles humans play. This shift in robotics,
often termed as Collaborative robots [Vic21], led to robots working side by side
with humans in diverse contexts. Some use cases of robots in social spaces are the
Amazon warehouse robots for fetching items to humans [Dha20], BMW KUKA
LBR iiwa to assist workers with heavy lifting [TMK16], Healthcare robots like
moxi for delivering supplies and assisting nurses [Ayd23|], and Boston Dynamics
SPOT robot used for industrial inspection [[CP24], construction site monitoring,
and search and rescue operations, among others.

As we see from the discussion above, there are three main components of
human-robot interaction: the human, the robot, and the interaction that bridges
them based on the collaborative task:

* Humans: With humans forming a central part of the process of designing
interactions, it is also crucial to interpret the role of humans in the robotic
design process. One way of addressing this could be looking at it from a
user-centered design perspective [Bar+24} |Geb+24]. This involves separat-
ing users into three categories: primary users (those with direct interaction,
such as nurses using a delivery robot or a teleoperated robot), secondary
users (those with occasional interactions), and tertiary users (those indirectly
affected by the design process) [Bar+24].

* Robots: The focus in case of robots lies in their capabilities, limitations,
and design considerations that directly influence interaction quality. This
includes both their physical appearance (shape, manipulators, etc.) and the
software (perception, decision-making, learning, etc.).
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* Interactions: Although interaction in HRI can be a broad multidisciplinary
field, the interaction modalities through which humans can communicate
with robots can be broadly classified into verbal and non-verbal methods.
While verbal methods constitute the ways in which we explicitly state the
tasks to a robot, non-verbal refers to interpreting gaze, gesture, body lan-
guage, and the meaning behind such actions [Bar+24]).

While the field has diversified over time with robots like SPOT [[CP24]], Uni-
tree G1 [Ghi+24]], NASA Valkyrie [Rad+15]], and other robots working alongside
humans in industrial, healthcare, social, and service domains, there is still a signif-
icant gap to allow humans to safely and seamlessly collaborate with robots on ev-
ery frontier. The continued efforts towards human-centric automation in robotics
and the shift from an isolated understanding of robotic task implementation to
synergetic human-robot interaction in diverse settings have thus become impor-
tant [|Geb+24].

However, over the last decade or so, the research in the field has been pushed
towards more autonomous robot behaviors, leading to the introduction of a sub-
field called Proactive Human Robot Interaction or Proactive HRI [DBM?24|]. This
field has been increasingly researched with a focus on topics such as human-in-
the-loop solutions and human-centered solutions, which are aimed towards more
natural and intuitive human-robot interaction [DBM24| Top17|]. These interactions
are inspired by how humans interact with one another, leading to mixed-initiative
interaction. This is in contrast to reactive robotics, which focuses on robots re-
sponding to human actions and changes in the environment as they occur without
anticipating future needs or creating any long-term plans (for example, reactive
obstacle avoidance) [DBM24].

2.2 Proactive Support for Mixed-Initiative Interaction

While a broad range of definitions have been used to define proactive in the case
of HRI, the common idea focuses on going beyond the work in reactive behavior.
Pandey et al [PAA13]] refer to this as “taking the initiative whenever necessary to
support the ongoing interaction/task”, van Den Broek et al. [DBM?24] provide a
broader overview on the topic, stating that Proactive HRI is a subfield where robot
could anticipate future states or show control over the situation in some way.

Building on these definitions, the field of human-robot interaction has evolved
over the years to include a wide range of paradigms in which interaction is a cen-
tral and integral part of robot interfaces and control systems. These include col-
laborative interaction [Mar+20], social interaction [LPT22|, multi-agent interac-
tion [Dah+23|, mixed-initiative interaction [JA15]], supervisory control [RSR16],
assistive interaction [CTS21]], and teleoperation [CHBO7]], among others.

In each of these interaction paradigms, the human plays a crucial role, with the
nature of that role varying depending on the context, task complexity, and system
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goals. Understanding how the roles of humans and robots shift across these set-
tings is essential to exploring the associated dynamics, challenges, and outcomes.
This would enable human-centered operation to be safer, efficient, intuitive, and
natural. It would also enable robots to provide proactive support to humans and
contribute towards mixed-initiative interaction for seamless collaboration.

There have been many definitions proposed for mixed-initiative interactions.
This concept was originally rooted in the Human-Computer Interaction (HCI) do-
main as referenced by Carbonell in 1970 [Car70], and was used to create intelligent
conversational agents. The approach was later extended to human-robot teams in
1997 by Kortenkamp et al. [Kor+97]], and was used as a novel planning perspec-
tive for the tasks involved in shared control scenarios. Jiang et al. [JA15]] provided
a comprehensive definition which explains Mixed-Initiative HRI “A collaboration
strategy for human-robot teams where humans and robots opportunistically seize
(relinquish) initiative from (to) each other as a mission is being executed, where
initiative is an element of the mission that can range from low-level motion control
of the robot to high-level specification of mission goals, and the initiative is mixed
only when each member is authorized to intervene and seize control of it.”

For a successful implementation of a mixed-initiative system, the robot must
detect, understand, and interpret cues such as gaze behavior and body posture, not
just in isolation but also in relation to the task. This requires an understanding
of the human’s intention and the semantics of the scene. These may include ver-
bal communication to explicitly instruct a robot about a task, non-verbal demon-
stration through gestures, motion, or actions, as well as haptic and tactile sensing
methods. Dani et al. demonstrate the non-verbal aspects of communication in their
work about human-in-the-loop for human-robot collaboration [Dan+20]. They uti-
lize human motion intentions to generate safe and suitable robot trajectories that
aid humans in collaborative tasks. Additionally, devices such as VR headsets or
augmented reality headsets like the Meta Quest or Oculus can be used to assist and
control the robot based on operational needs through teleoperation [Wal+23|].

In Human Robot Collaboration, communication modalities form the founda-
tion of intention-aware systems, enabling robots to support humans dynamically.
These modalities range from using gaze cues to full-body communicative gestures
to infer the actions. These can be further supported by using devices and systems
that enable the robots to directly or indirectly infer these cues. Consider the case
of teleoperation, where robots can be directly controlled through interfaces or AR
devices like Oculus Quest, enabling direct manipulation of the robot arms to per-
form tasks such as assembly or inspection [Wal+23]]. These are cases of direct
inference of intent through controlling the robot using hardware input. In the case
of indirect inference, a robot would be able to infer the intentions of humans and
provide support autonomously. For example, in manufacturing, understanding the
intentions of the workers could help synchronize the robot’s actions for efficient
goal execution. For instance, a dual-arm YUMI could assist a worker with ob-
taining boxes triggered by eye contact for in-time component delivery. Similarly,
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a Boston Dynamics SPOT robot could follow a firefighter’s gaze and hand direc-
tions to prioritize search locations in areas that are dangerous for humans to enter.
These use cases could also be applied to humanoid robots like NASA’s Valkyrie in
a post-disaster scenario, to map traversal routes for humans and clear debris in the
predicted paths.

Achieving effective collaboration of this nature would require an analysis of
various aspects of human-robot interaction, encompassing both robots and hu-
mans, which are essential for proactively supporting collaborative tasks. The fol-
lowing sections discuss these essential components critical to bridging the gap in
achieving seamless collaboration.

Communication Modalities

The examples above highlight the pivotal role of nonverbal communication in en-
abling intuitive and efficient human-robot collaboration in different scenarios. This
is especially true for scenarios where verbal instructions may be impractical due to
environmental noise, safety requirements, or time-critical operations. Nonverbal
communication methods such as gaze, facial expression, gestures, posture, body
language, and proxemics provide suitable communication channels between hu-
mans and robots in such cases [Bar+24].

* Gaze: Among these, gaze is one of the most powerful and intuitive channels
for communication and intention signaling. Robots can use gaze to inter-
pret human intention and provide timely and context-aware support without
explicit verbal commands. Huang et al. have shown how gaze is used to
predict target ingredients of customers around 1.8s before they even express
it verbally [Hua+15a]. Admoni and Scassellati review social eye-gaze in
human-robot interaction, focusing on how people respond to gaze and how
robot gaze behavior improves interaction [AS17]. Belcamino et al. demon-
strate how eye gaze can be used to infer human intentions and allow robots
to collaborate in assembly tasks [Bel+24].

* Gesture: Apart from gaze, gesture also plays a crucial role in channeling
communication and intention for enabling proactive support in HRC. While
gaze is mainly focused on either eye or head gaze, gesture can be repre-
sented by a combination of multiple pose points in the body. One of the most
distinct classifications of gestures given by McNeill differentiates between
pointing/deictic, metaphoric, iconic, and beat gestures [McN92||. Other ges-
ture classifications are presented in the works by Nehaniv et al., where the
authors categorised them as: Irrelevant/Manipulative gestures, Side effect of
expressive behavior, Symbolic gestures, Interactional gestures, and Pointing
gestures. Not all gestures represent interaction intent. Their work also ex-
plains how there is a need not just to consider the kinematics of the gesture
but also the interactional context of it. Additionally, it aids in classifying
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gestures, enabling robots to respond appropriately when needed [Neh+05].
Recognition of gestures is invaluable in environments with high noise lev-
els, such as on a shop floor in a manufacturing facility [Net+19, [LW18].
Different gestures map naturally to various classes of tasks. For example,
static hand gestures can be used to stop a robot, whereas dynamic gestures
could be used to move the robot to a given position [Net+19]. Apart from
these, there are also upper-body gestures that combine hands and head ges-
ture combinations, which predominantly allow for the interpretation of en-
gagement or contextual cues [Xia+14]. Full-body gestures, such as pos-
ture shifts and spatial orientation, also play a significant role in providing
environmental context, which can allow robots to perform safe maneuvers
around the human workers [TBG23|].

Haptics and Physical interaction: Apart from gaze and gesture modalities,
it is also essential to understand the role of haptics and physical support
as modalities used for proactive support in HRC. Based on the levels of
engagement with the robot, HRI can be categorised into remote and prox-
imate interaction [FC24]. While remote interaction involves humans and
robots being separated in space or time, proximate interaction refers to be-
ing colocated in the same space [FC24]. In both cases, physical interac-
tion is possible either through direct (contact-based) or indirect interac-
tion [FC24f]. Direct or contact-based physical interaction involves modal-
ities such as touch, grasp, and kinesthetic teaching, among others, whereas
indirect physical interaction occurs through interaction through the objects
as intermediary [FC24]. Physical cues, such as touch, guiding forces, or
contact pressure variations, also help convey user intent and prompt sup-
port [Liu+22]. For example, in a collaborative manipulation task, force
changes can be used to signal the direction of intended motion or request
the release of the object. Timely and seamless interpretation of the above-
discussed cues in real time would help robots anticipate human actions, to
provide context-based, appropriate support, leading to intuitive, seamless,
and safe collaboration.

Multimodal interaction: The above modalities are singular in nature. This
could, however, limit the robustness and adaptability in complex and high-
stakes environments. In addition, humans often combine multiple modal-
ities such as gaze, gesture, touch, and speech to convey intent. Gao et
al. [GLJ21], Yongda et al. [YFH1S], Li et al [LLT22]], Cid et al. [CMN135],
and Zlatintsi et al. [Zla+18|] have used fusion techniques to highlight the
importance of multimodal information. These include hand gesture identi-
fication, voice and gesture combination to infer instructions for the robot,
auditory and visual modalities for perception tracking, visual and auditory
signals to identify different states of emotion, voice and gestures to provide
support for elderly healthcare [GLJ21} [YFH18| |[LLT22, |[CMNI15, [Zla+18].
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While multi-modal techniques are the closest to interpreting context-aware
behaviours, they are also more resilient to failures compared to single
modality approaches.

These multimodal fusion techniques discussed above naturally extend to the
need of designing interfaces where it is possible to fuse information from multi-
ple sources. These could operate as operational layers or systems that fuse com-
munication channels, enabling robots to sense, capture, interpret, and seamlessly
provide feedback. These interfaces synchronize multiple modalities to enhance
user immersion and awareness, contributing to more effective human-robot col-
laboration [Tri+20]]. In the context of virtual environments, Wonsick et al. [WP20]
give a categorization of interfaces based on robot control models for different lev-
els of autonomy and interaction modalities. This categorization includes human
inputs, robot movements, and virtual systems and identifies three main types of
interfaces in HRI, namely, direct, cyber-physical, and homuncular. In addition to
this, research in the field shows that multi-modal interfaces play a critical role in
reducing cognitive workload and improving task performance [[Tri+20].

The work done highlights the considerable progress that has been made from
collaborative systems and multimodal communication to proactive support to fa-
cilitate seamless and efficient Human Robot Collaboration. With the immense
potential and the use case of multimodal interactions, there still lies the challenge
of integrating multiple input methods into a system. This will not only be com-
putationally expensive but also cause processing delays in real-time. Addition-
ally, while these modalities present rich interaction potentials, they often increase
cognitive workload and hinder situational awareness, modularity, scalability, and
reusability. In this work, I investigate and address this gap and work towards
frameworks and recognition systems that allow natural, seamless, and proactive
human-robot collaboration. With a focus on high-stakes scenarios of search and
rescue, this work is aimed towards achieving mixed-initiative interaction, wherein
humans and robots can dynamically seize (relinquish) initiative during task execu-
tion.
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3 Implementation and Evaluation

The thesis consists of two sub-projects. The first sub-project, following a Design
Science approach, aimed to methodologically explore the use and integration of
non-verbal communication cues to conduct collaborative tasks. This resulted in the
development of a system that incorporates non-verbal inputs into a human-robot
collaboration task in a search and rescue scenario. The system is further validated
through a user study of different collaboration strategies, with results providing
insights for future applications. The system, along with the results from the user
study, helps us answer our first research question entirely, and our second and
third research questions partially. The second sub-project works as a foundation to
bridge the gap in incorporating multi-modal cues with context-aware environment
information to equip robots with the capabilities of intent recognition. Both sub-
projects are aimed towards achieving mixed-initiative interaction in a search and
rescue scenario, with a focus on critical task execution in a high-risk environment.

3.1 CueSense System: Technical Implementation

In this section, we discuss the robot interaction system that was designed for this
work and the user study that was used to evaluate the system. Our system com-
prises different modules - gaze detection, input mapping, robot command gener-
ation, visual feedback, and an augmentation system. An overview of the entire
architecture can be seen in figure[T} Images of the system can be seen in Paper |[[I]
and Paper [[TI}

The system integrates gaze and gesture recognition to enable intuitive, real-
time human input to operate a robot in a dynamic environment. It is novel in
its design and integration of head-gaze based interaction and real-time foveation-
based visual augmentation for collaboration in a critical environment. "Foveation"
is traditionally used as a technique in graphics performance optimization. How-
ever, we use it here to show areas of interest unblurred and other regions as blurred.
This is done as an "augmentation technique” meaning enhancing the method in
which the information is presented to the user. In simple terms, the user’s non-
verbal inputs and robot inputs are integrated into a system that works as both an
interface and a system to help execute the mission specifications. An RGB camera
is used to capture the user inputs and process them using Mediapipe’s [G0022]
pretrained models. The model identifies the 3D facial and hand landmarks with an
average precision of 98.61% and 95.7% respectively. The gaze vectors and gesture
States are then detected, encoded, and transmitted using a low-latency UDP pro-
tocol to the control interface developed in Unreal Engine. With an instantaneous
maximum latency of 10 ms within the same devices, the latency was within the ad-
missible limits needed to transmit user input into the control system. This control
interface is what the users see during robot control, providing inputs through gaze
and gesture commands, and other inputs to the scenarios designed for testing the
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Figure 1: Overview of the system

usability of the interface. The interface consists of a customizable 3x3 screen grid,
which receives visual input from the robot camera either in simulation or real-time.
Other sections of the screen include the following functions: Task Allocator, Items
found, Restore, and End Task. Task Allocator helps the user to select the prior-
ity of different locations in the scene after their analysis through robot navigation.
These can be used to send information to Search and Rescue operators to further
analyze important locations. Items found are used to indicate the number of ob-
jects of interest detected by the human during exploration through the robot, such
as potential victims. The Restore function is used to record the last known tagged
location, and End Task is used to conclude the current operation, log outcomes,
and save the data for post-operation analysis. Users use these to provide inputs to
the system apart from using gaze-based selection and gesture-based confirmation
for robot navigation, allowing natural command input.

The system detects and translates these cues to control commands based on the
below:

Gaze detection module It uses the egocentric perspective of the user to acquire
the direction of the gaze. This is achieved using the Mediapipe library [Goo22].
At the same time, alternatives such as Tobii eye tracker [Fun+16] and other virtual
reality-based devices [[CKK19] can also be used based on the situation. Addition-
ally, this module can be modified to acquire a full body pose to supplement the eye
gaze as well.
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Algorithm 1 : Gaze Detection

1:
2:

Process image for face.

if face landmarks detected then
Extract specific landmarks.
Calculate 2D and 3D coordinates.
Define camera and distortion matrices.
Solve PnP for rotation and translation vectors.
Convert to rotation matrix, get Euler angles.
Calculate gaze direction.

end if

Input Mapping The detected gaze direction is used in a confirmation pro-

cedure to light up the screen where the user is looking. This marks the pre-
confirmation phase, where the user verifies the action they want the robot to per-
form. The user then confirms their intent to navigate the robot according to that
particular command using the respective keyboard keys. The screens not only
work as pre-confirmation interfaces, but also provide visual feedback of the scene
through a live feed of the robot’s camera.

Algorithm 2 : Input Mapping: User to System

R AN A R ol e

Perform a line trace from the eye’s position based on gaze direction
Determine where the user is looking at
Set the actor hit by the line trace as the Gazed Screen
Highlight the Gazed Screen orange
if Key press is same as highlighted screen then
Highlight the Gazed Screen green
Set confirmation message as Gazed direction
end if
Send confirmed Gazed direction

Robot Command Generation The confirmed commands from the user are

converted to appropriate velocity commands for the robot in the simulation.
Presently the system generates holonomic velocity commands which can be
mapped to non-holonomic robots based on the requirements.

Algorithm 3 : Robot Command Generation

1: Receive confirmed Gazed direction

if Gazed Direction then

Move the robot towards corresponding direction at the required velocity
until the command received
end if
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Figure 2: Experimental setup showing a human operator leveraging their intuition
to guide the robot in search and rescue virtual scene using “gaze and hand signaling
controls” while identifying areas of interest.

For the user study, we set up a post-disaster environment in a 28 * 83 m sim-
ulation using a test-bed environment provided by WARA-PS [WP24]. The mo-
tivation behind the search and rescue environment was to replicate challenging
and high-stakes conditions for collaboration in a controlled and safe setup. Addi-
tionally, the environment includes simulated SAR personnel to replicate realistic
operational constraints and potential coordination efforts in real-time rescue mis-
sions. The robot used in the simulation for the study is a mobile robot platform

MiR200 with a UR5e robotic arm and a Schunk gripper [Sch].

During the experiment, participants were placed in a simulated control room.
This control room is designed for real-world SAR operation centers and interacts
with the virtual disaster site by navigating a mobile robot fitted with cameras and
sensors. During each mission, they encountered survivors, some of whom were
deliberately hidden in difficult-to-reach spots to increase the challenge.

The system has undergone several iterations and changes for integration of var-
ious modules, improvements, and ease of use. The current version of the system is
reimplemented in Unity for validating its modular reproducability across
platforms. Additional functionalities have been included: foveated augmentation
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Figure 3: System: Unity version

based on human detection, real-time video input from robot, dynamic recognition
of objects and humans in the scene, and display functionality for the number of de-
tections. Figure[3]shows the user view in the Unity interface. The ROS connection
happens through ROS TCP Connector [Tec22].

Study Setting

The study compares two implementations of the system to devise intuitive human-
in-the-loop robotic systems for collaborative scenarios: Human-Assisted (HA) and
System-Assisted (SA). Both implementations were tested in a search and rescue
test environment to study the effects of different levels of user support and system
design on performance and decision-making. A detailed study setting with images
is described in Paper [[lland Paper [T

Human-Assisted (HA) Scenario: In this scenario, participants were given
more control over the robot’s movements. They navigated the virtual SAR envi-
ronment by combining head-gaze detection with keyboard confirmations, effec-
tively steering the robot to locate and assess the post-disaster area. This dual-
confirmation input is used to mitigate the “Midas-touch” problem asso-
ciated with using gaze-based inputs. Head-gaze-based input is confirmed via a
mapped keyboard input, allowing participants to interact more directly with the
system and make real-time decisions about where to move next.

During navigation, participants continuously monitored live visual feedback
from the robot, which helped them identify Areas of interest(AOI) such as po-
tential victims, debris, and other hazards. Once an AOI was identified, partici-
pants provided a number for how many important objects were in that location
and assigned them each a priority level from Low, Medium, or High. This ap-
proach demands more natural and active human intervention, emphasising direct
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user control communicated through head-gaze inputs that conveyed participants’
intentions in real-time.

System-Assisted (SA) Scenario: The second scenario employs a higher de-
gree of system automation to guide participants in identifying and prioritizing
AOIs. Using a predefined point-based technique for AOIs in the virtual SAR scene,
the system clusters and highlights regions (rubble + humans + fire, electrical fail-
ure + rubble, fire + smoke + human) based on their priority scores derived from
proximity to threats, human presence, and structural urgency. The scene view,
captured via the robot’s front-facing camera, is streamed to a 2D screen parti-
tioned into six dynamically adaptive sections, each mapped to spatial zones in the
robot’s field of view and optimized to align with human visual working memory
limits (5-9 chunks) [Mil56|]. The foveation on these sections of the 2D screen is
updated in real-time to reflect AOI density and criticality in regions with overlap-
ping hazards, such as smoke near trapped humans. These regions are accentuated
using foveated rendering [Su+23|, which prioritized high-detail rendering for criti-
cal zones while gradually reducing visual fidelity in peripheral sections. Although
the system guides participants to prioritized regions, participants remain the fi-
nal decision-makers, confirming or adjusting the importance levels of each AOI
(Low, Medium, High) through a simplified input interface. This hybrid workflow
is adopted to balance automation with human oversight, to reduce cognitive load
while retaining situational control.

This design and iterative development of the CueSense system directly ad-
dresses RQ1 and RQ3 by demonstrating how multimodal non-verbal cues such as
gaze and gesture can be modeled for efficient, real-time collaboration in dynamic
environments.

User Study

The experiment included two primary tasks: 1) an areas of interest (AOI) identi-
fication task, where participants located and prioritized relevant AOIs within the
virtual environment, and 2) a decision-making task, which measured how head-
gaze augmentation influences cognitive workload and efficiency in task execution.
In the SA condition, the system dynamically adjusts foveation based on real-time
head-gaze input, whereas in the HA condition, participants rely solely on manual
head-gaze exploration without system assistance.

Before beginning the experiment, user demographic information was col-
lected, and ethical considerations were addressed following the university’s guide-
lines [LU23]], which did not require a formal committee review for this study
type.

Each experiment session began with a system functionality check. Partici-
pants were then briefed about the overall objectives of the study, signed consent
forms, and completed a set of demographic questionnaires. Following this pre-
liminary phase, participants received a short training session to help familiarize
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themselves with both the head-gaze-based interaction system and the virtual en-
vironment. After training, participants proceeded to the main part of the study,
which consisted of two different scenarios presented in random order. The order
of these scenarios was counterbalanced across participants to control for poten-
tial learning effects. Each participant performed both scenarios in sequence, with
the total session lasting approximately 60 minutes per participant. Using the pro-
vided reference sheet in appendix[9.1] participants assigned priority markers on the
screen to each point of interest they discovered, ensuring systematic identification
of urgent rescue needs or potential hazards. Their ability to identify and categorize
these points of interest was recorded, forming the basis for post-task performance
assessments. The recorded metrics are discussed in detail in the next section.
While the CueSense system addresses RQ1 and RQ3, results from the user
study partially address RQ2 and RQ3. The user study explores the use of gaze and
gesture for communication and to deduce direct intentions and improve collabora-

tion in high-stakes scenarios.

Study Validation

The validity and effectiveness of the system were assessed using the evaluation

metrics mentioned in the Table below.

Metrics Used Description
Demographics infor- | Pre-experiment; data to correlate participants experience with controllers such as
mation AR/VR devices and disaster relief scenarios to the final analyzed results

Total time taken

During-experiment; time taken by participants from start of experiment till end task
button is clicked on the screen

Total humans saved

During-experiment; calculated using marked regions by all participants

Average humans saved

During-experiment; calculated using marked regions by individual participants

NASA TLX Score

Post-experiment; the average subjective mental workload reported by participants after
the task

System Usability Scale

Post-experiment; the average subjective usability of the system reported by participants
after the task

System Assisted | Post-experiment; used to collect feedback on user experience, trust, and challenges
Search Questionnaire
Human Assisted | Post-experiment; used to collect feedback on user experience, user strategies, decision

Search Questionnaire

making, and challenges

End of Experiment
Questionnaire

Post-experiment; used to collect feedback on comparative search efficiency, accuracy,
and user strategies. User inputs were collected for operator handover and shared control
scenarios

Head-gaze values

During-experiment; head-gaze direction as 3D rotation values (Rx, Ry, Rz) to compute
participants’ specific regions of interest and correlations

Gesture inputs

During-experiment; dual confirmation key presses indicating action selection

Robot State transfor-
mation

During-experiment; Trajectory data was computed from the location and rotation value
of the robot in the map

Marked regions

During-experiment; areas of interest marked by participants

Items located

During-experiment; total number of items found in each of the various areas of interest

Table 1: Evaluation metrics for two scenarios
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Results

Participants Overview: The total sample recruited for the user study consisted of
18 participants. There were 13 males, 4 females, and 1 unspecified, with a mean
age of 31.29 years (SD = 9.78), excluding 1 participant who declined to report
their age. Out of the 18 participants, 7 had some level of vision impairment mostly
corrected with eye-glasses. Since the task involves a search and rescue scenario,
the use of multiple interfaces, and virtual scenarios, we were also concerned about
the experience of the participants in those aspects. Only 4 participants had ex-
perience in providing disaster relief. Participants also reported varying levels of
experience across different domains: with robots (M = 2.72, SD = 1.7), with any
form of virtual, augmented, or mixed reality system (M = 1.83, SD = 1.79), and
with using controllers (M = 3.83, SD = 1.2). In order to eliminate any order and
learning effects, half of the participants (N = 9) started the study with HA scenario
while the other half started with the SA scenario.

Objective and Subjective Analysis: As seen from Tabldl] users completed
the task faster and with higher accuracy in the SA scenario. In terms of perfor-
mance metrics, SA outperformed HA. Additionally, in terms of identifying trapped
humans, 47 out of 54 total possible instances were identified correctly in foveated
augmentation as compared to 20 correct identifications out of 54 in the other sce-
nario. The results in case of the subjective measurements also support the perfor-
mance outcomes.

With 38% lower perceived workload in SA, and system usability ratings well
above the benchmark score of 68, users found the system more intuitive to use.
Based on the subjective questionnaires participants found the gaze-driven inter-
face intuitive but noted limitations such as slow turning and restricted peripheral
vision. In the SA scenario, the participants wanted greater explainability of sys-
tem decisions. Head-gaze analysis of the participants highlighted the difference in
behavior of participants in both the scenarios. For comparing the gaze data across
two scenarios, we collected a baseline to establish the thresholds for each section
of the screen. These thresholds allowed us to map the gaze direction. Baseline
regions based on thresholds from baseline data are shown in figure ] This also
served as the method for removing outliers in the data collected. Across the two
scenarios, we used the view counts and the variance of the gaze position to com-
pare where the participants were focusing during the experiments.

Scenario | Total Time Taken (ins) Humans Saved NASA TLX Score SUS
HA 678.88 4+ 233.98 1.11+£0.75 53.85 £+ 18.06 58.61 + 14.80
SA x274.41 + 52.95 x2.61 £+ 0.69 +x33.4 + 15.24 x80.13 4 16.30

Table 2: Objective and Subjective performance results for Human-Assisted (HA)
and System-Assisted (SA). Results show that SA outperformed HA significantly
in all the evaluation metrics with * indicating significance according to the inde-
pendent t-test with p < 0.05.



3 Implementation and Evaluation

29

Rectangular Regions for Screen Positions

0.4 4 uUp
Down
Left
0.3 1 Right
0.2 1
-
S
= 017
[
[=]
o
0.0 +
_01 -
_0‘2 -
T T T T T T T
-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Position X

Figure 4: Baseline Regions based on thresholds from baseline data

The view counts and variance of the gaze position for each of the 9 sections of
the system-assisted scenario were compared as can be seen in Table[3|and figure 5]

Section Foveation View Counts (Left)  View Counts (Right)  View Counts (Up)  View Counts (Down) Average Gaze Position
Section 1 Down 88 162 48 3872 X: —0.01 £ 0.06, Y: 0.03 + 0.06
Section 2 Left 271 81 166 3615 X: —0.03 £0.04, Y: 0.03 £ 0.07
Section 3 Up, Down, Right 290 48 173 5162 X: —0.03 £ 0.04, Y: 0.03 + 0.06
Section 4 Down, Right 132 309 144 5617 X: —0.01 £ 0.05, Y: 0.03 £ 0.06
Section 5 Up, Left 233 113 148 3274 X: —0.03 £ 0.06, Y2 0.03 4 0.07
Section 6 Up, Down 185 68 262 3423 X .03 £+ 0.07
Section 7 Down, Left 185 45 489 5918 X: .02 £ 0.08
Section 8 Down, Left 228 139 413 4346 X
Section 9 Up 321 21 757 5537 X

Table 3: Results of view counts and average gaze position for different sections of
the System-Assisted scenario

Aggregate results show that, while using SA, users preferred to look predom-
inantly towards the lower part of the screen (67.82% views, p < 0.05) as can be
seen in Fig. 3. In the horizontal direction, users had a higher inclination of looking
towards the left (3.4% views, p < 0.05) compared to the right side. While using
HA, users had a more spread-out view count across the regions. In the horizon-
tal direction, the users looked equally towards the left and the right (17.85% left
views, 16.99% right views, p < 0.05). However, unlike the predominantly down-
ward gaze in the case of SA, users in HA preferred to look more towards the upper
part of the screen (33.7% views, p < 0.05).

There was also a high alignment (67%) of the gazed and foveated regions in
the SA scenario, with the deviations occurring due to extra foveal attention capture
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SA vs HA Views in Different Screen Regions
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Figure 5: View Percentages in SA and HA implementations. Here, None refers to
the central white region in figure {4}
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Figure 6: Mapped trajectories in HA vs SA approaches.
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due to high-priority items outside the immediate field of view of the participants.
Extrafoveal effects were also observed in HA scenario where participants showed
interest in distant AOIs over the near ones.

A comparison of the trajectories of the robot in both the scenarios can be seen
in figure[6] A detailed analysis of the results for subjective questionnaires can be
found in Paper[[l|and gaze analysis in Paper [[]]

3.2 Intention Recognition

This part of the thesis focuses on using the understanding taken from the work done
in the previous section. The primary objective is to understand how to equip robots
with the ability to interpret multiple modalities from humans. Here, using the
review as a foundation, our analysis provides an in-depth understanding to allow
integration of additional cues and helps bridge the critical gaps in incorporating
multi-modal cues to robotics systems to provide support during collaborative task
executions.

Intention recognition serves as an essential aspect that enables the integration
of multimodal cues with environmental factors, which allows robots to understand
and predict human intentions. Traditionally, intention recognition uses a combi-
nation of sensors, data analysis techniques, machine learning, and deep learning
approaches to interpret behavior through emotions, gestures, gaze, speech, and
motion. However, as robots have evolved from working solely on factory floors to
operating within social environments, it has become essential to integrate context-
based information that could be inferred and learned to interpret dynamic and un-
predictable scenarios. Thus, it is crucial to make robotic systems adaptable and
resilient. Intention could be defined as an agent’s goal with a dynamic action plan
within a defined environment and herein intention recognition then becomes the
key that allows us to understand the desired State and the sequence of actions
necessary to achieve this goal [V}

The work in Paper [[V] focuses on categorization of intentions into high-level,
low-level, and robot intention recognition. The previous categorizations such as
distal (D-intentions), proximal (P-intentions), motor (M-intentions), active, pas-
sive, have successfully attempted to capture certain aspects of intention recogni-
tion such as future intentions, intentions during planning and decision making,
intentions inferred from observing others, amongst others [Pac08| [Per22, Bra87,
Omo+08]. However, the previous categorizations lacked the breadth needed to en-
capsulate the research done in the field. Our review also includes all the different
methods in which intention is referred to and understood during execution phase
with robots.

Figure|/|summarizes the important aspects of intention recognition.
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4 Conclusions and Future Work

Robotics research is progressing at a fast pace. However, we have a long way to
catch up to the maturity and breadth achieved in artificial intelligence in recent
times. With the continued efforts towards mixed-initiative interaction in robotics,
the shift from an isolated understanding of robotic task implementation to syn-
ergistic human-robot interaction across diverse settings has become crucial. To
enable this integration, it is essential to develop methods that equip robots with
multimodal inference capabilities and adaptive behaviour. This would allow robots
to understand and respond appropriately in complex and dynamic environments.

This thesis addresses the research challenge by designing real-time systems for
natural collaboration, enabling effective strategies to balance humans’ situational
awareness with robots’ automation, and undertaking comprehensive reviews to
better understand effective methods of interaction through intention recognition
techniques. All of this aims toward achieving mixed-initiative interaction. The
research questions in the thesis have been addressed as follows:

1. How to design robotic systems for efficient and natural collaboration in
real-time?

The CueSense system demonstrates the feasibility of using nonverbal
communication cues to carry out collaborative tasks. This was done by
leveraging gaze input to assist users in executing tasks within search and
rescue scenarios. The integration of additional modalities such as foveated
augmentation and navigation assistance resulted in a 60% reduction in task
completion time, which has been discussed previously. This highlights the
need for methodological approaches and more studies into using human-in-
the-loop mixed-initiative systems to support critical tasks, leading to better
goal execution.

2. What are the key factors and behavioural cues that can be used to determine
when and with whom to communicate during interactions?

We use gaze and gesture as the primary modality in the system. The
results from the study show that gaze can be used to determine where
the attention is focused. However, users demonstrate extrafoveal attention
captures in high-risk environments, highlighting the need to explore such
mixed-initiative collaborative settings with robotic systems further. This
will enable robots to handle attention shifts better while working in col-
laborative workspaces. Building on this understanding further, we suggest
that Intention recognition in robots should be the key towards determining
support protocols during task execution. The techniques in Intention recog-
nition should utilize a combination of multimodal interaction cues, task
context, and environmental conditions to provide timely support.
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3. How to model multimodal signals such as gaze, gestures, and full-body cues
to infer human intentions during task execution in dynamic and complex
environments?

To understand how non-verbal communication cues could be incorporated
into a complex system, we began by examining individual cues. In addition
to this, we employ a direct approach to utilize them in a collaborative task.
This consists of an iterative process involving designing and redesigning
the system and examining ways in which gaze and gesture can be directly
used to infer intent. A search and rescue scenario is used for this purpose.
This is not only representative of an uncontrolled, high-risk, and dynamic
environment but also makes it a challenging task to balance human supervi-
sion with system automation. Further, a deeper understanding of different
aspects of effective use of non-verbal communication cues, mixed-initiative
interaction, and an uncertain environment was needed to design the sys-
tem and formulate studies that efficiently address the challenges discussed
previously. The next step involved identifying a multi-modal approach
that integrates understanding from direct system-based methods with gaze,
gesture, full-body cues, and scene information into a more context-aware
framework. Through a comprehensive review of the methods and tech-
niques in the field of human-robot collaboration, we conclude that intention
recognition for robots provides the right strategies and direction to antic-
ipate the goals behind human actions and adapt proactively in complex
environments.

This thesis advances the field of collaborative robotics by bridging the gap in
establishing the effectiveness of human-in-the-loop mixed-initiative systems and
multimodal communication cues in human-robot collaboration and providing both
theoretical and empirical evidence to support the claims.

While much work still needs to be done to bridge the gap in human-centered
collaboration, achieving smooth and seamless collaboration is a key objective. We
believe the work done in this thesis and the results obtained would serve as a valu-
able contribution to the field of mixed-initiative interaction and proactive human-
robot collaboration that makes robots intelligent, explainable, and trustworthy.

In future work, we propose to build a comprehensive system for next-step hu-
man intention recognition in collaborative environments. The aim is to develop a
multi-stage pipeline starting with real-time pose estimation of humans using tools
like OpenPose or MediaPipe to extract keypoint features such as gaze, lower-limb
and upper-limb positions, and torso orientation. Simultaneously, the environmen-
tal context sensing part of the pipeline will use an RGB-D camera and vision,
along with pretrained models such as CogVLM [Wan+24c], to identify and local-
ize surrounding objects in space. The multimodal data of humans will be input
into a machine learning based intent classifier, which will infer one of the three
main intentions: observation, interaction, or navigation. These predicted inten-
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tions, along with raw sensor inputs, data of the environment, and with normalized
task-conditioned relevance weights for each object obtained from an LLM-based
scoring function, will be integrated into a Bayesian inference framework, enabling
structured probabilistic reasoning about the human’s following most likely actions
which are then used to trigger robot policies for proactive assistance.

This Bayesian model will run in an iterative inference loop, updating predic-
tions in real time as soon as new observations are collected. Each module of this
pipeline remains to be implemented and evaluated, and a key part of the future
work will be designing a robust Bayesian network structure (static or dynamic)
that can handle uncertainty and incorporate dependencies across modalities (for
example, combining gaze and hand gestures for highly accurate intent about inter-
action with an object). Additionally, along with object-task relevance scores, we
also plan to explore how peripersonal relevance can influence priors within this
network to guide inference. This will be followed by ablation studies to under-
stand the impact of each component and module in the pipeline. The goal is to en-
able a robot to anticipate human intentions in real-time and respond appropriately,
supporting more intuitive and seamless collaboration in shared environments.
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5 Contributions

This section describes the contributions of this thesis.

In Paper I, we present a mixed-reality interface for human-assisted robotic scene
inspection in search and rescue operations. The existing algorithms and control
schemes for autonomous systems have not matured enough to allow for safe op-
erations in high-risk, unstructured, and dynamic environments. Fully autonomous
systems are susceptible to failures in unpredictable environments, and manual
control can also be slow and cognitively demanding. Our method introduces
human-in-the-loop by using high-level human input through intuitive gaze and
gesture recognition to guide the robot. This approach works effectively while us-
ing humans’ situational awareness with robots spatial and navigational capabilities
in unstructured environments with minimal information and no communication
loss. This allows the system to be useful for robots in time-sensitive and high-risk
environments to carry out operations seamlessly.

In Paper II and III, we further develop the system presented in Paper 1. In
addition to the system, a comparative user study is carried out with two interaction
designs within this system: Human-Assisted and System-Assisted. While several
techniques in the past mostly focused on speech and gesture to support seamless
collaboration, the use of these explicit commands limits their effectiveness in
dynamic real-world scenarios. Our work is novel in its design and integration of
non-verbal cues such as head-gaze based interaction and real-time foveation-based
visual augmentation for task collaboration. Paper II mostly focuses on the experi-
ment setup and preliminary results analyzed from the study. In Paper III detailed
analysis and correlations in the data obtained from the gaze analysis is also pre-
sented. The study demonstrates that the head-gaze based foveated augmentation
improves performance and user experience with significant improvement in task
performance and decrease in cognitive workload during collaboration.

In Paper IV, we conduct a review of intention recognition in human-robot in-
teraction. While the concept of intention in case of human-human communication
is well defined, its meaning and application in the field of robotics is quite varied.
We aimed to bridge this gap of fragmented approach to provide a meaning and
classification of intention recognition in human robot interaction. On the basis of
the state-of-the-art review of the different psychological theories, computational
models, methods, terminologies, approaches, and applications we categorize it as
low-level, high-level, and robot intentions with further clusters within these cate-
gories. In the paper, we discuss about the advancements in the field and identify
gaps in the research. We also propose future research directions through discus-
sion of methods in which these gaps could be addressed paving the way towards
seamless collaborations between humans and robots.
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6 Other Contributions

The following papers are related, but not included in this thesis.

Virtual, augmented, and mixed reality for human-robot interaction (vam-
hri) MK Wozniak, M Pascher, B Ikeda, MB Luebbers, A Jena Companion of the
2024 ACM/IEEE International Conference on Human-Robot Interaction, Boulder,
Colorado, USA. DOI: 10.1145/3610978.3638158

Framework for assessing situational awareness in Beyond Visual Line of
Sight UAV operations RP Maben, A Jena, S Reitmann, EA Topp 2025 20th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), Mel-
bourne, Australia. DOI: 10.1109/HR161500.2025.10973804

Impact of Gaze-Based Interaction and Augmentation on Human-Robot Col-
laboration in Critical Tasks A Jena, S Reitmann, EA Topp Accepted as a Late
Breaking Report to the 2025 34th IEEE International Conference on Robot and
Human Interactive Communication.
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CHAOS TO CONTROL:
HUMAN ASSISTED SCENE
INSPECTION

1 Abstract

We are working towards a mixed reality-based human-robot collaboration inter-
face using gaze and gesture as methods of communicating intent in a search and
rescue scenario to optimize the operation. The lack of mature algorithms and con-
trol schemes for autonomous systems makes it still difficult for them to operate
safely in high-risk environments. We are approaching the problem through sym-
biosis while utilizing humans’ intuition of the environment and robots’ capability
to travel through unknown environments for optimal performance in a given time.

2 Introduction

Autonomous systems have come a long way in what they are capable of achieving.
This has allowed robots to permeate various spheres of society to fulfil small and
large needs ranging from the mundane to the critical.

In disaster response scenarios, time is of crucial importance. The goal is to
potentially carry out a rapid and recursive search, identification, and response to
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minimize further loss of life and property. However, caution must be maintained
while carrying out these tasks so that additional damage or risk does not occur.
Robots can prove to be of crucial assistance in this regard by directly helping the
affected victims, providing support to structures, or aiding in additional support
activities [SKKOS|.

Additionally, robots can be of help in aspects of Search and Rescue (SAR) like
concentrated search, wider reconnaissance and mapping, rubble removal, skele-
tal inspection of the damaged structures, in-situ medical aiding or assistance, and
expanding network ranges in the area of operations using beacons, among other
tasks [[SKKOS|. In order to carry out such operations autonomously, robots need
to be equipped with a number of functionalities in navigation, perception, manip-
ulation and reasoning. However, integrating the above functionalities in a robot
comes with its own set of challenges such as power supply, computing resources,
space and cost. Furthermore, the algorithms and control schemes for autonomous
systems have not matured enough to allow for safe operation in such high-risk
environments. A major disadvantage here is the lack of bi-directional communi-
cation between the human and the robot for effective collaboration [Wal+22[]. We
assume that the challenges faced by an autonomous system can be mitigated by
falling back to a semi-autonomous one. This allows the system to continue func-
tioning while relying on human expertise to address the issue at hand. Thus, in this
paper, we present a human-in-the-loop mixed-reality based robot control system
for the teleoperation of a mobile robot in unknown scenarios to facilitate a natural
and intuitive user interface for SAR operations. The components of the system
involve: (i) a virtual system with reconfigurable screens, (ii) real-time visual re-
production of the target environment, and (iii) use of gaze and gesture for robot
control.

3 Related Work

Teleoperation in virtual, augmented, and mixed reality for human-robot inter-
actions makes use of compatible hardware (Video displays, Tablets, Projec-
tors, Cave Automatic Virtual Environments (CAVEs), Head Mounted Displays
(HMDs) [Wal+22]) and graphics engines (Unreal Engine, Unity3D, etc. [Nac+19])
to control an agent from a remote location. Besides legacy input devices such as
controllers and joysticks, nonverbal cues from humans can also be used as input
to directly control the robot. Lipton et al. have defined three mapping mod-
els to categorize various teleoperation interfaces, namely: direct, cyber-physical,
and homunculus [LFR17]. These categories define the amount of information
being exchanged between the user and the robot’s space during teleoperation.
Hirschmanner et al. used a Leap Motion Controller to get the teleoperator’s arm
pose and used algorithms to directly calculate the robot’s joint angles from the
same [Hir+19]. The entire environment was presented virtually to the user with
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Figure 1: User interface in a top-down approach

the help of an Oculus Rift VR headset. Gaurav et al. proposed a machine-learning
approach to estimate correspondence for robotic teleoperation from the operator’s
pose [Gau+19]. A Microsoft Kinect depth camera is used to perceive the robot’s
workspace while an HTC Vive is used to visualize the workspace and provide
3D control to the operator. Sun ef al. developed an interaction method based on
the homunculus model to individually control the position and orientation of the
robot independent of each other [Sun+20]. This was made possible by using a
virtual sphere as the controller with which the operator interacted to control the
two robot modes. Comparing this to the work done by Whitney ez al. [Whi+20],
where both the robot’s position and orientation are controlled simultaneously, the
method developed by Sun et al. achieved a 93.75% success rate compared to 25%
success rate of the first mentioned system. Lager ef al. have compared different
graphical user interfaces and found that a VR setting has benefits over traditional
Graphical User Interface regarding situation awareness LTM19]. Based
on these findings, they further proposed a VR-based Graphical User Interface
to allow a remote operator to support an unmanned vessel performing GPS-free

navigation [LTM20].
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4 Methods

Our proposed system can be categorized under the homunculus model as men-
tioned in the previous section [LFR17], and is shown in Figure[I] The gaze and
gesture inputs are decoupled to control the orientation and motion of the robot in
real-time through a virtual space. The mapped user inputs from the virtual space
are sent to the robot in the real world via ROS.

4.1 User Input

In order to detect the user’s gesture and gaze, we use an RGB camera to capture
real-time video input and use OpenCV to feed the frames to pre-trained models
from mediapipe [Goo22]. These models allow us to detect 21 3D landmarks across
the user’s hand and 468 3D landmarks across the user’s face for highly accurate
tracking. The 21 landmarks of the hand and the rotation values of the gaze vector
are calculated from the face landmarks and combined into a string and encoded
in the form of bytes. These bytes are then sent across the network in the form of
UDP messages to the virtual system.

4.2 Network

To allow efficient and real-time data transfer between the user input system and the
virtual system, a UDP server and client connection is created on the local network.
We are using UDP messaging instead of the standard TCP-IP in order to reduce
latency between the delivered packets. The UDP connection is established using
the sockets library in python and UDP-Unreal plugin [get22] in the virtual system.

4.3 Virtual System

The virtual system shown in Figure[2]works as a virtual space which receives visual
input from the robot’s camera and control inputs from the user. The system also
ensures reliable delivery of mapped user input to the robot for precise control. The
virtual system is developed using Unreal Engine in order to leverage the software’s
physics system and rendering capabilities. Within the virtual space, the bytes from
the user input are parsed back into relevant transform values which are then used
to control a virtual representation of the gaze and gesture. Additionally, 9 screens
in the form of a 3x3 grid are presented to the user in the virtual space. The video
feed from the robot’s camera is segmented into these 9 screens. These individual
screens can be turned on or off based on the user’s preference. A ray cast from
the gaze vector is used to select one of these 9 screens and another ray cast from
the gesture is used to confirm the choice. These screens are mapped to different
robot navigation commands. Once the user has confirmed their choice, the virtual
system relays this information to the robot via ROS.
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Figure 2: Egocentric view of the user interface. The colour is used to indicate the
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Figure 3: Robot used for the purpose of the system design and operation. Universal
Robot arm UR5e mounted on a MiR200.
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4.4 Robot

The mobile robot used for this setup is a combination of a Mobile robot platform
MiR200 (Mobile Industrial Robots) [[Rob22], a Universal Robots collaborative
arm UR5e [RobO08]], attached with an Intel Realsense D435 RGBD camera [Int18|]
on the plate of Schunk WSG-50 parallel gripper [[Schi, as shown in the Figure
MiR200 is an autonomous mobile robot with a load-carrying capacity of 200 kg.
MiR200 comes with a web-based interface, which can be accessed by a browser
on any device. The Universal Robot arm URS5e, is a 6 DOF collaborative robot
arm with a 5 kg payload capacity. Intel Realsense D435 is an RGBD camera, with
an effective depth range of 0.1-0.8m. This camera input is used as a real-time feed
into the screens in virtual space.

5 Technical Results

The core components are the gaze vector from the face detection model, the hand
detection model and the user input information to the virtual space. The facial
detection model used in the system has an average precision of 98.61% with an
inference time of 0.6 ms on a high-end device [Baz+19], and the hand detection
model in the system achieves an average precision of 95.7% [Goo22]. Further, the
data communication latency between user input and virtual space is 10 ms within
the same system. This value is the instantaneous maximum latency value and was
obtained by comparing the clocks of the user input system and the virtual system
over a period of time. LAN is used for transmitting the sensor data. This is done
keeping in mind the sensors used. For UDP, there is no insurance in place for
packet loss happening. However, this is also of no concern for this version since
the data is collected and transmitted at a frequency of more than 60 Hz which does
not affect the performance even if there is some amount of packet loss.

6 Discussion and Future Work

We proposed a user interface system to assist operators in real-time to control a
robot using gaze and gesture signals. The preliminary results from testing the sys-
tem show that the models are able to accurately identify the presence of faces and
hands in the input images, while the low inference time suggests that the models
can process the images quickly. The network latency value for information ex-
change puts the system ahead of the required threshold of 80 ms, above which the
user experience gets affected [Cho+12]. This is useful in tasks requiring speed and
accuracy.

The current system is designed keeping in mind that using human intuition
to guide a mobile robot in SAR scenarios could lead to faster search and locate
times, as human intuition is often based on experience and pattern recognition,
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which can be valuable in quickly identifying potential areas of interest. We as-
sume that a limited field of view can help to maximize rescue efforts in chaotic
situations by allowing rescuers to focus on specific tasks or areas, rather than be-
coming overwhelmed by a large and chaotic environment. Additionally, using a
limited field of view while controlling a robot towards a selected goal could lead
to quicker goal execution. By focusing on a limited area, the operator can more
easily identify potential obstacles and plan a path to the goal without being over-
whelmed by information from a wider field of view. This can allow the operator
to make quicker and more efficient decisions. The future work includes evaluating
the user interface with the robot to carry out user experiments in order to confirm
these two assumptions.
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TOWARDS UNDERSTANDING
THE ROLE OF HUMANS IN
COLLABORATIVE TASKS

1 Abstract

This paper explores the dynamics of human-robot collaboration through a com-
parative study of human-assisted and system-assisted approaches in a search and
rescue application. Leveraging virtual environments and mixed-reality interfaces,
the study evaluates task performance, workload, usability, and subjective expe-
riences of participants. Results indicate that the system-assisted approach signifi-
cantly improves task completion time and accuracy in identifying critical elements,
and reduces perceived workload compared to human-assisted methods. Subjective
assessments reveal valuable insights into user preferences and challenges, inform-
ing recommendations for system refinement and protocol development. Findings
highlight the potential of human collaboration in enhancing operational effective-
ness and promoting seamless collaboration between humans and robots in clut-
tered and high-risk environments. Interactions aimed at synchronizing goals, task
states, and actions can be facilitated through virtual, augmented, and mixed-reality
environments providing an intuitive platform for understanding interaction dynam-
ics.

Ayesha Jena, and Elin Anna Topp. “Towards Understanding the Role of Humans in Collaborative
Tasks”. In 7th International Workshop on Virtual, Augmented, and Mixed-Reality for Human-Robot
Interactions at HRI 2024. Boulder, CO, USA
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2 Introduction

In a time marked by rapid technological advancements, robotics continues to
evolve and permeate various facets of society ranging from manufacturing and
healthcare to disaster response and space exploration. The synergy between hu-
mans and robots holds immense promise across these diverse domains as this
paradigm shift transcends the traditional notion of robotics where there was little
to no interaction between humans and robots. With the increased integration of
robots into social settings, collaborative robots are becoming active participants in
our everyday lives forging new frontiers in Human-Robot Interaction (HRI) that
have the potential to change the way we interact with the world around us. As
we navigate this era of increased collaboration between humans and machines,
exploring the dynamics, challenges, and opportunities inherent in this symbiotic
relationship becomes important.

While collaborative robots (cobots) are designed to assist humans, they still
operate within highly predefined parameters that are constraining. For example,
a robot will mostly stop or slow down when working in the periphery of humans,
thus, limiting the impact of such collaboration [Nat+23|]. In various sectors, fully
autonomous cobots function within rigid frameworks, carrying out tasks alongside
humans rather than engaging in genuine teamwork. As a result, while they enhance
certain aspects of productivity and efficiency, their potential for seamless human-
robot collaboration remains largely untapped [Nat+23]]. In the case of human-
human collaboration, communication is a crucial aspect that leads to successful
teamwork and goal completion. Similarly, in human-robot teams, it is essential
to have information sharing based on the human supervisory role and the robot’s
autonomy level. This can be achieved through interactions to synchronize goals,
task states, and actions [[LHZ97].

Virtual environments and simulations offer a valuable tool for comprehending
the dynamics of interaction. They provide an intuitive platform for understanding
the mechanics of how interactions would unfold. By leveraging virtual environ-
ments, adaptability can be significantly enhanced to cater to the specific require-
ments of the task space, the user involved, and the capabilities of the robot. These
tools also provide the opportunity to evaluate interactions with virtual robots that
are restricted by monetary and/or safety concerns in the real world [Wal+23].

Building upon our previous work [JT23|], this paper presents a user study to
compare human-assisted and system-assisted methods for human-robot collabo-
ration. Figure [I] gives an overall understanding of the steps involved. The study
investigates two collaboration frameworks: one where humans act as teleoperators
and scene inspectors for robots (human-assisted, HA), and another where systems
suggestions are taken as inputs, with robot teleoperation while humans make final
decisions on areas of interest (system-assisted, SA). Objective and subjective mea-
sures are analyzed to elucidate factors influencing the development of intelligent
and collaborative robots.
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Figure 1: An image of the different aspects of mixed-reality based human-in-
the-loop robot control system. Here, a) the human operator’s gaze and gesture
modalities are taken as input using image recognition and tracking, b) the tracked
modalities are mapped within the virtual control interface which in turn controls
and monitors the agent in the system in human-assisted and system-assisted sce-
narios respectively, and c¢) search and rescue scene designed for assessing humans’
intuition while performing different tasks.

Processing of visualized gaze vector for directional mapping

Two research questions guide this investigation:

* "What level of human-robot collaboration is better at performing search op-
erations in an unknown environment?"

* "How does a limited field of view affect goal execution?"

These questions aim to shed light on the effectiveness of human guidance in
various tasks and the impact of cognitive load on goal execution within limited
visual contexts.

3 Related Work

3.1 Human-Robot Interaction (HRI) Frameworks and Com-
munication Modalities

Human-robot interaction (HRI) encompasses a spectrum of interaction stages, as
categorized by Onnasch et al. [OR21]], including bounded autonomy, teleopera-
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Figure 2: Mapping of head pose and tactile confirmation

tion, supervised autonomy, adaptive autonomy, and virtual symbiosis. However,
the practical application of these stages often involves smooth transitions based
on human roles and task demands, highlighting the importance of effective com-
munication channels between humans and robots throughout these interactions.
Researchers have investigated diverse communication modalities within HRI, sur-
rounding two-way dialogue, natural language, multi-modal communication, and
visual messages. While these modalities present rich interaction potentials, they
often elevate cognitive workload and present hurdles to situational awareness. In
response, discrete and sparse communication channels aimed at preserving hu-
man interpretability while strengthening decision-making precision have been sug-
gested [Nat+23]. Gaze, identified as a natural means of interaction, has been
leveraged in HRI, either as a primary input signal or in conjunction with other
modalities [Plo+22]. However, gaze-only interfaces encounter challenges like the
“Midas touch problem”, where deciding when to select input becomes intricate
due to the constant nature of gaze [VSU97]. Consequently, separate confirmation
mechanisms are necessitated to address these issues [SG19]|. Techniques such as
Eye & Head Dwell, Eye & Head Convergence, and Eye & Head Pointer have been
investigated to enhance stability and efficacy in gaze-based interactions [SG19].
Moreover, head-supported gaze offers greater stability compared to gaze-only ap-
proaches [SGI9]. Considering that humans utilize their bodies to attend to their
environment or convey their attention to others, nonverbal cues like pointing or di-
recting their head and eyes toward objects of interest emerge as natural candidates
for further exploration in target selection and manipulation tasks within Extended

Reality (XR) contexts [Plo+22].

3.2 Teleoperation Interfaces and Multi-modal Interaction
Techniques

Teleoperation offers a bridge between human instinct and robotic capabili-
ties [Zha+19b]. Gesture-based teleoperation systems, utilizing devices like joy-
sticks or motion-tracking devices, enable intuitive control methods for opera-
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Figure 3: Start (green box), goal (red box), and interaction target points (yellow
box) of the robot during experiment in SA scenario

tors [Zha+19b]. Immersive VR teleoperation interfaces replicate natural human
motions, although they introduce complexities such as the need for specialized
equipment [TRWT8]. This, when combined with head-supported gaze, can gener-
ate mapped motions in the interface [JT23]. Multi-modal interfaces play a crucial
role in reducing cognitive workload and improving task performance in teleoper-
ation scenarios [Tri+20]. These interfaces synchronize multiple modalities to en-
hance user immersion and awareness, contributing to more effective human-robot
collaboration [Tri+20]. In the context of this work where humans need to perform
faster searches, foveation methods also offer an interesting way to facilitate search
mechanisms in cluttered and cognitively demanding environments [AE17].

In summary, research in the field has explored various communication modal-
ities, teleoperation interfaces, multi-modal interaction techniques, and foveation
technologies to enhance human-robot collaboration across different interaction
frameworks. These studies provide valuable insights for comparing the effective-
ness of HA and SA approaches in HRI scenarios, as investigated in our current
research.

4 Experiment

4.1 Aim

In this study, we aim to investigate the effectiveness and efficiency of a mixed
reality-based system for improved human-robot collaboration, along with the un-
derlying methods for user support in search and rescue situations involving other-
wise autonomous systems.
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Figure 4: FOVs of the participant in both the scenarios - HA scenario (top) and
SA scenario (bottom).

4.2 Test-bed environment

To test in a search and rescue scenario we used an already existing 3D map
as the virtual environment and made modifications to create a simulated post-
disaster scenario. Based on the interface design, similar 3D maps could be in-
tegrated at any stage to test other applications.

4.3 Experimental Design and Workflow Steps

Participants engaged in two sequential scenarios presented in random order. The
two scenarios were designed with varying degrees of human intervention and
decision-making. In the HA scenario, participants directed a simulated robot using
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eye gaze (left, right, up, down) and corresponding keyboard inputs (J, L, I, K) to
traverse a search-and-rescue scene (figure [2)), aiming to reach the end of a parking
lot. This mode granted participants heightened control over task execution. This
can be seen from the top part of figure [}

In contrast, the SA scenario employed a Wizard-of-Oz technique to cluster
identified areas of interest (AOIs) according to assigned importance levels (Low,
Medium, High) for objects and humans in the scene. These AOIs could be seen as
yellow point marks in figure[3] while green and red indicate start and end locations
respectively. The robot autonomously navigated to these AOIs using foveation
techniques, thus, reducing the cognitive load. Participants acted as final decision-
makers, specifying their priority levels through the interface, utilizing similar im-
portance categories (Low, Medium, High). This can be seen from the bottom part
of figure ]

4.4 Task

The overall goal of the task was to assess the scene and provide information re-
garding AOIs in a post-disaster scenario. The task for the participants was to count
the points of interest they encountered and put corresponding priority markers for
each of them. Participants were also provided with a small reference sheet before
the experiment started to give a general idea of the importance of various objects
in the scene.

4.5 Participant Data, Recorded Information and Ethics

Ethical considerations were taken into account before the experiment. As per the
guidelines mentioned in [LU23| the experiment did not require an ethical review
process from a committee. Participant demographics and recorded data, including
log files, are anonymized, stored, and processed in line with the regulations of the
university.

4.6 After Experiment: Analysis

We evaluated task completion time, task accuracy, and the number of identified
humans to compare priorities between scenarios. These evaluations were comple-
mented by workload analysis using NASA Task Load Index [HS8S]|], system us-
ability through the System Usability Scale [[Bro96|], and subjective questionnaires
to draw conclusive insights.
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5 Results

5.1 Participants

The total sample recruited for the user study consisted of 18 participants. There
were 13 males, 4 females, and 1 Other with a mean age of 31.29 years (SD =9.78)
excluding 1 Other participant who refused to report their age. Out of the 18 par-
ticipants, 7 had some level of vision impairment mostly corrected with eyeglasses.
Since the task involved a search and rescue scenario, the use of multiple interfaces,
and virtual scenarios, we were also concerned about the experience of the partic-
ipants in those aspects. Only 4 participants had experience in providing disaster
relief. Participants also reported varying levels of experience across different do-
mains: with robots (M = 2.72, SD = 1.7), with any form of virtual, augmented, or
mixed reality system (M = 1.83, SD = 1.79), and with using controllers (M = 3.83,
SD = 1.2). To eliminate any order and learning effects, half of the participants (N
= 9) started the study with the HA scenario while the other half started with the
SA scenario.

5.2 Task Timing

This is the first objective performance metric that we use to measure the perfor-
mance of the participants in the two scenarios. Participants took an average time
of 11m 17s (SD = 4m 34s) to complete the HA scenario and an average time of 3m
54s (SD = 53s) to complete the SA scenario. A paired two-sample t-test for two-
tail significance of means shows that participants performed significantly better in
the SA scenario (p < 0.001). This can be seen in figure 5]

Average completion time
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Figure 5: Average completion time in seconds of participants in HA and SA sce-
narios
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5.3 Task Performance

The participants provided different priorities at different locations in the scenarios.
Based on these, important locations and total instances were calculated for the
identification of correct instances of the number of trapped humans present in the
scene. There were 3 trapped humans in each scenario for the participants to locate
during the task. In case of the HA scenario, out of N = 54 total instances, 20 (M =
1.11, SD = 0.76) were successfully identified. In case of the SA scenario, 47 (M =
2.6, SD = 0.7) instances were successfully identified. A paired two-sample t-test
for two-tail significance of means shows that participants performed significantly
better in the SA scenario (p < 0.001).

5.4 Workload

The participants answered the NASA TLX questionnaire after each scenario which
helped measure the perceived workload for each scenario. The results show a high
mean workload of 53.85 (SD = 18.07) in case of the HA scenario as compared
to a mean workload of 33.41 (SD = 15.24) in the SA scenario with a paired two-
sample t-test for two-tail significance of means showing statistical significance (p
< 0.001). This can be seen in figure 6]
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Figure 6: Average workload experienced by participants in HA and SA scenarios

5.5 System Usability

The system usability scale is a quick way to ascertain the usability of systems un-
der scrutiny. Similar to the TLX questionnaire earlier, the participants answered
10 questions from the system usability questionnaire using a Likert scale (1 to 5)
to indicate strong disagreement on the leftmost end (1) to strong agreement on the
rightmost end (5). After calculating a single value from the responses to all 10
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questions, the scores of the participants were averaged to arrive at the presented
results. The participants reported an average usability of 58.61 (SD = 14.8) for
the HA scenario and an average usability of 80.14 (SD = 16.3) for the SA sce-
nario. Since the system usability score by itself does not represent a percentage, it
needs to be normalized and converted to percentile to be interpreted correctly. Ac-
cording to [BKMOS], a system usability score of 68 marks the 50th percentile. A
paired two-sample t-test for two-tail significance of means shows that participants
preferred the SA scenario (p < 0.001). This can be seen in figure[7}

System Usability Scale
120

100

80

Human Assisted System Assisted

Figure 7: Average system usability score reported by participants in HA and SA
scenarios

5.6 Subjective Assessment

The subjective assessment in the form of a questionnaire was presented to par-
ticipants after the completion of each scenario followed by an end-of-experiment
questionnaire. These questionnaires contained both long-answer form and five-
point Likert scale-based questions. In the case of HA, the Likert scale-based ques-
tions were -

Q1 The non-verbal interactive interface helped me to provide assistance to the
robot.

Q2 The non-verbal interface was intuitive and easy to use.
Q3 The robot accurately followed my guidance.
Q4 T am satisfied with the overall outcome of the search task.

Q5 My assistance contributed to the successful completion of the task.



5 Results 67

Q6 Human assistance is beneficial for the robot in a search task in a cluttered
environment.

The findings based on the responses are presented in the graph shown in figure
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Figure 8: Subjective Likert responses to HA scenario interview questions

Similarly, in the case of SA, the Likert-based questions were -

Q1 Thad a good experience with System assisted search for providing assistance
to the robot

Q2 The foveated view field improved my experience in finding points of interest
and importance in the scene

Q3 T trust the system’s understanding of the scene to guide me to particular
locations in the scene

Q4 I had a good experience with System assisted search and foveation for pro-
viding assistance to the robot in this case

Q5 I am satisfied with the overall outcome of the search task.
Q6 My assistance contributed to the successful completion of the task.
Q7 I am confident in the robot’s ability to find the important locations.

Q8 Human assistance is beneficial for the robot in a search task in a cluttered
environment.

The findings based on the responses are presented in the graph shown in the
figure[9]
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Figure 9: Subjective Likert responses to SA scenario interview questions

6 Discussion

The results presented offer a comprehensive evaluation of the performance, work-
load, and usability of participants in two different scenarios: HA and SA. These
scenarios were designed to assess the effectiveness and efficiency of systems in
aiding users in identifying and locating trapped humans within a simulated envi-
ronment. The analysis and discussion below provide insights into the implications
of these findings.

6.1 Task Timing

Participants completed the tasks significantly faster in the SA scenario compared to
the HA scenario. The average time to complete the SA scenario was approximately
one-third of the time taken to complete the HA scenario. This substantial reduction
in task completion time suggests that the SA approach provides a more efficient
means of accomplishing the task at hand.

6.2 Task Performance

In terms of task performance, participants demonstrated a higher success rate in
identifying instances of trapped humans in the SA scenario compared to the HA
scenario. The increased accuracy in identifying trapped humans indicates that
the system provides valuable assistance to users, enhancing their ability to detect
critical elements within the simulated environment.

6.3 Workload

The perceived workload reported by participants was significantly lower in the SA
scenario compared to the HA scenario. This finding suggests that participants ex-

v wee
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perienced reduced mental and physical demands when utilizing the SA approach.
A lower perceived workload is desirable as it can lead to improved user satisfaction
and overall performance.

6.4 System Usability

Participants rated the SA scenario as significantly more usable compared to the HA
scenario. The higher system usability score indicates that participants found the
system to be more intuitive, efficient, and satisfactory in assisting them with the
task. The preference for the SA scenario underscores the importance of designing
systems that are intuitive to use and supportive of user needs.

6.5 Subjective Assessment

The subjective assessment of teaming scenarios revealed valuable insights into the
strengths and areas for improvement in both HA and SA scenarios. Participants
shared detailed experiences and provided constructive feedback that can inform the
refinement of systems for various human-robot collaborative tasks, particularly in
scenarios involving emergency response and reconnaissance.

In the HA mode, participants demonstrated a preference for intuitive decision-
making (ex - moving forward, looking around, size relates to danger), leveraging
factors such as the likelihood of finding objects and the immediacy of danger to and
around humans. However, challenges such as slow turning and limited peripheral
vision were noted, highlighting the importance of improving physical interfaces
and enhancing situational awareness. This can be also seen in the case of the Likert
scale response, where participants generally had neutral or positive feedback about
the non-verbal interface intuitiveness but there were mixed responses regarding
the effectiveness of their assistance in guiding the robot accurately. Suggestions
for improvement included implementing graphical interfaces for prioritizing items
and enhancing navigation capabilities through features like independent percep-
tion control with depth feedback, joystick control, and sound cues. Participants
also suggested to be provided with real-time feedback.

Conversely, in the SA mode, participants acknowledged the potential of au-
tomation in streamlining tasks and providing immediate feedback, particularly
through features like foveation and object detection. However, concerns regard-
ing the system’s inability to highlight critical elements consistently and challenges
related to foveation-induced loss of information were raised. Participants empha-
sized the importance of refining algorithms for scene perception and enhancing
camera feeds to improve overall system performance.

We notice that although participants feel they can help the robot effectively,
they don’t fully trust the system’s understanding of the environment. This sug-
gests they’re confident in their ability to assist practically but are unsure about how
well the system comprehends the surroundings. This highlights the importance of
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aligning participants’ perceptions of the robot’s intent with its actual capabilities
to foster trust and collaboration.

Furthermore, discussions surrounding the handover of control between human
operators and the robot highlighted the necessity of clear protocols and established
cooperation practices. While participants expressed willingness to delegate control
under certain conditions, such as when the operator possesses superior situational
awareness or familiarity with the task, concerns regarding potential conflicts and
the need for a hierarchical command structure were evident.

7 Conclusion and Future Direction

In this study, we set out to investigate the effectiveness and efficiency of mixed-
reality-based systems in assisting operators during human-robot collaboration sce-
narios. Experiments with participants in a virtual search and rescue environ-
ment helped us explore this using multimodal interaction techniques. Participants
demonstrated improved task performance, reduced workload, and higher usabil-
ity ratings when utilizing SA methods compared to HA ones. In both cases, the
results emphasize the complex interplay between human intuition and automated
assistance in collaboration scenarios. Subjective assessments highlighted the im-
portance of intuitive interfaces, real-time feedback, and clear protocols for effec-
tive collaboration between human operators and robotic systems. By addressing
the identified challenges and incorporating user feedback, future developments in
human-robot teaming can enhance operational effectiveness and promote seamless
collaboration between human operators and robotic systems, ultimately advancing
capabilities in domains such as emergency response and reconnaissance.
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INTERACTION AND
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COLLABORATION IN
CRITICAL TASKS

1 Abstract

We present a user study with 18 participants, analyzing head-gaze-based robot
control and foveated visual augmentation in a simulated search-and-rescue task.
Results show that foveated augmentation significantly improves task performance,
reduces cognitive load by 38%, and shortens task time by over 60%. Head-gaze
patterns analysed over both the entire task duration and shorter time segments
show that near and far attention capture is essential to better understand user in-
tention in critical scenarios. Our findings highlight the potential of foveation as an
augmentation technique and the need to further study gaze measures to leverage
them during critical tasks.
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Augmentation on Human-Robot Collaboration in Critical Tasks." In 2025 International Conference
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Figure 1: Left: Bird’s eye view of the test environment; Right: A region of the
environment showing a trapped human.

2 Introduction

Advancements in the field of robotics have led to a need for seamless collabora-
tion and effective communication between humans and robots in different scenar-
ios [Hen+19]. While communication methods such as speech and gestures have
been extensively studied, they require explicit commands which limits their ef-
fectiveness in dynamic real-world interaction scenarios. In such cases, methods
like gaze-based interaction offer an intuitive way of communication [LN+24]. In
addition to being a method of interaction, gaze also shows operator’s intentions
regarding where to focus during task execution [Bel+24]|. This is crucial in high-
stakes scenarios, where fast recognition of user intent through gaze could enhance
performance and improve collaboration.

In human-robot collaboration, gaze tracking has proved effective in combi-
nation with augmentation techniques to improve collaboration efficiency, situa-
tional awareness, and productivity [Sch+25]. While gaze is used for controlling
the robot, augmentation techniques are used for visually enhancing the informa-
tion provided by the system. Their effect in critical domains have been largely
unexplored [Shel6]], which leads to an adoption gap in understanding operator
intentions and supporting collaboration in high-stake scenarios.

We explore this gap through a user study using our collaborative inter-
face IT24].

This work is novel in its design and integration of head-gaze based interaction
and real-time foveation-based visual augmentation for collaboration in a critical
search-and-rescue scenario, as shown in Fig. [ We will explain how we interpret
the terms augmentation and foveation, in the context of our study in sectionsEland
4

Our study explored two different interaction designs within the interface:
manual head-gaze based control interface - human assisted (HA), and a dynamic
foveation based interface - system assisted (SA). We found that foveation based
augmentation enhances task performance, reduces cognitive load, and improves
collaboration in comparison with direct gaze-based control. While head-gaze
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directly indicates user attention, it performed suboptimally as a primary control
modality in critical scenarios. Our analysis, however, shows the usability of
foveated augmentation to guide attention also in such scenarios. We further found
instances of extrafoveal attention capture which would be accounted for in future
studies with an adaptive system that incorporates complex gaze behavior.

3 Related Work

When human and robots collaborate in teams for critical tasks and missions, the
cognitive capabilities of operators tend to decline over time. This is because of the
inherent nature of such scenarios where rapid actions need to be taken while re-
ceiving, processing and combining information from multiple sources at the same
time [MF19]. This often leads to errors which in turn can provoke catastrophic
outcomes [Liu+24]]. Both explicit and implicit modes of communication have been
studied to minimize the operator’s effort while maintaining effective information
exchange during task execution. Early research focuses on explicit communica-
tion modalities such as speech, gestures, and haptic interfaces [US23]]. While
these methods are effective in structured environments, they often lead to addi-
tional cognitive demands on operators, particularly in dynamic, high-stakes sce-
narios [[ULS20]. This has led to interest in implicit communication cues, such as
gaze, which enable more natural and intuitive human-robot coordination [LN+24].

e a—
CONTROL ROOM
1. HUMAN ASSISTED 2. SYSTEM ASSISTED
| &ﬁ - 4 il . E —
- 1, \ Vol - ; :

INPUT FROM THE PARTICIPANT TO SYSTEM
1.PRIORITY (LOW, MEDIUM, HIGH) 2. ITEMS FOUND

Figure 2: The setup of the user study. Left to right: Screen view of the interface
shown to participants during the experiment, View of the simulation control room
which receives visual input from the robot’s camera and provides inputs from the
participants to the system, View of the simulation environment showing the robot
in the search-and-rescue test-bed.

Gaze-only interfaces encounter challenges like the “Midas touch problem”,
where unintentional gaze inputs trigger undesired actions [VSU97||. There is also
the need for special hardware and software for eye tracking, and difficulties in real-
world scenarios due to illumination effects, head rotations, or occlusions [JB16].
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A similar, yet effective, approach is to use head pose instead. Studies have shown
a high correlation between gaze direction and head pose in real-world scenarios,
proving its effectiveness [JB16].

Building on methods to improve collaboration through the use of a visual in-
terface, we explored different augmentation techniques that would enhance task
performance while reducing cognitive overload [Su+23|]. Techniques like high-
lighting important objects seemed ineffective in our case due to clutter and back-
ground distractions. Instead, foveation seemed to be a promising approach in this
regard where focused regions are rendered in high resolution and outlying areas are
blurred [Su+23]. Traditionally, this is used as a graphics-performance optimiza-
tion technique, so this study is the first to apply foveation as a visual augmentation
method in a search-and-rescue setting. Considering the complexities of real-world
situations, this study investigates head-gaze based control and foveation based aug-
mentation in simulation and analyzes the results using task performance metrics,
subjective measurements, and gaze-based heatmaps.

4 Methodology

The study was conducted in a simulation environment where participants per-
formed a search task with two interaction designs: HA and SA. Participants’
head-gaze behavior was recorded and then analyzed to assess efficiency, cogni-
tive workload, and task performance. Head-gaze tracking was performed using
a camera-based tracking system that detected participants’ head orientation and
head-gaze direction. An overview and breakdown of the experimental conditions
are shown in Fig. [2]

4.1 Simulation Environment

A search-and-rescue (SAR) test environment (28m x 83m) was developed from the
3D template of the real-world location provided by the WASP Research Arena for
Public Safety (WARA-PS) [WP24] to simulate a post-disaster scenario using Un-
real Engine 5.1 [Epi22]|. The primary motivation behind creating this virtual SAR
test-bed was to replicate challenging and high-stake conditions in a controlled,
safe environment. The added wreckage, obstacles, and people were strategically
placed throughout the environment. It also had multiple other areas of interest,
such as fire outbreaks and electrical hazards. Additionally, it included simulated
SAR personnel to replicate realistic operational constraints and potential coordina-
tion efforts in real-time rescue missions. This was done on a collaborative interface
developed earlier [JT23| JT24]]. The interface sends gaze data to Unreal Engine,
where it’s mapped with 3D vectors to highlight screen regions in orange. A key
press turns the region green, forming a dual-confirmation input. It also includes
text fields and buttons for selecting priorities, and overlays foveation cues on the
camera feed from the robot (Fig. [2). Some distance away from the test area, a
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control room, as shown in Fig. 2] was designed to replicate real-world SAR op-
eration centers where users could interact with the disaster site by navigating a
mobile robot fitted with cameras and sensors. The robot used for this setup is a
combination of mobile robot platform MiR200, a Universal Robots collaborative
arm URS5e, attached with an Intel Realsense D435 RGBD camera on the plate of

Schunk WSG-50 parallel gripper [JT23].

4.2 Experiment Procedure

Simulation Control Room (Fig. 2)

Operator Mobile

Computes 3D Input Mapping | keypress Robot Operator inspects feed,
vepctors - Gaze Raycast to| Matches | Rohot Velocity [executes| Live Robot repeats gaze and key loop to
Screen e, Command (o, Camera manually find and label each
- Highlights hit Generated Stream Area-of-Interest (AOI), sets
region Orange Priority and Items Found Records Timestamp,
Head-Gaze Head-Gaze Vectors,
Detection | Robot State
H ) Transformations,
; ‘ :C‘)llg:“::\::gri:n) Operator inspects Robot Live R"oeI;c.:tArB?vlzito Priority markers
Sentat 60Hz via | ~ 6-panel screen feed, Velocity Foveated contin[les P
UDP >P: " [Foveated| sets Priority and Command Feed contir
in-focus AOls until
Items Found Generated Update .
- blurred periphery inspected

Figure 3: The experiment procedure for both scenarios. Orange shows the HA

scenario. Green shows the SA scenario.

Each session lasted about 60 minutes and began with a system check, con-
sent and demographic forms, and a brief training. Participants then completed two
counterbalanced scenarios - HA and SA, each involving teleoperating the robot
through the interface (Fig. [3). In each scenario, they navigated within the test
environment to find areas that needed inspection also referred to as areas of inter-
ests (AOIs), counted and classified objects (victims, debris, hazards), and assigned
priority levels (Low, Medium, High) through the interface as can be seen in Fig.
[2l Before the experiment it was made sure that the ethical protocols were followed
per university guidelines [LU23|]. During each session, we recorded head-gaze,
dual-confirmation key presses, robot state transformations, NASA-TLX [HS8§|,
System Usability Scale (SUS) [Bro96], post-study interview responses, and quan-
titative metrics (task times, AOI accuracy), all anonymized under data protection
rules. A total of 18 participants (13 males, 4 females, 1 unspecified) took part in
the study. 4 participants had experience in providing disaster relief. The mean age
of participants was 31.29 years (SD = 9.78) excluding 1 participant who declined

to report their age.

Human-Assisted (HA) Scenario

In this interaction design scenario, participants controlled the robot using head-
gaze for directions and keypresses for confirmations. The experimental procedure

can be seen in Fig. [3]
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System-Assisted (SA) Scenario

In this scenario, the 6 screens shown to the participants were foveated based on the
AOIs present and the density of hazard. Screens with AOIs were in focus whereas
others were blurred. Although the system guided participants to prioritized re-
gions, participants remained the final decision-makers, confirming or adjusting the
importance levels of each item in AOIs (Low, Medium, High) through the inter-
face. The six-section design was optimized to align with human visual working
memory limits (5-9 chunks [Mil56]), ensuring rapid parsing without overwhelm-
ing users during critical scenarios.

5 Results and Discussions

Smoothed user gaze heatmap during HA Smoothed user gaze heatmap during SA

¥ Position
Count
¥ Position

0.0 0.0
X Position X Position

Figure 4: Distribution of head-gaze heatmap over the 2D screen area presented to
the participants.

Table 1: Objective and Subjective Results for HA and SA scenarios. * indicates
significant result (p < 0.001)

Scenario | Total Time Taken (ins) Total Humans Saved ~Avg Humans Saved NASA TLX Score SUS
HA 678.88 +233.98 20 (Out of 54) 1.11+£0.75 53.85 £ 18.06 58.61 £ 14.80
SA +274.41 £ 52.95 +47 (Out of 54) *2.61 + 0.69 +33.4 +15.24 +80.13 & 16.30

In both the scenarios, participants were instructed to identify critical AOlIs,
mark them, and assign points according to their priority. The results are discussed
below.

5.1 Performance Metrics

The performance of the participants was measured using task completion time and
the number of humans successfully located within AOIs. There were 3 trapped
humans in each scenario within AOIs, resulting in a total of 54 instances of trapped
humans across all participants. From the results shown in Table[I] we can see that
participants performed better with foveation. The experience of the 4 participants
with disaster relief did not affect the results in any manner.
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5.2 Subjective Measurements
Mental Workload

The participants mental workload results (Table [I)) from the NASA TLX ques-
tionnaire showed a 38% lower perceived workload in SA scenario (M = 33.41,
S'D = 15.24) compared to the HA scenario (M = 53.85, SD = 18.07).

System Usability

Participants answered 10 questions from the system usability questionnaire using
a Likert scale (1 = strongly disagree to 5 = strongly agree). Results from the Table
[I] show that participants perceived foveation to have higher usability during the
search task.

Subjective Questionnaire

The subjective questionnaires contained long-form answers and five-point Likert
scale questions. Participants provided neutral-to-positive ratings for the interface’s
natural intuitiveness, noting that its reliance on manual gaze-driven navigation mir-
rored “natural human exploration”. However, this familiarity with gaze-based con-
trol came with challenges such as “slow turning” and “limited peripheral vision”.
On the other hand in SA, augmentation helped them streamline focus and execute
the task faster, while reducing their cognitive load. However, participants also ex-
pected explainability regarding the augmentation decisions made by the system.
In addition, participants wanted to be able to dynamically look at other sections of
the screen to make sure the system made the correct decisions regarding foveation.

5.3 Head-gaze Analysis

In the HA scenario, participants’ head-gaze was evenly spread across the screen,
looking equally to the left and right, but with a stronger focus on the upper part.
This scenario required them to use their head-gaze to drive the robot, causing them
to scan the screen more and focus on the upper part for forward navigation based
on the interface design. In the SA scenario, participants did not need to orient their
head-gaze, so they adopted a more relaxed posture and looked mostly at the lower
part of the screen as can be seen in Fig. 4| Additionally, analyzing shorter time
segments in this scenario during task execution highlight that gazed region and the
foveated region aligned 67% of the time. In the remaining 33%, participants’ gaze
slightly deviated around the foveated area. Upon further analysis of view counts,
view percentages, and average gaze position across the screen area, it was found
that this occurred due to high-priority items and people located outside the im-
mediate field of view. This observation can be explained by extrafoveal attention
capture which is when objects or individuals in more distant areas draw the user’s
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attention over a longer distance [Nut+19]]. Similar instances of extrafoveal atten-
tion captures were also observed in the HA scenario where users verbally inquired
about denoting distant AOIs in comparison to focusing on immediate AOIs.

6 Conclusion

In summary, we conducted a user study to investigate the impact of gaze-based
control and foveated augmentation for human-robot teleoperation during critical
task execution. The study was performed with a system designed in simulation
and the effects were studied through two scenarios. Based on the results of the
user study, foveation based augmentation scenario outperformed gaze-based con-
trol leading to effective human-robot collaboration. Additionally, analysis of head-
gaze behavior revealed alignment between gaze and foveated regions in a majority
of cases, indicating that foveation can effectively direct attention. However, devia-
tions due to extrafoveal attention capture highlight the complexity of user attention
patterns and suggest the need for systems to accommodate such behavior.

Overall, this study demonstrates that head-gaze based foveated augmentation
improves performance and user experience. While head-gaze reliably conveys
where the user’s attention is directed, our results suggest it is not optimal as a direct
control modality in critical tasks. Further analysis is required to leverage gaze
measures during critical tasks. The future work includes improving the interface
by combining automated scene analysis with flexible, gaze dependent foveation
that operators can invoke as an explicit confirmation cue.
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BRIDGING MINDS AND
MACHINES: A
COMPREHENSIVE REVIEW
OF INTENTION RECOGNITION
IN HUMAN-ROBOT
INTERACTION

Abstract

Advancements in the field of robotics, specifically human-robot interaction (HRI),
have led to a need for real-time systems being able to infer and respond to human
intentions. With intention being a multifaceted concept of varying interpretations
in each domain based on their needs and frameworks, we have categorized it into
low-level and high-level processes. This review provides an in-depth analysis us-
ing this categorization by exploring the psychological theories and computational
models of the state-of-the-art techniques for intention recognition. By system-
atically exploring and reviewing the applications of intention recognition across
domains such as healthcare, manufacturing, and search-and-rescue, among others,

Ayesha Jena, and Elin Anna Topp. “Bridging Minds and Machines: A Comprehensive Review of
Intention Recognition in Human-Robot Interaction”. Submitted to the ACM Transactions on
Human-Robot Interaction.
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this paper highlights key advancements, from probabilistic models to deep learn-
ing approaches, and identifies critical gaps in current research. Additionally, this
paper provides insights into challenges related to ambiguity, generalization, scala-
bility, and real-time inference, proposing directions aimed at more intuitive robotic
systems.

1 Introduction

In the age of rapid technological advancement, the integration of artificial agents
into various domains of our social life as social companions, industrial assistants,
and service providers is reshaping how machines and humans interact [Brol7].
A crucial development within this landscape is intention recognition, a pivotal
aspect that enables robots to understand and predict human intentions or to ne-
gotiate the terms between several different agents. The impact on real-time ap-
plications would be wide and varied. In sectors like manufacturing, understand-
ing the intentions of human workers on the assembly line could help to better
synchronize the actions of the robots for efficient goal fulfilment. Similarly, in
healthcare, intention-aware robots could assist therapists by comprehending pa-
tient movements during rehabilitation exercises and suggesting interventions for
personalized recovery. This extends to disaster response as well, where robots
can work in cooperation with human responders, predicting actions and helping in
search and rescue operations. In all these varied applications, robots with intention
recognition capabilities would transform the way we perform collaborative tasks.
However, this rapidly evolving field makes it essential to have a structured review
to identify the methods, progress, challenges, and future opportunities.

This review aims to address critical gaps in the existing literature of intention
recognition in robotics by providing a comprehensive analysis of the methodolog-
ical and technological approaches that have shaped the current state-of-the-art.
Differing from existing surveys which often focus on particular aspects of inten-
tion recognition, this review emphasizes on categorization of intention recogni-
tion into high-level and low-level processes, theoretical frameworks, and compu-
tational methodologies.

Intention recognition leverages a range of sensors, data analysis techniques,
and machine learning algorithms to interpret human behaviour through gestures,
facial expressions, speech, and movements. This ability to decode human in-
tentions is transforming how robots assist in manufacturing, search-and-rescue,
healthcare, education, and social interaction, driving more efficient, safe, and col-
laborative human-robot interactions.

Intention recognition is an inherent aspect of human-human interaction. Con-
sider the scenario of being at a dinner table with friends or family, where one
individual subtly gestures towards a salt shaker near you. Without any verbal com-
munication, you perceive their glance and slight gesture as a request to pass the
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Figure 1: Intention recognition allows robots to look at humans and their surround-
ings to figure out the intentions behind their actions and assist them accordingly.
One robot can attend to a group of people as can be seen in the left section of the
image or a group of robots can assist a single person based on their capabilities as
can be seen in the right section of the image.

salt, understanding their intention to avoid interrupting the conversation. Simi-
larly, in a football match, a teammate may indicate their intention to pass the ball
through body orientation and eye direction, rather than shooting at the goal them-
selves. Here, the interpretation of non-verbal cues—such as posture, gaze, and
ball positioning—enables us to anticipate their actions and prepare to receive the
ball. These examples highlight how humans can decode intentions through body
language, especially in dynamic and fast-paced situations, facilitating coordinated
actions without explicit verbal communication. This capability involves synthesiz-
ing multiple sources of information to infer others’ thoughts or goals, illustrating
a key aspect of human social cognition. Reflecting about whether the goals and
beliefs of oneself and others are object or situation directed, means to ascribe in-
tentionality [MK97, |Per22]|| to these inferred goals or thoughts. While the ability
to do so has been extensively studied, particularly in the context of robotics, there
remains no universally accepted definition of intention recognition despite its sig-
nificance and frequent application. The following few examples support the above
statement and show a glimpse of the varying meanings of intention recognition in
the field of robotics.

A search for the word ‘intention’ in Crossref with ‘intention’, ‘recognition’,
and ‘robotics’ as keywords gives us a list of papers on intention recognition across
various categories of robotics. For instance, in rehabilitation robotics, [Suz+07]
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used intention recognition to estimate the weight shift of paraplegics from the
ground reaction force to control their Robot suite Hybrid Assistive Limb (HAL)
to assist them in walking. Here, intention is identifying when the user wants to
walk and it represents an action which affects the user by themselves. [Wan+13|]
recognise the intent of players in the direction they want to hit the ball in a game
of table tennis using a modified Gaussian process dynamics model. In this case,
the intention to be recognised is the direction of the return so that the robot can
decide before the ball is hit by the player. The intention here affects an object
which is manipulated by the user as opposed to the previous case where the effect
was directly on the user. In the field of autonomous driving, [[Bai+15] used inten-
tion recognition to predict the intention of pedestrians to safely select actions for
autonomous driving amidst pedestrians. Here, intention is from the point of view
of the pedestrians and what is the next action they are going to take. On a sim-
ilar note, [Li+16] used a combination of the Hidden Markov model (HMM) and
Bayesian Filtering to predict lane changing behaviour of drivers using inputs of
steering angle, lateral acceleration, and yaw rate to assist in driving and preventing
accidents. In this case, the intention is from the point of view of the driver and
when they want to change lanes. Others have also looked at intention recognition
in autonomous driving [Pet+19, MA1 8,[TFA10, Xin+20] and pedestrians [Gol+19}
Var+18| [Li+17, [ KM17, [V6l+15| [Vol+16| [PL16|, [DSS15, [ BEDOS| [Zha+20]. These
examples show how intention recognition is used to predict an action which may
affect the user themselves or an object in their surrounding. However, intention
in the above-mentioned cases is understood on a low level of actions and their
immediate outcomes. [VTZ16] explain the role of intention in cognitive robotics
and how, on a higher level, it is important to see the world from other people’s
perspectives by forming a theory of mind.

It is challenging to categorise intentions because of the varied definitions peo-
ple have across different domains [Per+13,|AAQ7,/CGY93| Hei04, Tah06]. We also
struggled with the decision to select one categorization over the other, but, based
on a few other works, felt that the distinction of high-level intention recognition
and low-level intention recognition [|[KS08| Saf+15b, [Saf+15al |GCR21]] aligns best
with our motivations. This can be seen in Figure[3]

The structure of this paper is as follows: Section 2 covers the methodology
used to scope the literature for relevant papers to be included in this review, Sec-
tion 3 introduces the categorization of intention recognition into high-level and
low-level processes, Section 4 explores the psychological theories contributing
to human intention recognition, Section 5 delves into the computational models
and highlights the various state-of-the-art techniques and methodologies used for
intention recognition, Section 6 expands upon the categorization introduced in
Section 3 and discusses broadly the various sub-categories, and Section 7 identi-
fies challenges, limitations, and emerging trends in intention recognition, offering
recommendations for future research.
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Figure 2: A systematic review process using PRISMA

2 Methodology

In order to conduct a systematic review of intention recognition, we performed
a scoping literature review following the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) [Pag+21|] methodology described as
follows:

The initial search consisted of using the keywords and phrases: “intent”,
“intention”, “human-intent”, “robot-intent”, “intention recognition”, “intention
prediction”, “intention estimation”, “intention modelling”, “methods”, “intention
recognition in robotics”, and ‘“human-robot interaction”. These keywords and
phrases were used in combination with operators such as AND, and OR to refine
the results. The detailed step-by-step review process using PRISMA is shown in
Figure[2]

Inclusion Criteria: Our study focused on including the papers that mentioned
the keyword “intent” or “intention” in their text. All the publications included
were in English. In terms of time-frame, studies and research done over the years
are considered taking into account the contributions to the field of work that have
been accumulated over a long period.

3 Categorisation

The examples in the previous section show how complex the topic of intention
recognition is. They also highlighted the importance of creating systems that can
understand and predict human behaviour. In a dyadic robotics context, intention
recognition can be viewed in three different ways based on involved agents.
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* In the first scenario, a human agent can try to recognize the intention of the
robotic agent.

* In the second scenario, a robotic agent can try to recognize the intentions of
the human agent.

* And in the third scenario, a robotic agent can try to recognize the intention
of another robotic agent.

An intuitive understanding of robotics would allow one to conclude that the third
scenario is solvable if the robots involved can communicate with each other. Un-
like the complex nature of verbal and non-verbal communication persistent be-
tween humans, robots’ intentions can be conveyed to one another through the ex-
change of goals and action plans via various communication channels such as
wireless connection, signal lights, etc.

In the past, people have made attempts to categorize intentions to aid in re-
viewing intention recognition.

The notion of distal (D-intentions), proximal (P-intentions), and motor (M-
intentions) intentions was introduced by [[PacO8| |Per22]] and talks about how distal
intentions broadly relate to [Bra87|’s notion of future intention and are formed
during the initial stages of planning and decision-making. P-intentions are closer
to the actual execution of actions. They emerge from D-intentions and are more
specific, involving the decision to start acting in the present moment. M-intentions
are generated from P-intentions and involve specific motor programs that execute
the actions. These intentions are responsible for the fine-grained control of bodily
movements. They operate at a very detailed and fast time scale, often outside
conscious awareness, ensuring the smooth execution of movements.

[Omo+08] talk about active and passive intentions where passive is the inten-
tion which is inferred from observing other agents whereas active is the one which
influences the other agent based on the actions of the self.

We will explore the definition of intention in more detail in the discussion
section, building on the review of theories and methods in intention recognition
throughout the paper.

4 Psychological Theories on Intention Recog-
nition

Understanding the intentions of others is a natural ability of humans and is studied
extensively in the field of psychology. [Heil3|] suggests that people have a “folk
psychology” which they use to infer the meaning behind the actions and ideas
of other people for a given situation. Following this is the prominent work done
by [PW7§] to coin the term Theory of Mind (TOM), which describes it as the abil-
ity to recognize the mental states of other people. This work was further confirmed
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Figure 3: An image of the categorization of intentions is presented in this paper.
In the figure, we have categorized intention into high-level and low-level. High-
level indicates broader goals and long-term plans behind a person’s actions and
includes activity, plan, and goal in this category. Low-level indicates observable
short-term actions and comprises action, gaze, non-verbal, and object-based sub-
categories. These categories focus on recognizing human intentions. In addition
to human intentions, robots can also exhibit intentions, which are either explicitly
programmed or inferred through mental states attributed to them by humans. We
refer to this category as robot-based intentions, which are discussed in detail in
Section 3.3.

by [WPS83| as they studied and established the ability of children to associate rela-
tionships between two or more mental states by the ages of 4 to 6 years. [PBCR95]||
showed the relation between mental state association and autism in children, where
children with autism fail to associate mental states with others. [BC+95] further
went on to associate the inability of autistic children to assign a mental state to
others with the failure to read intention through eye gaze.

A rather interesting outlook on intention is from the Wittgensteinian perspec-
tive as argued by [Kall9]. Here, Kalis explores the concept of intention from
a philosophical viewpoint, challenging the traditional cognitive science approach
that often tries to identify neural correlates of intentions. Traditionally, intentions
are abstract, discrete mental states that cause actions. Kalis proposes that inten-
tions are not mental states located in the brain but are better understood as patterns
of behaviour extended over time and context. If intentions are not discrete mental
states but rather patterns of behaviour, the difficulty in finding neural correlates for
intentions makes sense. The paper suggests that neuroscience may be looking for
something that does not exist in the way it is traditionally conceived. If this is true,
then low-level intention recognition performed by artificial agents by observing
the motion of other agents with respect to contextual understanding would be the
correct direction of research for intention recognition in social robotics.

Another significant theory in the study of intention recognition is the mirror
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neuron mechanism theory [RCO04] which states that humans show evidence of
having a mirror neuron system which fires neurons when a particular action is
observed as well as performed by them. This system of neurons is involved in
action observation, imitation, and possibly in the understanding of language.

5 Computational Methods

Figure 4: Images showing psychological intention recognition from relevant ref-
erences. (i) demonstrates a robot executing a trajectory to reach an object and the
human predicts the intention during this motion [Per+11]. (ii) shows a storyteller
and listener type experiment where the children tell stories to the robot which con-
veys attentiveness in a Bayesian theory of mind approach [LSB19]. (iii) shows
a robot mirroring the user’s hand motion to learn movement patterns [TFATO].
(iv) demonstrates a block-building game where the robot predicts the intentions of
the user and collaborates to complete the task [VTZ16]]. (v) shows an experiment
where the robot either trusts or does not trust the human based on its belief derived
from the theory of mind and verifies this via actions [VGCI19].

The study of intention recognition has not been limited to theoretical psychology;
it has also inspired the development of computational models in robotics and arti-
ficial intelligence. Humans tend to anthropomorphise non-living objects
to better understand and explain what is not readily explainable. Hence,
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it is safe to assume that social robots with cognitive capabilities resembling that of
humans would be an interesting research topic.

The credit for applying the theory of mind on a humanoid robot for the first
time can be given to [Sca02] who relied on the models of the theory of mind
proposed and discussed by [Les94| and [CA98]||. He proposed that using the theory
of mind would not only benefit interaction by allowing effective communication
but also allow the artificial agent to learn from these interactions. To implement
theory of mind in robots, Scassellati systematically used modules representing the
various aspects of the traditional psychological models of theory of mind such
as eye direction detection, intentionality detection, shared attention mechanism,
as well as recognizing human actions and taking perspectives [Sca02, NAHO02|
Sch96l JDOS5| [FMJ02, Bre+05} |Gra+05/ [Tra+06].

In recent years, the architectures inspired by the theory of mind have gotten
increasingly complex. [GBBO7|] and [SKKOS]| used the Leonardo robot to infer the
beliefs, desires, and intentions of the human partner in a collaboration task using
real-time behaviour. The task involves two other participants. All the participants
and the robot observe chips and cookies being hidden in their respective boxes.
One participant goes out and the other participant swaps the contents of the boxes
in the presence of the robot and leaves the room. The other participant returns and
goes to the box which had chips earlier and now has cookies. The robot’s task is
to best assist the participant in achieving her goal. In this case, the robot needs to
reason about the belief of the participant that there are still chips in the box. With
this belief and the truth it knows from observing the other participant make the
swap, it needs to assist the participant by giving them the chips or cookies from
the additional set it has.

In their review, [BO19a] talk about seven different implementations of com-
plex architectures in robots that provide advantages in terms of false beliefs, active
perception, learning preferences, and proactive behaviour in interactions [BO19a].
[BO19b] also talk about improving social robotics architectures by incorporating
the teleological theory which is used to infer intentions behind others’ actions
based on the outcomes of these actions and the simulation theory which is used to
simulate the mental states of others internally to understand them.

Various other computational models of the theory of mind have also been de-
veloped to understand the mental states and cognitive processes [POWW21]. One
such model is the Bayesian theory of mind (BToM) model by [BSTO9|] which for-
mulates the problem of understanding actions as a Bayesian inference problem.
The method is to use rational probabilistic planning in Markov decision problems
to model the causal relationship between goals, actions, and beliefs. This can then
be inverted to figure out the goals and beliefs of the agent.

They in turn also test the effectiveness of the Bayesian theory of mind model in
mentalizing in two experiments [Bak+17]. In the first experiment, they tested par-
ticipants’ ability to jointly attribute beliefs and desires to an agent based on their
observed actions. Participants viewed animated scenarios where an agent (e.g., a
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student) navigated through a grid-like environment with obstacles and food trucks.
They were asked to infer the agent’s desires (preferences for different food trucks)
and beliefs about the unseen parts of the environment (e.g., whether the agent
thought a specific food truck was behind a building). The BToM model was used
to predict these inferences, and its predictions were compared to human judg-
ments. The results showed that BToM could quantitatively predict participants’
judgments, supporting the model’s validity.

In the second experiment, they tested whether participants could use their the-
ory of mind to infer both the agent’s beliefs and percepts (what the agent could
see) and aspects of the environment that only the agent could perceive. Here, par-
ticipants observed the agent searching for a preferred food cart in a more complex
environment where the locations and availability of the carts were hidden from the
participants but observable by the agent. Participants had to infer the location of
all carts based on the agent’s actions. The BToM model’s predictions were again
compared to human judgments, with results showing that BToM successfully cap-
tured the complexity of human reasoning about the agent’s percepts and the hidden
state of the world.

Probabilistic and bayesian methods have also been used in other works for
intention recognition [Sin+20, Per+11} {TahO6l [SHOS, |[KH10, JA18, [Dun+15}
Tam+12|]. These methods are beneficial for modeling uncertainty and making
inferences, which is often the case in real-world scenarios. Furthermore, works
by [Topl7] and [CT16] provide additional proof-of-concept studies in this area,
but did not appear in our primary literature search based on the keywords used.

Another work in BToM is done by [LSB19|] in nonverbal communication
where they propose a dual computational approach to model the interactions be-
tween a storyteller and a listener. The storyteller’s role is modelled as a Partially
Observable Markov Decision Process (POMDP), where they use nonverbal cues
to influence and infer the listener’s attentive state. Whereas, the listener’s role is
modelled using a Dynamic Bayesian Network (DBN) [AZNOS, [For+95, PW13]
with a myopic policy, focusing on conveying attentiveness and influencing the
storyteller’s perception. They showed that their storyteller model outperformed
state-of-the-art attention recognition methods whereas their listener model com-
municated attentiveness to the audience better than traditional signalling methods.
Dynamic Bayesian Network is derived from Bayesian Network which is often
used in intention recognition models as it helps solve uncertainty based prob-
lems [Peal4].

[VGC19,|Vin+19|] proposed and formed a cognitive system for artificial agents
based on developmental robotics that incorporated the theory of mind, trust, and
episodic memory. They address the less-explored scenario where a robot, rather
than a human, acts as the trustor in a joint task, assessing the trustworthiness of
its human partners. The model is tested through experiments that simulate a de-
velopmental psychology task. The proposed model achieves performance similar
to children 5 years of age and older. The experiment involved identifying helpers
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from tricksters based on the cues provided.

With the popularity of neural networks in the past couple of years, researchers
have explored the development of cognitive architectures using these techniques.
This is what was proposed by [Rab+18] in the form of ToMnet that makes use of a
meta-learning approach to build models to infer an agent’s mental state. The model
originally learns a strong prior for the future behaviour of the agents and can then
produce richer predictions about them from a small number of observations of the
agents’ behaviour. Experiments show the effectiveness of this model as it passes
standard theory of mind tasks involving recognising holders of false beliefs.

An interesting use case of the computational theory of mind model is to infer
the mental states of multiple agents involved in urban search and rescue tasks
which was researched by [Li+22a]]. The model they proposed uses Deep Neural
Networks to represent and update beliefs, predict actions, and generate inferences
based on team behaviours. The study validated the ToM model by comparing
its performance to human observers and found that the model outperformed the
average human inferences on several tests.

In robotics, [TIS04] use recurrent neural networks with parametric biases (RN-
NPB) to implement mirror neuron-like systems for robots. Their findings suggest
that the RNNPB model could provide insights into how memory consolidation oc-
curs in biological systems and how complex behaviours can emerge from simpler
learned patterns. [RPF13]] also worked towards a similar implementation with a
multi-layer connectionist model for an iCub robot. The model emphasizes bidi-
rectional interactions between visual and motor areas, implementing a learning
algorithm inspired by the biologically plausible GeneRec algorithm. The model
was tested in a simulated environment where the iCub robot learned to perform
grasping tasks and the experiments showed that the model successfully linked vi-
sual and motor representations, allowing the robot to recognize and understand
actions from various perspectives. [HK10] combine mirror neuron and simulation
theory for intention reading of humans in human-robot interaction scenarios.

Work done by [Pre+19]] explore the concept of mental time travel (MTT) which
refers to the ability to mentally project oneself into the past or the future. They
propose that the underlying brain systems for this concept can be modelled com-
putationally and describe the implementation of a multimodal memory system in
the iCub robot based on Gaussian process latent variable models. Through exper-
iments designed around face recognition, speaker recognition, emotion recogni-
tion, touch interaction, and action recognition, they demonstrate the viability of
their system.

Overall, the advancement in computational methods, starting from implemen-
tations of theory of mind in robots to complex neural network architectures, have
contributed significantly to the advancements in the field. These methods have en-
abled artificial agents to infer human intentions, enhancing human-robot interac-
tion and collaboration across various tasks. However, despite significant progress,
developing systems that provide a comprehensive prediction of human intentions



94

Bridging Minds and Machines: A Comprehensive Review of Intention . ..

remains a challenge. In the following sections, we will talk about the high-level
and low-level categorization of intention recognition followed by the challenges
and limitations in greater detail.

6 Intention Recognition

Intention recognition in its entirety is a complex topic to analyze. To facilitate a
systematic and comprehensive understanding, we categorize it into high-level and
low-level processes. This distinction has been discussed below.

6.1 High-Level

High-level intention recognition focuses on comprehending the broader goals and
plans behind a person’s actions, enabling systems to grasp complex and abstract
intentions that often span longer timeframes [[KSO8| |Saf+15b}| [Saf+15a, | GCR21]).
In this category, we have included papers from psychological intention recognition
which describe conceptual works related to intention recognition, activity recog-
nition which looks at a series of actions to achieve a certain goal, plan recognition
which focuses on inferring the steps an agent is taking or supposed to take to
achieve its intentions, and goal recognition which involves determining the end
goal in terms of an achievement or an object that marks the end of the intention of
the agent.

Activity

Before delving into activity recognition, there is a need to clarify the difference
between action and activity recognition and that quite often in research these are
used interchangeably. There is also a need to understand the hierarchy of steps that
move from simple to complex to finally arrive at intent recognition.

The first step is the conceptually simplest form which is gesture/motion recog-
nition. This can be defined as the human intent to move any single body part to
achieve a goal. The next step, action recognition, involves identifying the intent
behind performing a specific action. This consists of one or more gestures in a
sequence. Activity is a series of actions performed by the human to achieve a goal
and activity recognition comes as the third step in the intent recognition process.
Once the activity has been recognised, based on the context of the activity, the goal
of the human can be predicted in turn leading to recognising the underlying intent
which comes as the final step of this process.

Activity recognition refers to the process of identifying and classifying spe-
cific activities that an individual or agent is performing. For decades, researchers
have focused on recognising activity (walking, cooking, typing, etc.) as a first
step to further determine why the person is doing those activities and infer their
underlying goals, plans, or intentions. [Kel+10] base their work on the theory
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Testing

(iv)

Figure 5: Activity-based intention recognition examples from relevant references.
(i) demonstrates a robot modeling the activity using HMMs that it needs to rec-
ognize later [Kel+08]. (ii) shows manual guidance of the robot to indicate possi-
ble goals for recognizing user’s intention to follow certain trajectories [NZR18].
(iii) shows two cases - (a) is the learning stage where the robot automatically seg-
ments and recognizes human activities, and (b) which compares different scenarios
and finds the semantics of observed activity to remain the same as (a) [Rak+19].
(iv) shows the major modules of a system used for modelling and inferring inten-
tions [TC17]. (v) demonstrates an experiment where the human and the robot were
holding a piece of wood together and the robot tried to recognize the intentions of
the human to move and performed similar motion

of mind and introduce a system which uses vision-based capabilities and Hidden
Markov Models (HMMs) to model and recognize human activities. An interesting
feature of their system is the ability to disambiguate similar actions by using con-
textual information. This allows for identifying different underlying intentions for
similar-looking activities. HMM-based intention recognition is also seen in many
other notable works [Cra+18|, [Kel+08| [Tav+07, [Pet+19] [SPB10, [AK06] BEDOS|
ZCS08].

proposed a framework to perform activity recognition using a hu-
manoid robot. The framework enables the robot to use semantic reasoning to
infer high-level behaviours from low-level sensor data. They implemented this
framework on an iCub robot and tested it in three experiments - pancake making,
sandwich making, and setting the table, and showed that the robot can correctly
segment and recognize human activities even with a simple perception system.

Delving into the details of human activity recognition (HAR) requires its own
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review. The research in this field has provided an in-depth understanding of var-
ious methods and techniques used for HAR. We have limited the focus of our
paper to works where it is used for intention recognition. [SRG17]] provide an
in-depth analysis of activity recognition in videos. They examine and talk about
various aspects of activity recognition such as datasets, evaluation metrics, and
algorithms, and also talk about challenges in the field. Existing datasets like Cha-
rades, ActivityNet, and THUMOS are reviewed by the authors in this work. The
authors provide valuable insights regarding the ambiguity of temporal boundaries
of activities (difficulty in telling when an activity actually starts and ends) as well
as errors in state-of-the-art activity recognition algorithms due to similar activi-
ties. Similarly, [VNKI15] also provided a comprehensive review of the different
methodologies used for HAR in the fields of computer vision and robotics. They
also emphasize the role of publicly available datasets in advancing HAR research,
discussing the characteristics of an ideal HAR dataset that should include a vari-
ety of activities, contexts, and environmental conditions. In comparison, [JBD19]
provides a review of state-of-the-art methods used in HAR with a focus on tradi-
tional machine learning techniques such as Decision Trees, K-Nearest Neighbors
(KNN), Support Vector Machines (SVM), and Hidden Markov Models (HMM),
as well as neural network based techniques such as Artificial Neural Networks
(ANN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks
(RNN). Some notable works using SVMs, Decision Trees, KNNs, and other rule
based algorithms can be seen in the works [DSS15, Wan+17, [Vol+15, [KM17,

MAI& NZR18| [Zha+20, Wan+19|] whereas those for neural networks such as
RNNs, CNNs, and Extreme Large Machine Algorithms for intention recogni-
tion are present in [Zha+19al LH19| |Gol+19, NZR 18, |Var+18| 'Wan+18| [Vol+16,

PL16,|Li+17, [Rak+19, [Yan+21]. In the field of social robotics, a review of the re-
cent approaches and techniques is presented by [Tap+19], focusing on how robots
can perceive and understand human activities and social interactions. They discuss
various methodologies for HAR, both at the individual level and within groups and
focus on the importance of context in accurately interpreting human behaviour,
noting that the same action can have different meanings depending on the social
or environmental context.

Overall, the advancements in the field of activity recognition, from traditional
machine learning techniques like Decision Trees and KNNs to modern deep learn-
ing approaches such as ANNs and RNNs, have improved our ability to recognize
intentions. However, accurately recognizing and interpreting human intentions
still remains a complex challenge due to factors like ambiguous actions, lack of
generalization, model complexity, and the need for real-time processing. In the
next section, we will explore how plan is used for intention recognition followed
by a detailed discussion of the potential challenges in the field.
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Plan

Figure 6: The robot learns to predict the human’s intention—specifically when
they deliberately plan to obstruct the robot’s path [Par+16].

Inferring the underlying plan behind an action or a series of actions
allows robots to proactively support their human counterparts in the task at hand.

developed a proactive intention recognition system to support oper-
ators in joint human-robot search and rescue missions. The system focuses on the
movements of the human responder and concentrates search around those areas to
increase search efficiency. The authors propose an intention recognition paradigm
based on Monte Carlo planning techniques and POMDP environments that sup-
ports the robot’s exploration strategy by providing an entropy reduction bonus to
the reward function. Testing the system in various simulated environments with a
drone shows improved efficiency of search and rescue compared to other baseline
techniques.

Similarly, [Zha+23]] address multi-agent intention recognition by introducing
landmarks in the behavioural model to identify common intentions among agents
in a multi-agent system. They modeled the environment using MDP and defined
intention models through behaviour trees and landmark-based intention models
which are further refined with a robust clustering mechanism for grouping the
intentions of multiple agents and recognising them successfully. Experiments per-
formed on two separate systems show improved performance of agents in tasks
requiring collaboration.

presented a method to enhance navigation assistance for wheelchair
robots in complex environments. This was done using clothoidal (Euler spiral)
paths for narrow doorways and dynamic obstacles. Earlier work done by the
authors used a circular local path template to suggest possible paths for robots
but was limited in its ability to plan around complex environments. By introduc-
ing a Local State Lattice which generates a set of clothoidal paths, they provided
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smoother transition curves compared to circular paths which are also better at find-
ing paths through narrow passageways. The advantage of using clothoidal paths is
that it opens up new path estimations in complex environments which can then be
used to infer the intentions of the wheelchair user and support them.

In the context of social robotics, [Par+16] proposed an innovative navigation
approach by predicting human intentions and adjusting their navigation strategy
to avoid potential conflict such as a human blocking the robot’s path intentionally.
The authors train a classifier offline capable of predicting if a human plans to
interact with or block the robot. They use Gaussian process models to classify
intent as well as regression to predict future trajectories which are then used in the
robot’s path planning for successful navigation.

In the case of multi-agent systems, [AA14] explored the concept of intent
recognition and argued that intent recognition is more than just recognising the
plan of the agents. They use a plan library and use it to compare the observed ac-
tions of the agents and test three types of agents (no recognition, plan-recognition,
and intent-recognition) using the Repast Simphony platform on a collective box-
pushing task. Results showed that intent-recognition agents were able to assist in
more flexible ways, with actions they had not observed before. We will further
look into the challenges and limitations concerning intention recognition in the
later section.

Overall, the advancements in the field of plan recognition, from Monte Carlo
planning techniques to using plan libraries, have improved our ability to recognize
intentions. However, accurately recognizing and interpreting human intentions
still remains a complex challenge due to factors like computational overhead, high
false-positive rates, and desired adaptability to dynamic environments. In the next
section, we will explore how goal is used for intention recognition followed by a
detailed discussion of the potential challenges in the field.
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Figure 7: Image depicting goal recognition from relevant references. (i) shows
two different types of teaching methods for replicating motions [CBO7||. (ii) shows
recognizing goal using a demonstrator and imitator combination [JB06a]

Goal recognition involves inferring the most likely goal from a sequence of ob-
served actions. This is essential for robots to actively provide support in collabo-
rative task settings. We will now discuss the various frameworks and models pro-
posed in order to support intention recognition through goals. [Mur02]] proposed
a framework that uses DBNs to model and predict a person’s goals by analyzing
their movement patterns within a known environment. The environment is moni-
tored using stationary laser range finders, which track the person’s (x, y) position
as they move through the space. The DBN model’s purpose is to predict which
predefined landmark (or goal) the person is heading toward next.

Building upon the idea that goals are crucial to understanding human ac-
tions, suggested that imitation is goal-directed and not simply a copy of
the observed actions. Based on this rationale, and have shown
learning to imitate actions relies on the ability of the imitating agent to infer
the intentions of the demonstrator. However, not all motions are goal-directed,
and intention recognition in such cases requires building a mental model of the
demonstrator as well as carefully analysing social cues as sup-
portive knowledge for accurate intention prediction [SNDO06| [Bre+06,[CB07]|.

Extending upon the idea of imitation and goal inference, proposed
a computational model to understand the underlying goals behind an action and
imitate the demonstrator. The model proposed by the authors requires multiple in-
teractions between the demonstrator and the imitator to learn the underlying goal
and this is achieved by the imitator by considering the perspective of the demon-
strator and maintaining and updating a model of the beliefs of the demonstrator.
The model was tested in a simulated environment, showing that the robot could
effectively learn and infer intentions over repeated imitation games. However, the
model requires a deterministic environment and a large number of interactions
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which poses multiple challenges of scaling this approach to more complex, real-
world scenarios.

While the previous models focus on imitation and mental modelling, another
perspective involves assessing the rationality of actions. [BDK14] focus on com-
putational models that simulate how humans detect if an action was intentional and
predict the likely goal based on these observed actions. The authors assume that
people follow the principle of rationality and propose a model that can detect the
intentions of humans from observed sequences based on the rationality of actions.
The two main components of their models are determining whether the actions are
intentional by measuring how efficiently they move towards a goal and predicting
the goal from an incomplete sequence of actions. The authors tested this model
with 140 participants and found that the performance of the model closely matched
that of the human participants in determining the intentionality of the actions and
the predicted goals.

In another approach where the agent’s behaviour is dynamic and unpre-
dictable, [Zen+18| presented a novel work on goal recognition in dynamic network
interdiction scenarios using Inverse Reinforcement Learning (IRL). The task in-
volves inferring an agent’s goals from observed actions. Traditional methods often
rely on predefined libraries of plans or policies, but as mentioned, this approach
is limited when the agent’s behaviour is dynamic and unpredictable. The authors
propose using IRL to model the opponent’s behaviour based on observed trajecto-
ries, allowing for more accurate goal prediction. IRL is used to learn the reward
function that best explains the observed behaviour of the opponent. This reward
function is then used to predict future actions and goals. The proposed method
was tested using human movement data on a simulated Chicago road network
in which the IRL-based behaviour model outperformed other models in tracking
accuracy and effectiveness in network interdiction.

Addressing goal recognition in smart environments, like home settings,
[SBP22] present a framework for reasoning about intentions using probabilis-
tic logic programming. The model proposed by the authors considers various
observable actions and environmental properties to predict the intentions of the
users, such as the intention to make coffee or prepare a meal in a smart home
setting. When tested in this setting with full observability, the model achieved
intention recognition accuracy of 75 per cent which decreased as the observability
was reduced but the model still remained robust.

Additionally, when encountering uncertainty in collaborative tasks,
[Bra+22] proposed a method to reduce uncertainty in robot’s planning due to
noise and a lack of knowledge of the human’s goal. The method uses an unscented
Kalman filter for state estimation, an HMM-based model for goal recognition,
and a model predictive belief space controller based on Belief Iterative Linear
Quadratic Gaussian (i-LQG) for control. The approach is evaluated in a simulated
scenario where a mobile robot cooperates with a human in a two-dimensional
space demonstrating that the proposed system can effectively reduce uncertainty
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about the human’s goal while pursuing the cooperative task. [TFA10] also used
a Kalman filter to avoid collisions between robots and humans in a cooperative
environment based on the human’s intentions.

In an effort of addressing explainability in goal recognition, [AMV23]] pre-
sented a model that focuses on providing answers to why a certain goal was rec-
ognized but not a certain other goal. The proposed model adapts the Weight of
Evidence (WoE) framework from information theory to predict goals by weighing
the strength of evidence of one goal hypothesis over the other based on the ob-
served actions. The model is tested on eight goal recognition benchmark domains
and a separate human study, showing that it can generate explanations efficiently
without significantly increasing computational overhead and the explanations gen-
erated by the model improve participants’ understanding of the model’s decisions
and enhance their trust in the system.

Furthermore, [ZKL23]] explored goal recognition while focusing on the timing
of the action taken by an agent to carry out certain actions. The proposed algorithm
is evaluated using both synthetic data and real human data and the results suggest
that incorporating timing information significantly improves goal recognition ac-
curacy, particularly in scenarios where only a few actions have been observed.

Traditionally, goal recognition has relied on model-based methods, how-
ever, [[Chi+23| present a deep-learning approach to goal recognition. The authors
introduce GRNet, a system that uses an RNN architecture to process a sequence
of observed actions and predict how likely each possible proposition (goal) is part
of the agent’s goal. To perform goal recognition within a domain, the network is
trained once in the given domain. The model shows better accuracy and runtime
compared to the state-of-the-art system - LGR, and combining the model with
LGR further enhances performance, especially in incomplete or partial informa-
tion scenarios. We will further look into the challenges and limitations concerning
intention recognition in the later section.

As observed, intention recognition has been applied in numerous applications
and still finds use in many more [Sadl1]] such as understanding stories [CG90],
human-computer interaction J[AAO7, HonO1} |Les98|], monitoring traffic [PW13],
assistive care [Gei102, Hai+03} |Per+10, PH11, |PA11} Roy+09}[Tah06], and military
activities [He104, MGO04].

Overall, these works highlight significant advancements in goal recogni-
tion methodologies, ranging from probabilistic and other traditional model-based
methods to deep learning approaches. By inferring human goals through goal
recognition, these models enhance the ability of robots and Al systems to collab-
orate with humans across various domains and task settings. In the next section,
we will look into low-level intention recognition followed by the challenges and
limitations concerning intention recognition.
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(i)

Figure 8: Images showing action-based intention recognition from relevant refer-
ences. (i) demonstrates a robot inferring the most likely future destination of the
object picked by the human from recent change in position [[For+21]]. (ii) shows a
robot moving a shared load using intention prediction in a number of ways - infer-
ring direction and speed from dynamic action, following desired path from learned
trajectory, and matching gain with the human for a neutral interaction .

6.2 Low Level

In contrast to high-level intention recognition, low-level intention recognition
deals with more immediate, specific actions and behaviours, providing a granular
understanding of the moment-to-moment intentions [KSO08] [Saf+15b)} [Saf+154,
IGCR21]]. In this category, we have included papers from action recognition which
focuses on inferring specific actions of the agents, gaze intention which focuses
primarily on using the gaze of the agents to infer their intentions, and non-verbal
intention which focuses on other body parts used to infer intentions.

Action

Low-level intention recognition focuses on identifying immediate, specific actions
or gestures that provide insight into a person’s intentions. This type of recognition
is often subdivided into various approaches, each targeting different aspects of ac-
tion analysis, such as recognizing simple gestures or sequences of movements. For
example, action recognition examines short-duration actions, and various methods
have been developed to predict the intent behind these actions, using technolo-
gies like computer vision, neural networks, and sensor data. The subdivision into
techniques allows for more precise and specialized intention inference, enabling
applications in fields like human-robot collaboration, assistive robotics, and tele-
operation.

As described earlier, action refers to a short-duration sequence of gestures or a
single gesture. Building on this understanding, [Zun+17] introduce a novel Intent
from Motion paradigm which uses just the initial motion to predict the intention
without any contextual information. This may sound impossible, but in their ex-
periments involving reaching for a water bottle with 4 different intentions, the
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computer vision methods outperform humans in predicting the intention behind
the observed action. This shows how subtle motion cues can reveal intentions and
how technology can be used to predict these intentions in real-time.

Expanding on the use of motion cues, specifically for the human arm, [RD17]
used actions to infer intentions and define intention as the 3D end goal of the
actions performed by the user. The authors use a neural network to model the non-
linear dynamics of the human arm motion and treat intention inference as a pa-
rameter estimation problem in a state-space model. They use an extended Kalman
filter for expectation maximization to infer the intentions accurately and test the
methodology in two studies, human-robot collaboration and assistive robotics,
with each study having 3 experiments. The Extended Kalman filter has also been
used by [RTD19] in their later works and by others such as [AH10] as well. Pa-
rameter based methods for intention recognition have also seen popularity over the
years [KH10, Per+11} JA18| [Dun+15| Tam+12].

In the scope of probabilistic modeling, [TahO6]] proposed a system where ma-
chines can infer human intentions using a modified intention—action—state scenario
modelled by DBNs. The paper presents an example of a human commanding a
mobile robot remotely. The robot uses DBNs to recognize the human’s intentions
(e.g., moving towards or away from an object) and adjusts its actions to comply
with these intentions. The interaction is tested in a simulation environment in
which the robot demonstrates compliance with the recognized intentions, leading
to smoother and more effective control.

Alternatively, [Omo+08] take a different approach to intention recognition by
making the robot perform actions which are easy to interpret by the user, hoping
to induce a known response from them. They term this approach as active inten-
tion leading (AIL) and argue in its favour, stating that, unlike traditional intention
recognition which requires one to observe the other user to infer their intentions
(passive intention recognition), this approach is computationally lighter since it
works towards the self. Testing this approach on a hunter game with two different
tasks shows the effectiveness of AIL in improving the performance of catching the
prey earlier.

Further, to minimize uncertainties in human intention recognition, [JKCOS]
proposed a unique approach using ontology-based hierarchical user intentions.
The authors use a RuleML-based intention recognition module which combines
domain knowledge and sensor information such as temperature, humidity, vision,
and auditory to infer the intentions of the humans from their actions. They also
use conditional entropy to make the robot’s behaviour proactive by selecting the
appropriate actions based on the user’s intentions. Testing the system on their sim-
ulator under three different scenarios - when multiple intentions are possible, when
all candidate intentions are considered, or when only one intention is evident, re-
sults in successful recognition of user intentions, even in complex or ambiguous
situations.

In a further attempt to understand the human intention even when the percep-
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tion system is rudimentay, [RABC15] explored semantic perception in their work.
The proposed system has two levels - a low-level feature extraction that uses colour
to extract simple actions such as move, not move, and tool use, and a high-level
activity recognition that uses a decision-tree approach to infer higher-level activ-
ity such as cut, pour, etc. The framework was implemented on an iCub robot
and tested against human participants in three tasks - making pancakes, making
sandwiches, and setting a table. The robot achieved 85 per cent accuracy in infer-
ring human intentions and took about 0.12 seconds to make decisions and perform
similar activities.

In an attempt to show feasibility in real-time application, [Der+17] in their
work with the iCub robot presented a method for enabling the humanoid robot
to predict human intentions during physical interaction using Probabilistic Move-
ment Primitives (ProMPs). The primitives are learned in simulation where humans
demonstrate multiple actions which can then be inferred in the very early phase of
the action with the help of the ProMPs. Since ProMPs do not require explicit
knowledge of the goal, the implemented method worked well on the real iCub
robot when being tested on tasks involving reaching for objects and sorting.

In a similar attempt for teleoperation and shared control tasks, [TC17] pre-
sented a novel method for improving the performance of teleoperated robots in
remote manipulation tasks. This is done particularly in challenging environments
where communication delays, limited bandwidth, and environmental differences
pose significant issues by using a task-parameterized generative model. The au-
thors introduce a hidden semi-Markov model (HSMM) that learns from teleoper-
ator demonstrations by segmenting the demonstrations into meaningful parts and
encoding the transition patterns among these segments. This allows the robot to ei-
ther assist the teleoperator through shared control or autonomously perform tasks
which was tested on a Baxter robot in tasks such as reaching a movable target
and opening a valve. Some other works in teleoperation and intention recognition
are [JA18,[SPB10, AKOG].

Additionally, in order to address the ambiguity of indirect speect acts (ISAs)
within the context of task based interactions, [BWS17|] proposed a rule-based
mechanism to understand directives from indirect speech acts and evaluate the
framework in experiments involving simple tasks of knocking over coloured tow-
ers.

In warehouse environments, [PMP18] presented a framework for recognizing
human intentions based on the theory of mind using Markov Decision Processes
(MDP) to model the decision-making process of warehouse workers and a Hidden
Markov Model (HMM) that estimates the worker’s intentions based on observable
actions. Testing the framework in simulated scenarios shows high accuracy in
predicting the intentions of the workers even when they decide to change their
goal midway.

Exploring shared control in physical human-robot interaction (pHRI), [Los+18]]
presented a comprehensive review, focusing on three critical components: intent
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detection, arbitration, and communication. The intent detection part of the review
explores in detail how robots can detect human intentions, either binary or more
complex and continuous ones, using force sensors, muscle activity sensors, and
neural activity.

Based on neural network models, [LH19] presented a method to recognize
human motion intention using a Radial Basis Function Neural Network (RBFNN)
model. The model learns offline from the data collected using the adaptive
impedance control method and is later used online to infer the desired velocity
of the human limb during the collaborative task. Testing it against the adap-
tive impedance control method shows better performance in terms of improved
synchronisation and reduced force applied by humans. Others have also been
interested in using RBFNN for intention recognition [LG13| {Jan+14, [CNPO6,
Zha+19a, |Gol+19, INZR18| [Var+18| [Wan+18|, [Vol+16| [PL16| |Li+17, Rak+19,
Yan+21]. Control methods for intention recognition have also seen widespread
interest in research [[Hua+15b, |Li+18, [Len+12, [Li+17, [Wil+17, [Wei+19, BucY4|.

Further, with the approach of deep neural networks, [[LZD20] proposed using
a DNN to process RGB images and optical flow for intention recognition. The
authors use two-stream architecture - a spatial network to look at skeleton joints
for spatial information and a temporal network to look at optical flow for temporal
dynamics and information. The output from both the networks is fused using
average fusion and achieves intention recognition accuracy of 74 per cent on their
dataset and 77 per cent on the Intention from Motion (IFM) dataset.

Focusing on enhancing human-robot interaction (HRI), [Li+21]] presented an
approach that enables robots to better understand human intentions through the in-
tegration of visual semantics and natural language processing (NLP). The authors
use image segmentation to classify objects in the field of vision of the robot, use
rule matching and Conditional Random Fields (CRF) to parse natural language
instructions and combine this information to perform the task while looking at
feedback from the users through their facial expressions.

Comparing neural network architectures for human intention prediction, [PF23]]
evaluated three different architectures - Long Short-Term Memory (LSTM), Trans-
former, and MLP-Mixer - specifically in predicting arm movement. A custom
dataset was prepared using a VR environment where the participants were asked
to perform hand movements towards boxes where their gazes were tracked and
the gaze direction, head position, and controller position were recorded. After
training the neural networks on the data, their performance based on accuracy,
movement classification accuracy, and ahead-of-time movement prediction was
compared. The transformer encoder model performed the best with 82.74 per cent
accuracy for predicting movements and 80.06 per cent in correctly classifying the
movements at least once. The next close performer was the MLP-mixer and had
lower computational complexity than the transformer model. The LSTM model
was the worst-performing model of the three.

In a similar setting, [God+22] presented a novel approach for recognizing hand
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gestures based on the lightmyography (LMG) signals and transformer based deep
learning models. The authors use two transformer based deep learning models
- Temporal Multi-Channel Transformer (TMC-T) and Temporal Multi-Channel
Vision Transfer (TMC-VIT) - to classify hand gestures and compare these models
against other machine learning models such as Convolutional Neural Networks
(CNN), Bidirectional Long-Short-Term Memory (Bi-LSTM), Linear Discriminant
Analysis (LDA), Support Vector Machines (SVM), and Random Forests (RF). The
two transformer models outperform other models and achieve accuracies of 94.03
per cent and 93.69 per cent respectively in subject-specific gesture recognition of
five hand gestures (power, pinch, extension, rest, and tripod).

Focusing on multiple actions simultaneously, [WVS23|] presented a multi-
modal visual and tactile sensors-based system to recognize human intention from
observed actions. In the proposed system, a supervised machine learning algo-
rithm is used to train the model with various interaction characteristics, including
touch location, human pose, and gaze direction and is then later used to classify
whether a human touch is intentional or not with an accuracy of 86 per cent which
is much more accurate than similar systems with single modules for inferring
intentions.

Taking a novel approach by focusing on the robot rather than the human oper-
ator, [Tsa+23] proposed a Machine Learning Operator Intent Inference (MLOII)
model that uses an offline supervised learning method to learn from the spatial
data of the robot and then is used to infer the navigational intent online. When
tested against the Bayesian Operator Intent Recognition (BOIR) method, MLOII
performed better in cases involving fewer obstacles and more direct routes whereas
under-performed in cases of complex environments with more obstacles and large
areas.

Emphasizing learning from demonstration, [Wan+18|] proposed a teaching-
learning-prediction (TLP) model that allows robots to learn from human demon-
strations and predict hand-over intentions in real-time using multi-modal sensory
data from inertial measurement unit (IMU) and EMG sensors. During the learning
phase, natural language instructions are used along with the sensor data to learn
from hand-over demonstrations. The model learns from about 5000 sets of hand-
over demonstrations from six subjects and shows a prediction accuracy of 99.7 per
cent in predicting hand-over intentions even from partial motion.

In a later attempt to interpret motion cues, [Dua+18|| explored the ability to
anticipate actions by interpreting cues such as body movements and eye gaze. The
authors conducted human-human experiments to collect data and study how dif-
ferent cues such as eye gaze, head orientation, and arm movement influence the
ability to anticipate actions. They also present a computational model based on
recorded human actions that uses Gaussian Mixture Models (GMM) to simulate
the arm trajectories and incorporate eye gaze patterns to predict action intentions.
This model was incorporated in an iCub humanoid robot and tested in a second
experiment where the robot was the actor and the human participants had to an-
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ticipate the robot’s actions which they were successful in doing when both body
movement and gaze were used by the robot. Although this study shows the im-
portance of actions in intent recognition, it does not directly address any system
for intention recognition from actions in humans which can be implemented on a
robot.

[VGC19]| used the theory of mind-based architecture to perform intent recog-
nition from actions. They performed low-level processing of human skeletal data
to form clusters representing different postures which the robot observes during a
training phase and encodes actions as sequences of transitions through these clus-
ters. They used a high-level module to infer the human partner’s goals based on
the observed sequences of cluster transitions and a Hidden Semi-Markov Model
(HSMM). This architecture was implemented on an iCub robot and tested in an
experiment where the robot had to collaborate with a human partner to build struc-
tures using toy blocks. Experiments showed that the robot was successfully able
to predict the intentions of the human partners and assist in building the structures
with an average time of 4.49 seconds to make predictions.

In the application area of agricultural robotics, [GB20] explored the design
of a robot behavioural controller that learns human intention from body pose de-
tected using OpenPose and then classified into behaviours. The robot’s belief-
desire-intention (BDI) system [RG+95]] decides the next course of action based on
the classified behaviour of the human, such as delivering or exchanging crates or
avoiding the human to prevent interference.

Similarly, in the field of rehabilitation robotics, [WC20] introduced an adap-
tive neural cooperative control strategy that integrates human motion intention into
the control of a rehabilitation robot to improve the effectiveness of therapy espe-
cially for upper-limb patients. The authors obtain muscular forces using surface
electromyography (SEMG) signals and process these signals through a Kalman fil-
ter. A Gaussian Radial Basis Function Network (RBFN) is used to estimate the
motion intention from the above-filtered forces and make necessary adjustments
to the forces of the rehabilitation robot to assist in therapy. The method was tested
with 10 volunteers on an upper-limb rehabilitation robot which was able to accu-
rately follow and adjust the assistance it provided to the participants when they
were moving their limbs along a predefined trajectory.

Moving further from just recognizing actions, [Liu+21al] introduced a multi-
task model that integrates human action recognition and hand-held object identi-
fication to achieve more accurate and context-aware human intention recognition.
The multi-task model has two sub-tasks, one that fuses Spatial Temporal Graph
Convolutional Networks (ST-GCN) with Long Short-Term Memory (LSTM) net-
works (ST-GCN-LSTM) to effectively capture and recognize human actions from
3D skeleton data, and the other uses an improved YOLO v3 model to detect and
identify objects that a human is holding. The authors evaluate the sub-tasks on
datasets and the framework for human-robot interaction based on the multi-task
model in a real-world setting to show that these models significantly improve ac-
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tion intention prediction accuracy.

Demonstrating a newer approach using deep learning algorithms,
[For+21] proposed a method to use RGB-D camera and deep learning algo-
rithms to track the 3D positions of objects in an environment and predict the
likely location the human would place them. The predictions made by the model
are based on the positions of key body joints (shoulders, elbows, wrists) over
time, processed through a recurrent neural network (RNN) with a GRU-based
encoder-decoder architecture. The proposed human intention prediction system
when combined with a YOLOv3 model for object detection in a collaborative task
with a dual-arm ABB Yumi robot reduced collisions by 38 per cent compared to a
setup that only used human tracking and by 70 per cent compared to a system that
only used object detection without any human intent prediction.

Based on the forces exerted during a physical human-robot interaction,
[Lai+22[] explored using physical human-robot interaction to estimate user in-
tention. The authors proposed a novel method called Physical Human-Robot
Interaction Primitives (pHRIP), which extends existing interaction primitives to
capture the user’s intent based on the forces exerted during the interaction. The
method was implemented on a 7-dof robot arm and experiments with the model
showed that the system was able to accurately predict user intentions while per-
forming tasks such as target-directed reaching and obstacle avoidance. [Li+22b]
went along a slightly different route and provided a comprehensive overview of
the current state of interaction control in, what they call, contact robots that fo-
cuses on robots that physically interact with human users, particularly in tasks
requiring close cooperation, such as rehabilitation, teleoperation, and collabora-
tive manufacturing. The authors discuss the use of EMG, EEG, and tactile sensors
to perform action intent recognition along with a combination of sensor inputs
with machine learning models to classify intended actions.

Finally, [Ni+23] proposed a cross-view human intention recognition method
that uses views of body and face from different angles and combines them to ac-
quire meaningful semantics for intention recognition. The authors use a genera-
tive model to generate a different view from a given view, increasing the semantic
information available as well as using an RNN to fuse spatial and temporal in-
formation for inferring the intentions of the user. The method is tested using a
collaborative assembly task where the cross-view method significantly improves
the fluency and efficiency of the robots and brings their performance closer to that
of human participants. We will further look into the challenges and limitations
concerning intention recognition in the later section.

Overall, these manuscripts highlight the advancements in action-based inten-
tion recognition, ranging from using Kalman filters to deep learning approaches
such as transformers. By effectively inferring the intentions from observed human
actions, these models enhance the ability of robots to work in social environments.
In the next section, we will look into gaze-based intention recognition followed by
the challenges and limitations concerning intention recognition.
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Figure 9: Images showing gaze-based intention recognition from relevant refer-
ences. (i) shows the human interacting with a robot which detects their intentions
through an eye tracker [NRI3]. (ii) demonstrates a robot understanding context
and intention of the user from their gaze [Qui+12]. (iii) shows a robot understand-
ing the intention of the human to pick up an object based on the gaze information

acquired using an eye tracker [SCV19].

Gaze

Given the extensive research on gaze intention, it might appear as one of the most
popular methods of intention recognition in the field of robotics. As in the case
of human-human interaction, the eye and gaze direction plays a crucial role in
interpreting attention and underlying intentions. Similarly, in the case of robots,
this can be used to gain insights into the user’s focus of attention, intention, and
underlying mental state.

talk about the importance of context awareness and intention under-
standing in robotic systems and how gaze estimation and gesture interpretation can
be used as modalities to understand human intentions in different contexts. They
specifically talk about the gaze estimation process that involves detecting the user’s
face, mapping it onto an ellipsoid model, and tracking the eye movements to esti-
mate the direction of gaze. The gaze tracking system, implemented on a standard
laptop with a webcam, is effective within a certain distance, providing a reasonable
estimation of where the user is looking. With a predefined ontology, recognizing
gaze as well as gesture helps the robot understand the context in which a particular
action occurs, enabling a more accurate interpretation of user intentions.

The use of gaze in rehabilitaion systems is explored by [NR13]l. The authors
explored using gaze-based intention detection in a virtual environment (VE), al-
lowing patients to interact more freely and naturally with the rehabilitation system.
The system proposed by the authors utilizes the ARMin III upper extremity reha-
bilitation robot, which supports the patient’s arm movements. The robot uses gaze
data to infer the patient’s intentions and provides the necessary support to complete
the intended action.

Similarly, in a collaborative task setting, looked into using gaze
patterns to predict a person’s intention. The authors use support vector machines
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(SVM) to classify and predict the customer’s intended ingredient choice based
on features derived from their gaze patterns achieving 76 per cent accuracy. The
model was also able to anticipate the customer’s request approximately 1.8 sec-
onds before the verbal request was made.

Addressing assistive applications, [LZ17] proposed a novel framework to infer
intentions from eye gaze to have a robot assist elderly or impaired individuals
with activities of daily living (ADL). The system detects where a user is focusing
their gaze, identifying "intentional gaze" (when the user looks at an object with the
intent to manipulate it) versus "intention-free gaze" using a support vector machine
(SVM) classifier based on features like gaze dwelling time, pupil size variation,
and gaze speed. The framework was tested in a simulated homecare environment
with a set of objects related to common daily tasks (e.g., making coffee, taking
medicine) with intention inference achieving a correctness rate of up to 75 per
cent.

Here, by combining gaze-based data with traditional model-based Al plan-
ning, [Sin+20] explored a novel approach to enhance the accuracy of human in-
tention recognition. Gaze data is utilized to create a probability distribution over
potential intentions. This model is combined with traditional model-based Al plan-
ning algorithms to predict intentions approximately 90 seconds earlier and with a
22 per cent increase in accuracy. The model combines both short-term (proximal)
and long-term (distal) intentions into a single set to perform intention inference.
Even during semi-rational or deceptive gaze behaviours, where individuals might
try to mislead the system by looking at irrelevant areas, the combined model still
performed better than using gaze or action data alone, showing a 9 per cent im-
provement in accuracy.

Similarly, [RKD18] introduced the Gaze-based Multiple Model Intention Es-
timator (G-MMIE) algorithm, which is designed to predict the goal intention of
human reaching actions. Just like the previous work, this work fuses gaze infor-
mation with motion data to improve the accuracy and timeliness of intention infer-
ence in human-robot collaboration scenarios with the difference being the models
used for gaze and action prediction.

In an attempt to reduce errors due to saccadic eye movements, [SCV19] pro-
posed a method that compares the similarity between hypothetical gazes on ob-
jects, generated from saliency maps, and actual gazes collected from eye-tracking
devices while using the Earth Mover’s Distance (EMD) to measure the similar-
ity and employs a 1-Nearest Neighbor (1-NN) classifier to determine which ob-
ject the human is focusing on. Results from the experiments show that the pro-
posed method outperforms fixation-based methods in detecting human intention
and achieves 92.2 per cent accuracy in predicting the object to be selected by hu-
mans in the interaction scenario.

Exploring first-person perspectives, [Kim+19]|| talked about using a first-person
camera and an egocentric view to learn the user’s intention through spatial and
temporal information, allowing a soft wearable hand robot to assist users in grasp-
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ing and releasing objects. The experiments conducted, including those involving
a patient with Spinal cord injury, provide evidence of the system’s effectiveness
while comparison with EMG-based intention detection methods shows that the
proposed method can predict user intentions faster and with high accuracy.

Circumventing the limitations of a fixation-based gaze system, [[SCV20] pro-
posed a system which uses a wearable eye tracker and a deep learning model to
classify whether a human is looking at an object, based on the gaze data. The
proposed model uses a Fully Convolutional Network (FCN) as the backbone,
augmented with Convolutional Block Attention Modules (CBAM) and Residual
Blocks and is designed to handle gaze data and object bounding boxes, aiming
to predict the human’s visual intention with high accuracy. With this system, the
authors address issues related to fixation-based gaze systems, similar to how the
previous authors did. The proposed model was able to achieve F1 scores of 0.971
for single-object scenarios and 0.962 for multiple-object scenarios.

Furthermore, in the context of shared autonomy, [FB21] investigated the use
of gaze as a predictive cue for intention recognition in pick-and-place tasks. The
study uses Gaussian Hidden Markov Models (GHMM) to model and predict user
intention primarily based on scan paths derived from gaze data. The proposed
models demonstrated strong generalizability across different users and task config-
urations, with accuracy rates significantly higher than random chance. The authors
also explored a semantic model that abstracts the intention recognition process to
generalize across different objects and tasks.

Similarly, focussing on proactive assistance, [GCR21] looked at gaze as the
primary input to predict the user’s intentions, allowing robots to anticipate actions
and respond accordingly. The authors use a new algorithm which combines the
cascade effect hypothesis which suggests that the more attention an object receives
through gaze, the more likely it is to be selected by the user and an LSTM-based
neural network trained to classify user intentions from gaze data with 75 per cent
accuracy and up to 2 seconds before the user makes a selection.

On a similar effort to enhance collaborative processes, [Zha+21] utilized a
novel interaction method that combines eye-tracking and gesture recognition to
predict the intention of the operator and a finite state machine (FSM) to control the
robot to make assistive manoeuvres. The study utilizes a neural network to clas-
sify nine different hand gestures based on joint angles. This classification helps in
identifying the user’s commands to the robot. The combination of eye gaze and
hand pointing is used to select objects in the virtual environment. The Probabilis-
tic Roadmap Planner (PRM) enables the robot to move objects without collisions
efficiently. The method is tested in a virtual environment and shows improved ef-
ficiency in the assembly task when compared between two groups of participants.

In the scope of probabilistic modelling similar to previous recognition meth-
ods, [Bel+22]] also presented a framework for predicting human intentions during
teleoperated object manipulation tasks which combine human input with robotic
assistance, by accurately and promptly estimating the user’s intention based on
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their gaze and motion data. The authors propose a probabilistic model that com-
bines gaze data, hand motion trajectories, and grasping triggers to predict which
object a user intends to pick up or place. Intention estimation is performed using
GHMMs trained on sequences of gaze and motion data and tested in a simulated
environment with a cluttered scene, where objects are partially occluded, and users
can manipulate them with either hand. The models perform predictions with an av-
erage duration of 0.5s remaining before the end of the actions performed by the
users.

Lastly, with the use of modern eye-tracking technologies, [[Yan+23] conducted
a study focused on recognizing grasping intentions in human-robot interaction,
particularly for individuals with disabilities that prevent them from performing
physical tasks. The proposed system includes a binocular eye-tracker to capture
gaze data, a scene camera for capturing the user’s view, and algorithms for de-
tecting object centroids and grasping positions. The setup is designed to identify
where a user is looking and relate this information to their grasping intentions.
In experiments involving performing viewing and grasping tasks, gaze data was
analysed to understand the differences between gaze patterns associated with the
two tasks. In grasping tasks, fixations were found to be more concentrated and
closer to the grasping point, particularly the index finger, compared to viewing
tasks where fixations were more dispersed. The authors used different machine
learning techniques such as SVM, KNN, SGD, and decision trees to classify user
intentions based on extracted features of gaze data and achieved an accuracy of
89 per cent on training objects and 85 per cent on new unseen objects with the
best performing model. We will further look into the challenges and limitations
concerning intention recognition in the later section.

Overall, these papers highlight the progress in gaze based intention recogni-
tion, ranging from using support vector machines to convolutional neural net-
works. By effectively inferring the intentions from gaze, these models enhance
the ability of robots to understand context and operate in social environments. In
the next section, we will look into non-verbal cues-based intention recognition
followed by the challenges and limitations concerning intention recognition.

Non-verbal

By non-verbal intention, we refer to intention recognition through gestures which
could be demonstrated via various body parts. These are done without the need for
any verbal communication and thus, play a crucial role in human-robot interaction.
In order to facilitate intention recognition, [Neh+035] classify gestures into five
broad categories manipulative, expressive side effects, symbolic, interactional, and
referential gestures to facilitate intent recognition. The authors emphasize the im-
portance of context in enabling robots to differentiate between similar gestures.
Building on the classification of gestures, [AH10] proposed using weighted
probabilistic state machines to recognize intentions of humans in a human-robot
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Figure 10: Images showing non-verbal cues based on intention recognition from
relevant references. (i) demonstrates a robot adjusting its behaviour based on the
emotional intention of the user [[Che+17|]. (ii) shows a robot identifies different

intentions related to similar gestures ||

collaboration scenario. The approach proposed by the authors is used to recognize
explicit intentions (human actions explicity express the intentions) and implicit
intentions (human actions need to be understood based on context to understand
intention). In the proposed method, each intention is modelled as a separate state
machine. The system updates the probabilities of each of the state machines based
on the observed gesture of the human. The system was tested using an industrial
robot arm and was able to successfully recognize explicit actions such as picking,
placing, and passing objects, and implicit actions such as piling and un-piling
objects.

Similarly, work done by which was also mentioned in the gaze sub-
section, focused on periodic (repetitive) and deictic (pointing) gesture recognition
to aid in intention recognition. The authors detect periodic gestures by analyzing
the frequency and trajectory of hand movements and they use deictic gestures to
divert the robot’s attention to important places and objects in the environment.

Additionally, the classification of intentional driving behavior was explored
by [WSHI2|. They proposed a novel methodology for classifying driving be-
haviour using a hierarchical Perception-Action (P-A) model. The authors built
on the idea that a cognitive agent’s perceptual domain is developed based on the
outcomes of its actions, rather than the traditional model where perception drives
action, which simplifies visual processing by maintaining the complexity of the
perceptual domain in relation to the agent’s motor capabilities. They use the hier-
archical P-A model to model the intentions at different levels of abstraction, from
high-level protocols (like traffic rules) to low-level motor actions and evaluate
different classification methods, including generative models (like Prolog-based
first-order logic systems), discriminative models (like decision trees), and hybrid
approaches. Experiments were conducted using data collected from an instru-
mented vehicle such as eye-tracking, control inputs, and environmental features.
The results show that a hybrid approach combining generative and discriminative
models yields the best performance in classifying driver intentions.

In the domain of brain-computer interfaces, presented their work on
a system that uses electroencephalography (EEG) signals to interpret the intention
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to perform gestures on a remote robotic hand. The proposed system is based on
the Steady-State Visual Evoked Potential (SSVEP) approach which makes use of
visual stimuli to elicit a brain response that can be detected and interpreted to
understand the intention of the user.

In the case of emotion recognition, [Che+17]] used facial expressions to inter-
pret emotional intention and use it to direct the robot’s actions in a human-robot
interaction scenario. The authors use the Candide3 face model to recognize seven
basic emotions (happiness, neutral, sad, surprise, fear, disgust, and anger) and fur-
ther infer which drink the user would like to order. The behaviour of the robot
is adapted to the intention of the user using an information-driven fuzzy friend-Q
(IDFFQ) learning mechanism. While testing it on the bartender scenario, the sys-
tem achieved 80.36 per cent accuracy in emotion recognition and 85.71 per cent
accuracy in intention understanding.

Addressing the joint problem of intention recognition, attention, and tasks,
[Wei+18]| proposed using a hierarchical model called the Human-Attention-Object
(HAO) graph. The authors used RGB-D videos to find out where the user was
looking (attention), why they were looking there (intention), and what they were
doing (task) using the proposed model. They use a beam search algorithm to in-
fer the best matching task label, intention sequence, and attention points from the
input and evaluate the model across three different tasks of attention recognition,
intention recognition, and task recognition, significantly outperforming the con-
sidered baselines.

In shared autonomy settings, [JA19] presented a framework for human intent
recognition where the robots can effectively infer the intentions of human opera-
tors to provide meaningful assistance during teleoperation tasks. The authors pro-
pose a recursive Bayesian filtering framework for intent recognition that models
and combines multiple non-verbal observations to probabilistically reason about
the user’s intended goal. The model incorporates the user’s actions as goal-directed
behaviours with varying levels of rationality, allowing for a more personalized and
accurate intent recognition and also has a feature called adjustable rationality to
account for suboptimal or inconsistent behaviour from users.

In another work with emotional intent recognition, [Yan+22| proposed using
facial expressions along with body actions from RGB videos. The authors propose
a stacking model which fuses features from facial expressions and body actions
to enhance the accuracy and robustness of intention recognition. The proposed
model significantly outperforms single cue methods and achieves an accuracy of
94.57 per cent.

Further exploring emotion intention recognition, [Che+20|] proposed a fuzzy
deep neural network with a sparse autoencoder (FDNNSA). The model outper-
forms other state-of-the-art models in CK+, CASIA, and FABO datasets and shows
better accuracy in emotion intention recognition in a bartender experimental study
compared to softmax regression and deep neural networks. We will further look
into the challenges and limitations concerning intention recognition in the later
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section. Works done by [YOO7] and [Kur+19] are also notable in using a fuzzy
learning approach for intention recognition.

Overall, these works highlight the progress in non-verbal cue based intention
recognition, ranging from using probabilistic state machines to fuzzy deep neural
networks with sparse autoencoders. By effectively inferring the intentions from
non-verbal cues of humans, these models enhance the ability of robots to operate
effectively in social environments. In the next section, we will look into object
based intention recognition followed by the challenges and limitations concerning
intention recognition.

Object

It is essential to understand human intention during interactions with objects.
However, it is a significant challenge faced by researchers in the field of human-
robot interaction. Various methods are proposed to address this and to enhance the
adaptability of intelligent systems leading to better human-robot collaborations.

Using selected objects used for daily activities, [Liu+21b] discuss a method to
infer the intention of object usage and interaction using Markov Random Fields
(MRF). The model uses relevant features from the environment to infer the likely
intentions behind object usage and outperforms methods like Recursive Bayesian
Incremental Learning.

Further, based on the analysis of surrounding scenes and objects, the work
done by [Dunl4] presents a comprehensive approach to recognising and adapt-
ing to human intentions in real-time. The author proposes a novel probabilistic
graphical model called Object-Action Intention Network (OAIN) that recognizes
human intentions based on the objects in the scene and the potential actions asso-
ciated with these objects. We will further look into the challenges and limitations
concerning intention recognition in the later section.

In the next section, we will look into robot intent followed by the challenges
and limitations concerning intention recognition.

6.3 Robot Intent

We previously categorised intention recognition into primarily two categories:
high-level and low-level. However, a certain section of intention recognition work
does not fit into either of these two categories. That is inferring the intentions of a
robotic agent. Thus, we introduce this as a third category of intention recognition
in the scope of this paper, which focuses on a human agent understanding a robotic
agent’s intentions either through passive inference or through active communica-
tion.

In case of humanoid robots, [Mut+09] explored the possibility of leaking gaze-
like cues from two humanoid robots and observing whether participants success-
fully infer the intention of the robots in a guessing experiment. Results show that
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Figure 11: Images showing robotic agent’s intent from relevant references.
(i) demonstrates the robot data and intentions using augmented reality sys-

tem [Ghi+14]. (ii) shows different methods used to express robot intent [Lem+21]].

(iii) demonstrates robot intention recognition through gaze behaviour and move-

ment patterns [Sci+15]. (iv) shows the projection of the robot intention [SA22].

participants performed better in the guessing game when the robots used gaze cues,
indicating that they were able to detect and use these cues to make inferences about
the robot’s intentions. Although this work does not talk about predicting human
intention from gaze, it reinforces the fact that humans use gaze to recognize in-
tent and make decisions according to it. We have been looking at human intention
recognition until now. However, for effective communication and collaboration
between humans and robots, humans should also be able to infer the intentions of
the robot.

Using light and motion based approaches of expressing robot intention,
tested three light-based and three motion-based methods while working
with a human on a sorting task. Results showed that the light-based LED signal
on the wrist of the robot was the most noticeable among all the six signals. The
head pan was the most noticeable signal amongst the motion-based methods.

In an effort to see if humans could attribute intentions to robots, [Koa+13]]
used visual communication cues to explore if untrained humans could compre-
hend robot intentions correctly. They conducted a user study by operating a robot
like a hearing dog and used a wizard-of-oz approach to guide the participants to
one of the two sound sources as part of the experiment. Results from their ex-
periments showed that participants were successful in identifying the intent of the
robot and that gaze and head movements were important aspects for communicat-
ing the intention of the robot to the participants visually.

Expanding on the use of humanoid robots for intention recognition, [Sci+15]]
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explored how humanoid robots can be used as tools to study the ability of humans
to read and predict the intentions of others based on their movements. The authors
highlight the issues with using video-based (passive observation compared to ac-
tual interaction) and VR environments (disconnected from the physical world and
laws) for studying intention understanding and propose using humanoid robots as
a better alternative offering modularity of control in robot actions, more natural in-
teraction due to sharing the same physical space, and a second-person interaction
scenario to preserve the natural reciprocity of the interaction between the subject
and the robot. However, the authors also point out some issues with humanoid
robots such as imperfect human-like motion and experimental validity of trigger-
ing the same cognitive process as other humans in subjects.

[HB18] explored the concept of robot understandability by addressing key
questions, including its definition, significance, and the principles for designing
robots that can be easily understood by humans. The authors present the definition
for understanding and also introduce a term called "communicative actions" which
are actions used to support other’s understanding of the agent. They also go on to
introduce a model of interaction understanding which describes how humans and
robots can benefit from first-level and second-level theory of mind to facilitate un-
derstanding of each other. Based on the proposed model, the authors also suggest
several guidelines for designing understandable robots such as determining what
information should be communicated to the human, how the robot should infer the
human’s mental state, and how communicative actions should be generated and
directed.

Additionally, an in-depth review of VR, AR, and XR interfaces used in Human-
Robot Interaction (HRI) by [Wal+23]] provided useful insights to the topic. A
key issue highlighted in this review is the challenge humans face in understanding
robot capabilities and intentions and that XR technologies offer a solution by help-
ing communicate the robot’s motion intentions and behaviours, which enhances
collaboration. Incorporating robot intentions into shared workspaces has also been
a focus, particularly through spatial AR projections aimed at optimizing collabo-
ration [Mat06, LHS 13} [LKK11}, [PK09, [CA15| |(Coo+14]. Similarly, [SA22] used
various approaches such as visual and auditory modalities to convey intent and also
used colour and light intensity changes to reflect the state of the robot. Another
early implementation of the projection technique to control mobile robots via nav-
igation areas marked using gestures was proposed by [Ish+09]. There have been
other advances as well such as workspace projections, like the MAR-CPS Sys-
tem [Omi+15| |Ghi+14]], and the visualization of object handover points through
AR headsets like HoloLens, which help improve understanding [New+22] and
safety in shared environments [Ros+19].

Lastly, a significant application of AR systems is explored by [Bam-+19]
and [Yua+19], where AR is used for dynamic trajectory updates. These updates
communicate a robot’s intended movements in response to human presence, effec-
tively conveying critical information such as grasp indicators and target positions.
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We will further look into the challenges and limitations concerning intention
recognition in the later section.

Overall, these works highlight the progress in robot intent expression and
recognition, ranging from using light and sound-based cues to projection tech-
niques. By effectively inferring the intentions of the robots, humans in shared
spaces can collaborate effectively and safely with the robots. In the next section,
we will look at recent developments and challenges concerning intention recogni-
tion.

7 Recent Developments and Challenges

Currently, technological advancements in machine learning and artificial intelli-
gence have led to significant progress in the development of large language mod-
els (LLMs) which are capable of reasoning in certain contexts. The capability to
understand complex concepts, generate human-like texts and assist in a wide range
of tasks, has the potential to infer and execute human commands.

[Wan+24b] in their overview of large language models for robotics, talk about
GIRAF [Lin+23|] which uses LLMs to accurately understand the intention behind
human gestures and execute tasks accordingly through a robot. Building upon the
capabilities of LLMs, [VBK24] also explored the possibility of LLMs as proxies of
human observers in HRI tasks. They specifically investigate if current LLMs pos-
sess Theory of Mind abilities and how this capability can be applied to HRI. This
is done by conducting a study where LLMs look at a robot performing a task and
are tasked with predicting how a human observer would interpret that behaviour.
To validate the experimental setup, the authors test it on human participants and
have them interpret the behaviour of the robot. Initial results suggest that LLMs
might possess ToM abilities, as their responses often align with human interpreta-
tions. However, providing perturbations to prompts causes the LLMs to falter in
their responses suggesting pattern recognition or retrieval-based reasoning rather
than true theory of mind understanding.

There are cases where human operators explicitly state what they desire from
the robot using natural language. However, since natural language is not directly
understandable and usable by robots to plan an action, LLMs form a bridge to
parse, understand, and translate the natural language instructions from the human
operators to achievable goals in the form of an action plan for the robot. Extensive
work has also been done by [Vem+23] in this regard, talking about a high-level
library which is used by LLMs to bridge the gap between human instructions and
robotic actions.

Further exploring the capabilities of LL.Ms in intention recognition, [AAW24]]
explored the use of LLMs in collaborative tasks using a combination of non-verbal
cues (hand gestures, body poses, and facial expressions), verbal cues, and environ-
mental states. The intention inferring is performed by the perceptive reasoning
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framework which then combines its output with the task reasoning framework
to execute appropriate robot actions. The proposed model is implemented on a
NICOL robot and tested with a collaborative task requiring categorizing various
objects based on shape, colour, and purpose. Results show that amongst the com-
pared LLMs, GPT 4 showed the best performance and LLMs from OpenAl per-
formed better across the board.

Additionally, [Hua+24] discussed a novel approach to enhance human-robot
collaboration by using LLMs and vlms for proactive intention tracking with a robot
to assist a human user in cooking tasks. The authors propose a Language-driven
Intention Tracking (LIT) system which uses a task graph to track the intention
over the long term and predict future actions of the human. The setup is tested
on a preliminary study which involves the task of salad making showing the robot
able to smoothly assist the human in the task.

Moreover, [Wan+24a] presented their system which involves using LLMs for
multi-modal HRI. The authors use three major modules in this system: scene nar-
rator, planner, and expresser where the expresser uses atomic action animation
clips to control the actuators and create facial expressions on the robot to express
its intentions. We will further look into the challenges and limitations concerning
intention recognition in the later section.

LLMs are still in their emergent stage and are being actively researched. De-
spite significant research done in the field, intention recognition done using LLMs
faces unique challenges. The uniformity in plan generation often results in in-
adequate adaptability to complex or dynamic environments, limiting the system’s
effectiveness in real-world applications. The reliance on well-crafted prompts de-
mands expertise, making the technology less accessible and hindering usability in
unpredictable scenarios. Additionally, LLMs exhibit fragility and inconsistency,
particularly in Theory of Mind tasks, where minor contextual changes can lead
to drastically different outcomes, undermining reliability. Latency in processing
and response generation further complicates real-time decision-making, while the
need for a safety layer to verify generated actions adds another layer of complexity.
Moreover, LLMs struggle to interpret and act upon non-verbal cues and more com-
plex environments, which are crucial in nuanced intention recognition tasks. Bal-
ancing model expressiveness with responsiveness, managing multi-user scenarios,
and optimizing function granularity also present significant hurdles, particularly
when scaling the systems for broader applications. These challenges collectively
highlight the need for further refinement and evaluation to enhance the practicality
and reliability of LLMs in intention recognition.

7.1 Psychological

The Theory of Mind (ToM) in robotics faces several limitations that hinder its
effectiveness in intention recognition, particularly in complex, real-world scenar-
ios. Early implementations often suffered from oversimplification due to limited
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computational resources, leading to a reduction in the richness and depth of be-
haviours that can be modelled [Sca02]]. Current approaches are primarily reactive
rather than proactive, relying on passive perception where robots respond to stim-
uli rather than actively seeking information, which limits their adaptability and un-
derstanding in dynamic environments. Additionally, many models rely on large,
contextually dependent datasets and simplified assumptions about human cogni-
tion, which may not fully capture the nuances of real-world interactions and may
struggle outside of controlled laboratory conditions. The computational demands
of these models also necessitate approximations, potentially reducing accuracy
and generalizability. Moreover, current implementations often fail to differentiate
between instrumental and epistemic goals, limiting the depth of understanding and
prediction of human intentions. These challenges are further compounded by is-
sues such as the uncanny valley effect, the requirement for more complex sensory
processing, and difficulties in generalizing findings from controlled environments
to unpredictable real-world contexts.

The implementation of the Mirror Neuron System (MNS) in robotics encoun-
ters several key limitations. Current models, such as those utilizing recurrent neu-
ral networks with parametric biases (RNNPB), struggle to hierarchically organize
behaviours, making it difficult to handle the complexity of real-world actions.
These models primarily replicate learned movement patterns rather than under-
standing and reproducing goal-directed behaviours, limiting their adaptability and
effectiveness. Furthermore, the self-organization of neurons that can recognize ac-
tions across different perspectives or grasp types remains a significant challenge,
hindering the development of a more robust and versatile MNS in robotic systems.

In the context of psychological intention recognition in robotics, it becomes
clear that current methodologies face significant challenges. The limitations of
the Theory of Mind (ToM) and the Mirror Neuron System (MNS) models under-
score the complexity of accurately recognizing and predicting human intentions,
especially in dynamic, real-world scenarios. The traditional approaches, often
constrained by computational resources and overly simplistic models, fall short of
capturing the nuanced, context-dependent nature of human behaviour. As [Kal19]
suggests, if intentions are better understood as patterns of behaviour rather than
discrete mental states, then the future of intention recognition in robotics may lie
in developing systems that focus on observing and interpreting these behavioural
patterns in context, rather than relying on traditional cognitive models. This shift
could pave the way for more adaptive and accurate recognition systems, better
equipped to handle the complexities of real-world interactions.
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7.2 Activity

Despite promising research in the field of activity recognition, several key chal-
lenges persist. Static context models must be rebuilt when the robot moves, while
traditional models like HMMs struggle with sensor noise, leading to false pos-
itives and negatives. Visual-based methods face difficulties with segmentation,
especially when distinguishing between fine-grained activities that involve similar
objects or actions. Human activity recognition systems are often hindered by a
lack of generalization across different environments and conditions, requiring ex-
tensive data that is often unavailable or not diverse enough. The placement and
number of sensors, as well as distinguishing activities in multi-person scenarios,
complicate the process further. Moreover, balancing the trade-off between model
complexity and real-time processing remains a critical challenge. Finally, the tran-
sition from third-person to first-person perspectives introduces additional noise
and complexity, particularly in dynamic environments, making accurate recogni-
tion in real-world settings difficult.

7.3 Plan

Plan recognition also faces similar challenges as activity recognition in terms of
computational overhead, high false-positive rates, and reliance on offline learn-
ing leading to compromise in accuracy and adaptability of systems in dynamic
environments. Furthermore, in the case of tree-based approaches, the sensitivity
of strategies to search tree depth can hinder efficiency, particularly in resource-
constrained settings. The automation of landmark identification, critical for in-
tention understanding, is still unresolved, limiting scalability. Finally, agents may
make erroneous decisions due to incomplete observations, highlighting the need
for robust feedback mechanisms.

7.4 Goal

The major challenges in goal recognition across various approaches include the
need for extensive training data and interactions, which hampers real-time appli-
cability and scalability, as seen in models like GRNet and the imitation learn-
ing model. The reliance on deterministic environments and manually constructed
models, such as in the works by [JBO6b] and [SBP22], limits applicability in
dynamic and uncertain real-world scenarios. Additionally, the inability to han-
dle noisy data and variability in human behaviour, highlighted in [AMV23|’s
and [ZKL23|’s studies, further restricts the generalizability and accuracy of goal
recognition systems. Finally, the difficulty in managing multiple concurrent in-
tentions and the challenge of capturing the complexity of human planning un-
derscores the limitations in current models’ robustness and explanatory power.
The field of goal recognition is still evolving, with each approach offering unique
strengths and encountering distinct limitations. Traditional methods, such as those
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based on imitation learning or probabilistic models, have laid the groundwork for
understanding the intricacies of goal inference but often fall short in real-world
applications due to their reliance on structured environments and extensive prior
knowledge. Recent developments in machine learning, particularly deep learning,
have introduced more flexible and scalable solutions. These methods, exempli-
fied by systems like GRNet, show promise in handling more complex and less
predictable scenarios. However, they also introduce new challenges, such as the
need for vast amounts of training data and computational resources. As research
continues to push the boundaries of what is possible, the focus is shifting towards
creating more robust, generalizable, and explainable models that can effectively
operate in real-time and under the uncertainties of real-world conditions.

7.5 Action

Action recognition in intention prediction faces several significant challenges. One
major issue is the reliance on kinematic cues from RGB video data, which may not
capture subtle motion details as effectively as 3D kinematics, limiting the robust-
ness of predictions in real-world scenarios. The lack of contextual information
further hampers model performance, as human intention often depends heavily on
environmental context. Outlier motions and unusual conditions are poorly repre-
sented in training data, leading to inaccuracies and reduced generalization across
diverse tasks and scenarios. The computational intensity of real-time intention in-
ference, coupled with the challenges of handling noisy sensory data, makes robust
and scalable implementation difficult. Moreover, systems that depend on prede-
fined ontologies or static models struggle with adaptability, particularly when en-
countering novel or ambiguous situations. These challenges are exacerbated by
the variability in human actions and biosignals, which complicates the creation
of models that can consistently and accurately predict intentions across different
users and conditions. Additionally, the co-adaptation of humans and robots during
interaction is often overlooked where the humans react to the robot’s actions and
change their behaviour accordingly, reducing the effectiveness of intention recog-
nition systems in dynamic environments. Overall, these limitations highlight the
need for more refined models that can integrate multiple sensory inputs, handle
context effectively, and adapt to evolving human-robot interactions.

7.6 Gaze

The challenges in gaze-based intention recognition are multifaceted, arising from
both technical limitations and user variability. The precision of gaze tracking is
often compromised by factors such as the error margin in gaze estimation, user
discomfort during prolonged use, and sensitivity to environmental conditions like
occlusions and cluttered scenes. Moreover, systems frequently struggle with scal-
ability, as they may require retraining when additional targets are introduced, and
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their performance can degrade in complex or dynamic environments. The *Midas
touch’ problem, where unintentional gaze triggers unintended actions, remains a
significant challenge, along with the difficulty of accurately interpreting gaze pat-
terns in diverse, real-world scenarios. Additionally, the generalizability of these
systems is limited due to the dependency on context-specific data, the variability
in user behaviour, and the restricted diversity of participant samples in studies.
These challenges highlight the need for improved gaze tracking accuracy, better
handling of user variability, and enhanced scalability to make gaze-based inten-
tion recognition more reliable and broadly applicable.

7.7 Non-verbal

Non-verbal intention recognition in human-robot interaction spreads across mul-
tiple domains ranging from emotional intention to any kind of gesture made from
one of the several body parts. This category of intention recognition faces several
significant challenges. One major difficulty is the need to incorporate contextual
understanding and interaction history, as gesture recognition cannot rely solely
on kinematics, and cultural and individual variations further complicate this task.
The complexity of modelling human intentions, which often involve unseen men-
tal states or motivations, adds another layer of difficulty, especially when relying
on action features alone. The limitations of current technologies, such as the low
signal quality in EEG-based systems and non-convex optimization in probabilistic
models, hinder real-time and accurate intent inference. Additionally, challenges
arise from the need for extensive data preprocessing, the difficulty of adapting to
changes in user intentions mid-task, and issues related to object segmentation in
cluttered environments. The scalability of systems to handle interactions involving
many humans and robots, and the accuracy of emotion recognition, are also critical
issues that impact the overall reliability and effectiveness of intention recognition
systems.

7.8 Object

The major challenges in object intention recognition include the static nature of
models, which struggle to adapt to changing user preferences over time, even with
adaptive algorithms like Q-learning. Accurately interpreting visual affordances is
difficult due to objects affording multiple actions, complicating the prediction of
user intent. Additionally, object segmentation in cluttered or occluded environ-
ments often leads to errors, impacting tasks like categorization and pose estima-
tion. Moreover, the system’s performance is inconsistently affected by learning
rates, with scene-dependent factors playing a significant role.
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7.9 Robot Intent

As discussed earlier, one aspect of intention recognition is inferring the intentions
of the robot by human agents which has its own set of issues. The effectiveness
of nonverbal cues, such as gaze direction, is influenced by the robot’s design, with
highly human-like robots potentially causing cognitive overload or discomfort.
Signalling intent in shared workspaces is complicated by the limitations of current
methods, such as light-based projecting signals requiring flat surfaces and motion-
based signals being easily confused with routine actions. The environment and
user traits further complicate interpretation, with cluttered spaces and specific per-
sonality traits affecting signal comprehension. Additionally, the use of humanoid
robots in research is limited by their inability to perfectly replicate human move-
ments, which may hinder accurate intention reading. The inherent complexity
of designing robots that can effectively communicate intentions, compounded by
asymmetries in human-robot sensing and acting capabilities, and the challenge
of directing communicative actions in multi-human environments, highlights the
multifaceted difficulties in advancing robot intention recognition. Robot intention
recognition is also constrained in the domains of Virtual Reality (VR), Extended
Reality (XR), and Mixed Reality (MR). The integration of object and robot inten-
tions with action probabilities could pave the way for richer, more intuitive visual-
izations, tailoring projections to convey personalized information effectively. Fu-
ture research should also delve into the comparative impacts of static versus con-
tinuous projections in conveying a robot’s forthcoming goals, extending beyond
mere motion intent to visualize shared objectives, requisite objects, and compre-
hensive states of the robot. An understanding of how to balance visual informa-
tion to avoid overload, perhaps through real-world studies, is crucial. Additionally,
investigating the influence of anthropomorphic versus non-anthropomorphic ges-
tures on user perception could provide significant insights into optimizing user
experiences in HRI contexts.

8 Discussion and Future Work

This review outlines the broad and varied nature of intention recognition in
robotics. By categorizing intention recognition into high-level, low-level, and
robot intention recognition, we provide a comprehensive understanding of the
different theories, approaches, and methods used in robotics.

We understood that high-level intention recognition focuses on broader objec-
tives and long-term plans behind human actions and generally encompasses in-
tention recognized from activity, plans, and goals. In contrast, low-level intention
recognition prioritizes immediate actions and cues such as gaze and other non-
verbal gestures. Taking these into consideration, intention could be defined as an
agent’s goal with a dynamic action plan within a defined environment and inten-
tion recognition then becomes the key which allows us to understand the desired
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state and the sequence of actions necessary to achieve this goal. Therefore, under-
standing the goal, action plan, and environment enables us to predict the agent’s
intended outcomes and the steps they will take to reach them within the specific
context.

The review emphasizes the evolving role of environmental factors in enhancing
context based information to improve the ability to interpret human intentions in
regard to its immediate surrounding. It identifies the challenges and limitations in
the high-level and low-level intention categories, and addressing these identified
challenges as discussed in the previous section can lead to more adaptable and
resilient robotic systems. Thus, making them capable of operating effectively in
dynamic and unpredictable environments.

Building on the review, we conclude that future research in the field should fo-
cus on the integration of multi-modal information sources. This is done to improve
the accuracy and robustness of intention recognition systems. Exploring the syn-
ergy between high-level and low-level recognition processes along with relative
scene information can lead to better prediction of human intentions.
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Appendix

Table 1: Summary of Psychological Theories on Intention Recognition

References Overview Findings/Contributions

[Heil3|] Suggested peo- | Used to infer the meaning behind
ple have  “folk | the actions of others for a given sit-
psychology” uation.

[PW78] Coined the term | Formalized ToM concept as the
“Theory of Mind | ability to recognize others’ mental
(ToM)” states.

[WPS83| Investigated  chil- | Ability of children to associate re-
dren’s understand- | lationships between multiple men-
ing of multiple | tal states by the ages of 4 to 6 years.
mental states and
false beliefs

[PBCR95]|| Explored the rela- | Children with autism fail to asso-
tion between mental | ciate mental states with others.
state association and
autism in children

[BC+95]] Explored difficulties | Associated the inability of children
reading intentions | with autism to assign mental state
via eye gaze in | to others with the failure to read in-
children with autism | tention through eye gaze.

[Kal19] Viewed intention | Argueed intentions are patterns of
from Wittgen- | behaviour extended over time and
steinian perspective | context.

[RCO4] Described  mirror | Humans show evidence of having

neuron mechanism
involved in action
observation and
imitation

a mirror neuron system which fires
neurons when a particular action is
observed as well as performed by
them.
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Table 2: Summary of Computational Methods

References Overview Findings/Contributions

Foundational ‘Theory | First application of | - Used modules such as eye direc-
of Mind’ (ToM) in | psychological ToM | tion detection, intentionality detec-
Robots using different mod- | tion, shared attention mechanism,

[ISca02, [Les94, |CA9S|,
NAHO02, [Sch96, D05,
FMJ02,  [Bre+05|
Gra+05), [Tra+06|

ules in a humanoid
robot.

as well as recognizing human ac-
tions and taking perspectives.

- Proposed implementing ToM-
based modules improves communi-
cation and helped to learn from in-
teractions.

[GBBO7, |SKKOS]]

Real-time ToM in-
ference for beliefs,
desires, intentions
in multi-participant
scenarios.

- Robot observed false-belief task
of chips and cookies swap.

- Assisted humans based on in-
ferred beliefs in real time.

Teleological and Sim-
ulation Theories
[BO19a, |BOI19b,
POWW21]

Teleological
(outcome-based)
and simulation
(internal modeling)
theories.

- Talked about seven different im-
plementations of complex architec-
tures in robots.

- Teleological theory is used to in-
fer intentions behind others’ ac-
tions based on the outcomes of
these actions.

- Simulation theory is used to sim-
ulate the mental states of others in-
ternally to understand them.

- Reviewed other computational
ToM models.

Bayesian Theory of
Mind (BToM)
[BSTO9, [Bak+17]

Formulated the
problem of under-
standing actions as a
Bayesian inference
problem.

- Used rational probabilistic plan-
ning in Markov decision problems
to model the causal relationship be-
tween goals, actions, and beliefs.

- Validated via human participants
on belief and desire attribution.

- Achieved strong predictive accu-
racy, and capturing hidden states
and percepts.

[ISin+20, |[Per+11,
TahO6, SHO5, KH10,
JA18| Dun+15/,
Tam+12, [Topl7,
CT16]

Probablistic and
Bayesian Meth-
ods for intention
recognition.

- These methods are beneficial for
modeling uncertainty and making
inferences in real-world scenarios.
- Proof-of-concept studies in this
area.
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Dual Computational | Storyteller-listener | - Storyteller uses nonverbal cues to
Approach model using | infer listener’s attentive state.
[LSB19, |AZN9S| POMDP for the | - Listener uses a myopic DBN pol-
For+95, |PW13| storyteller and DBN | icy.
Peald] for the listener’s | - Storyteller model outperformed
attentiveness. state-of-the-art attention recogni-
tion methods.
- Listener model communicated at-
tentiveness better than traditional
signalling methods.
[VGC19,|Vin+19] Integrated ToM, | - Robot acted as trustor and dis-

trust, and episodic
memory in a cog-
nitive system for
artificial agents.

cerned helpers versus tricksters.

- Matched performance of 5-year-
old children in trust tasks.

- Incorporated psychological tasks
to evaluate reliability of human
partners.

ToMNet
[Rab+18]]

Meta-learning  ap-
proach to infer
agent mental states
with minimal data.

- Learned strong priors for agent
behavior.

- Successfully handled false-belief
tasks after few observations.

- [Mustrated how deep learning can
achieve flexible ToM reasoning.

Multi-Agent ToM
[Li+22a]

Used RNNP and

multi-layer con-
nectionist model
to mimic mirror

neuron systems.

- Used recurrent neural networks
with parametric biases (RNNPB) to
implement mirror neuron-like sys-
tems for robots.

- RNNPB model showed how com-
plex behaviours can emerge from
simpler learned patterns.

- Biologically inspired GeneRec al-
gorithm for iCub’s motor-visual in-
tegration.

Combined mirror neuron and simu-
lation theory for intention reading.
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JBD19| |Tap+19]

of state-of-the-art

[ [Pre+19] Mental Time Travel | - Ability to mentally project oneself
concept. into the past or the future.
- Based on Gaussian process latent
variable models.
- Experiments designed around
memory-based tasks (face recogni-
tion, speaker recognition, emotion
recognition, touch interaction, and
action recognition).
Table 3: Summary of Activity-based Intention Recognition
References Overview Findings/Contributions
HMM-Based Activity | - Introduced a | - Disambiguated similar actions via
-[Kel+10], Vision-based  sys- | contextual information.
-[Cra+18, |Kel+08|, tem and HMMs | - Allowed for detecting different
Tav+07, [Pet+19) for human activity | intentions behind visually similar
SPB10, AKO06, recognition, lever- | activities.
BEDO0S, [ZSS08, aging ToM concepts
ZCS08| - Other HMM-
based intention
recognition works
[RABCI15] Proposed a frame- | - Enabled the iCub robot to use se-
work to perform | mantic reasoning to infer high-level
activity recognition | behaviours from low-level sensor
using a humanoid | data.
robot.
[SRG17, |VNKI15| Provided overviews | - Insight on ambiguity of temporal

boundaries of activities.

HAR methods, | - Discussed traditional ML (SVM,
datasets, metrics, | KNN, Decision Trees) and mod-
challenges ern NN approaches (ANN, CNN,
RNN)

Traditional ML SVM, Decision | -

-[DSS15, Wan+17, Trees, KNN, rule-

Vol+15, [KM17, based algorithms

MA18, INZR18, for intention recog-

Zha+20, (Wan+19]|

nition
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Neural Net
proaches
-[Zha+19al,
Gol+19, |NZRI18|
Var+18, Wan+18,
Vol+16, [PL16, |Li+17,

Rak+19, [Yan+21]]

Ap-

LH19,

RNNs, CNNs, and

Extreme Large
Machine Algo-
rithms for intention
recognition

Table 4: Summary of Plan-based Intention Recognition

References

Overview

Findings/Contributions

[AAOQ7,Sadl1]

Discussed  frame-
works for plan-
based recognition

- Reviewed plan libraries, interface
agents, and underlying theories.

- Discussed the use of logic-based
formalisms, deduction and abduc-
tion.

Monte Carlo and
POMDP

[OMM19]

Developed proactive
intention  recogni-
tion in search and
rescue robotics

Supported the robot’s exploration
strategy by providing an entropy
reduction bonus to the reward func-
tion.

Multi-Agent System Recognized and | Used MDP, behaviour trees,
[Zha+23]], [AA14] clustered inten- | landmark-based models, and plan
tions in multi-agent | libraries.

settings.
Navigation Assistance | Inferred human | - Used clothoidal (Euler) paths for

[Den+19]], [Par+16]

plan for navigation
(wheelchairs, robot
motion)

complex environments.

- Used Gaussian process models to
classify intent to interact.

- Smoother, conflict-free move-
ment outcomes.
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Table 5: Summary of Goal-based Intention Recognition

Bra+22, [TFA10]

defined landmarks,
tasks, and user in-
tentions.

References Overview Findings/Contributions
DBN/Probabilistic Predicted the next | - The DBN model predicted which
[Mur02, |SBP22, goal in terms of pre- | predefined landmark (or goal) the

person is heading toward next.

- Achieved 75 per cent accuracy
using probabilistic logic program-
ming to reason about intentions
(make coffee or prepare a meal) in
smart home settings.

- Used Kalman filters and HMM to
reduce uncertainty in collaborative
tasks.

Imitation and Goal-
Inference
[BWGO00, [Bre+06,

Erl+06, JBO6a,
CDIO6,  JBOG6b,
SNDO06, |[Bre+06,
CBO7]

- Suggested that
imitation is goal-
directed and not

simply a copy of the
observed actions.

- For motions
that were not
goal-directed, a
mental model of
the demonstrator is
needed.

- Learned to imitate actions re-
lied on the ability of the imitating
agent to infer the intentions of the
demonstrator.

- Used mental modelling and ana-
lyzed social cues for better inten-
tion detection.

Rationality of Actions
[BDK14]

Focussed on compu-
tational models that
simulated how hu-
mans detect if an ac-
tion was intentional
and thus predicted

- Assumed that people followed the
principle of rationality.

- Studies found the model’s perfor-
mance closely matched that of the
human participants in determining
the intentionality of the actions and

scenarios.

the likely goal. the predicted goals.

Inverse Reinforcement | Inverse Reinforce- | - Learned a reward function from

Learning ment Learning for | observed trajectories.

[Zen+18] goal recognition | - Outperformed other models in
in dynamic net- | tracking accuracy and effectiveness
work interdiction | in network interdiction.
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Explainability and | - Provided explana- | - Adapted the Weight of Evidence
Timing tions for recognized | framework to clarify why one goal
- [AMV23]] goals. hypothesis should be chosen over
- [ZKL23] - Incorporated tim- | the other.
ing information of | - Timing information improved
the action taken by | goal recognition accuracy in sce-
an agent to carry out | narios with few actions.
certain actions.

Deep Learning Introduced GRNet | - Outperformed state-of-the-art
[Chi+23]] (uses RNN-based | systems - LGR in accuracy and
architecture) for | runtime.

goal recognition. - Combined GRNet with LGR
yields better performance in partial
information scenarios.
Broader Applications Intention recogni- | -

[Sad11,/CG90, AAO07,
HonO1), |[Les98, PW13,

Gei02, [Hai+03]
Per+10, PH11|, [PAT1]
Roy+09,  [TahO6|

Hei04, MG04]

tion across stories,
human-computer

interaction,  mon-
itoring traffic,
assistive care,

military activities.

Table 6: Summary of Action-based Intention Recognition

References Overview Findings/Contributions
[Zun+17]] Predict intentions | - Computer vision methods outper-
from the initial | formed humans in predicting the

motion without con-
textual information

intention behind the observed ac-
tion.

- Demonstrates subtle motion cues
as intention indicators

Motion Cues

[RD17, |RTDI9,
AHI10, KH10, Per+11],
JA1S8, |Dun+15|
Tam+12]]

Used a neural net-
work to model the
non-linear dynamics
of the human arm
motion.

- Defined intentions as the 3D end
goal of the actions.

- Used an extended Kalman filter
for expectation maximization to in-
fer the intentions.

- Parameter-based methods have
also seen popularity over the years.
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Probabilistic Modeling
[Tah06]]

Used a modified in-
tention—action—state

- DBNs to recognize the human’s
intentions (e.g., moving towards or

scenario modelled | away from an object).
by DBNS. - Tested in a simulation environ-
ment.
- Robot demonstrated compliance
with the recognized intentions.
Active Intention Lead- | Proposed AIL | - Less computationally heavy than
ing where the robot | passive recognition.
[Omo+08] acts so user can | - Tested this approach in a “hunter

easily interpret its
intention.

game” scenario.

- Proposed approach outperformed
passive intention recognition in two
different tasks.

Ontology-based hier-
archical user intentions
[JKCOS]

Hierarchical user in-
tentions with sen-
sor data (tempera-
ture, humidity, vi-
sion, auditory).

- Used RuleML and domain knowl-
edge.

- Used conditional entropy to make
the robot’s behaviour proactive.

[RABCI15| Two-level approach | - Implemented on iCub.
(low-level color fea- | - Achieved about 85% accuracy in
tures and high-level | 0.12s decision time.
decision trees)
Probabilistic  Move- | Enable iCub to pre- | - ProMPs learned from demonstra-
ment Primitives | dict human intention | tion.
(ProMPs) during physical in- | - Explicit goal information not re-
[Der+17]] teraction. quired.
- Successfully tested in real robot
with tasks such as reaching and
sorting.
Teleoperation and | Improved  shared | - Used demonstrations by segment-
shared control task control in remote | ing them into meaningful parts.
[TC17,JA18, |[SPB10, | manipulation with | - Allowed partial autonomy for the
AKO6] HSMM learning | robot or full teleoperation.
from  demonstra- | - Tested on a Baxter robot in tasks
tions. such as reaching a movable target
and opening a valve.
Indirect speech acts | Understood direc- | - Focused on rule-based mecha-
(ISAs) tives from indirect | nism.
[BWS17] speech acts. - Evaluated in simple tasks such as

knocking over colored towers.
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[ [PMP18]

Combined Theory
of Mind, MDP, and
HMM for worker’s
intention  recogni-
tion in warehouses.

- Achieved high accuracy in pre-
dicting worker’s changing goals.

- Supported dynamic goal switch-
ing mid-task.

Physical human-robot
interaction (pHRI)
[Los+18]|

Reviewed intent de-
tection, arbitration,
and communication
for physical human-
robot interaction.

- Explored in detail how robots can
detect human intentions, either bi-
nary or more complex and continu-
ous ones.

- Explored sensors (force, muscle
activity, and neural activity).

Neural Network Mod-
els
[LH19,|LG13,Jan+14}
CNPO06, |Zha+19a,

Gol+19, |NZRI18|
Var+18, Wan+18,
Vol+16, [PL16| |Li+17,
Rak+19, [Yan+21,
Hua+15b, [Li+18|
Len+12, |Li+17,
Wil+17,  |Wei+19,
Buc94||

Used a range of neu-
ral or control-based
approaches to infer
motion intention.

- RBFNN improved synchronisa-
tion and force control.

- Control methods for inten-
tion recognition have also seen
widespread interest in research.

Deep Neural Networks
[LZD20]

Used
process

DNN to
RGB im-
ages and optical
flow for intention
recognition.

- Used two-stream architecture, a
spatial network (skeleton joint in-
formation) and a temporal network
(optical flow).

- Achieved accuracy of 74 per cent
on their dataset and 77 per cent on
the Intention from Motion (IFM)
dataset.

Visual semantics and
natural language pro-
cessing (NLP)

[Li+21])

Integrated visual se-
mantics with natural
language to perform
the tasks while look-
ing at feedback from
the users’ facial ex-
pressions.

- Used image segmentation, CRF,
user expressions, and rule match-
ing.
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Neural Network Ar-
chitectures

Compared LSTM,
Transformer, MLP-

- Transformer encoder model per-
formed the best with 82.74 per

[PF23] Mixer for arm | cent accuracy for predicting move-
movement predic- | ments.
tion in VR-based | - MLP-mixer had lower computa-
dataset. tional complexity than the trans-

former model.
- LSTM model was the worst per-
forming model of the three.

[God+22] Presented a novel | - Used two transformer based deep
approach for recog- | learning models: Temporal Multi-
nizing hand gestures | Channel Transformer (TMC-T)
based on the light- | and Temporal = Multi-Channel
myography (LMG) | Vision Transfer (TMC-ViT) to
signals and trans- | classify gestures.
former based deep | - The two transformer models
learning models. outperformed CNN, Bi-LSTM,

LDA, SVM, and RF and achieved
accuracies of 94.03 per cent and
93.69 per cent respectively.

[WVS23] Recognized inten- | - A supervised machine learning al-
tion from human | gorithm is used to train the model
actions with visual | with touch location, human pose,
and tactile sensors. and gaze direction among others.

- Achieved 86 per cent accuracy in
classifying whether a human touch
is intentional or not.

[Tsa+23] Proposed an MLOII | MLOII performed better with
model that is used | fewer obstacles and more direct
to infer the naviga- | routes as compared to complex
tional intent online. | environments  (against BOIR

model).

TLP Model Hand-over in- | - Model learned from about 5000

[Wan+18]| tentions from | sets of hand-over demonstrations.

multi-modal  sen-
sors (IMU, EMG)
combined with
natural language
instructions.

- Achieved prediction accuracy of
99.7 per cent even from partial mo-
tion.
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Anticipating  Actions
with GMM
[Dua+18]]

Understood how eye
gaze, head orienta-
tion, and arm move-
ment helped predict
actions.

- Applied GMM to simulate arm
trajectories and incorporate gaze
patterns for predictions.

- Model was tested on an iCub
robot.

ToM based Architec-

Processed low-level

- Implemented architecture on an

ture skeletal data and | iCub robot to collaborate on a toy

[VGCI19] used a high-level | block task.
module to infer the | - Took an average of 4.49s to pre-
human partner’s | dict intentions accurately.
goal.

[[GB20] Robot used belief- | - Classified user behaviour to de-
desire-intention cide the next course of action.
with body poses be- | - Performed tasks such as deliver-
ing detected by the | ing or exchanging crates or avoid-
OpenPose library. ing to humans to prevent interfer-

ence.
[WC20] Used sEMG to con- | - Introduced an adaptive neural co-

trol a rehabilitation
robot for upper-limb
patients.

operative control strategy.

- Used RBFN to estimate motion
intention from filtered sSEMG sig-
nals.

Context-aware Inten-
tion Recognition
[Liu+21al]

Combined ST-
GCN-LSTM for
skeletal data and

YOLO v3 for
object data to in-
fer  context-aware
intention.

Evaluated in real-world setting to
show model prediction accuracy.

Deep learning algo-
rithm
[For+21]]

Combined RGB-D
camera and deep
learning algorithms
to predict the spatial
location of object’s
final position.

- Made predictions based on po-
sitions of key body joints (shoul-
ders, elbows, wrists) processed
through an RNN with a GRU-based
encoder-decoder architecture.

- Reduced collisions by 38 per cent
when combined with YOLO v3.

- Reduced collision by 70 per
cent when combined with human-
tracking.
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Physical Human-
Robot Interaction
Primitives

[Lai+22]

Proposed Physical
Human-Robot  In-
teraction Primitives
that capture user’s
force based intent.

- Tested on 7-dof robot arm
for obstacle avoidance and target-
directed reaching.

- Predicts user’s intention from
forces exerted during the interac-
tion.

Review of Contact | Surveyed inter- | - Discussed the use of EMG, EEG,

Robots action control | and tactile sensors.

[Li+22b] in robots that | - Additionally, discussed the com-
physically inter- | bination of sensor inputs with ma-
act with human | chine learning models to classify
users (rehabilita- | intended actions.
tion, teleoperation,
and  collaborative
manufacturing).

Cross-View Method Generated  multi- | - Used generative model and RNN

[Ni+23]

angle body and face
views to improve
intention  recogni-
tion in collaborative
assembly tasks.

to fuse spatial and temporal infor-
mation for inferring the intentions
of the user.

- Cross-view method improved
the fluency and efficiency of the
robots’ performance to near human
levels.

Table 7: Summary of Gaze-based Intention Recognition

References

Overview

Findings/Contributions

Context awareness and
intention understand-

Used gaze estima-
tion and gesture in-

- Used face detection, ellipsoid
mapping, and eye tracking to esti-

ing terpretation to un- | mate the direction of gaze.
[Qui+12] derstand intentions | - Predefined ontology helps in con-
in different contexts. | textualizing user intentions.
Gaze in Rehabilitation | Gaze-based in- | - Provided more natural user-robot
System tention  detection | interaction in the virtual environ-
[INR13] for ARMin III | ment.
upper extremity | - Allowed the robot to support pa-

rehabilitation robot.

tients with gaze data.
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Collaborative Task
[Hua+15a]

Used support vec-
tor machines (SVM)
to classify and pre-
dict the customer’s
intended ingredient
choice.

- Achieved 76% accuracy.
- Anticipated user’s request
before verbal cue.

1.8s

Assistive Application
[LZ17]

Intentional gaze vs
intention-free gaze
using support vector
machine (SVM)
classifier to assist
elderly or impaired

- SVM classifier based on features
like gaze dwelling time, pupil size
variation, and gaze speed.

- Approximately 75% correctness
with intention inference in a simu-
lated home care environment.

individuals with

ADL.
Gaze and Model-based | Merged gaze data | - The model combined short-term
Al with traditional | (proximal) and long-term (distal)
[Sin+20] model-based Al | intentions.

planning to im- | - 22% increase in accuracy over

prove intention | single-mode.

recognition. - Robust to semi-rational or decep-

tive gaze behaviour.

Gaze information with
Motion data
[RKDI18]

Fused gaze infor-
mation with motion
data using Gaze-
based Multiple
Model Intention Es-
timator (G-MMIE)
algorithm.

- Provided more accurate intention
inference.

Saccadic eye move-
ments

Compared  hypo-
thetical gazes (from

- 92.2% accuracy in predicting the
object to be selected by humans.

[SCVI19] saliency maps) and | - Outperformed fixation-based
actual gazes using | methods.
Earth Mover’s Dis-
tance (EMD) and
1-Nearest Neighbor
(1-NN) classifier.
Egocentric  Perspec- | First-person camera | - Faster and higher accuracy than
tives approach  for a | EMG-based intention detection
[Kim+19] soft wearable hand | methods.

robot assisting user
in grasping and
releasing tasks.

- Demonstrated success with a
patient having spinal cord injury.
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Deep Learning for
Wearable Eye Tracker
[SCV20]

FCN with CBAM
and Residual Blocks
to predict the hu-
man’s visual inten-
tion with high accu-
racy.

- F1 score of 0.971 (single object),
and 0.962 (multi-object).

- Addressed issues related to
fixation-based gaze systems.

Shared Autonomy
[FB21]

GHMM to model
and predict user
intention primarily
based on gaze scan
paths for pick-and-
place tasks.

- Demonstrated strong generaliz-
ability across users and tasks.
- High accuracy rates.

Cascade Effect
[GCR21]

Combined cascade
effect  hypothesis
and LSTM-based
neural network
classification.

- 75% accuracy up to 2s before
user’s selection.

Eye-Tracking and
Gesture

[Zha+21]

Joint gaze and hand
gestures for inten-
tion recognition in a
virtual assembly en-
vironment.

- FSM to control the robot to make
assistive manoeuvres.

- Neural net recognized 9 hand ges-
tures.

- Probabilistic Roadmap Planner
for collision-free robot assistance.

Probabilistic Modeling
[Bel+22]]

Probabilistic model

in teleoperated
object manipulation
using gaze and

motion data.

- GHMMs trained on sequences of
gaze and motion data.

- Models performed predictions
0.5s before an action ends.

- Robust to cluttered scene with
partial occlusions and bimanual
tasks.

Modern Eye-tracking
Technologies
[Yan+23]

Recognized grasp-
ing intentions for
disabled users by
analyzing gaze and
scene camera data.

- SVM, KNN, SGD, and Decision
Trees to classify user intentions.

- Achieved an accuracy of 89 per
cent on training objects and 85 per
cent on new unseen objects.

- Distinguished “viewing” versus
“grasping” fixations.
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Table 8: Summary of Non-verbal Intention Recognition

References Overview Findings/Contributions
Gesture Classification | Classified gestures | - Emphasized context in distin-
[Neh+05] into five broad | guishing similar gestures.
categories: manip-
ulative, expressive
side effects, sym-

bolic, interactional,
and referential
gestures to facilitate
intent recognition.

Weighted Probabilistic
State Machines

Proposed approach
is used to recognize

- Each intention is modelled as a
separate state machine.

[AH10] implicit vs explicit | - Successfully recognized picking,
intentions. placing, passing objects (explicit)

and piling, un-piling (implicit).

[[Qui+12] Focused on periodic | - Analyzed the frequency and tra-
(repetitive) and de- | jectory of hand movements.
ictic (pointing) ges- | - Used deictic gestures to divert
ture recognition. the robot’s attention to important

places and objects.

Hierarchical Classified inten- | - Eye-tracking and environmen-

Perception-Action tional driving | tal data collected from an instru-

Model behaviours with | mented vehicle.

[WSH12] generative, dis- | - Hybrid approach yields the best
criminative, hybrid | performance in classifying driver
approaches. intentions.

[Mea+14] Used EEG signals | Brain-computer interface for tele-

(SSVEP approach)
to interpret the in-
tention to perform
gestures on a remote
robotic hand.

operation tasks.

Emotional Expression
[Che+17, |Che+20l
Yan+22, [YOO7,
Kur+19]

Recognized emo-
tional or affective
intention from facial
expressions.

- Used Candide3 face model to rec-
ognize seven basic emotions.

- Used an information-driven fuzzy
friend-Q (IDFFQ) learning mecha-
nism to achieve 85.71 per cent ac-
curacy in intention understanding.
- Merged body actions with facial
cues for 94.57% accuracy.

- Fuzzy learning approaches.
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Hierarchical Model Addressed the joint | - Used RGB-D videos to infer
[Wei+18]] problem of inten- | attention, intention, and task using
tion recognition, at- | Human-Attention-Object (HAO)

tention, and tasks. graph.
- Outperforms baselines on RGB-D

videos.
Recursive ~ Bayesian | Accounted for | - Combined multiple non-verbal

Filtering Framework
[JA19]

multiple non-verbal
signals to provide
assistance to users
during teleoperation
tasks.

observations to probabilistically
reason about the user’s intended
goal.

- Models user’s suboptimal or in-
consistent behaviors with an ad-
justable rationality parameter.

- Provided personalized assistance.

Table 9: Summary of Object-based Intention Recognition

References Overview Findings/Contributions

[Liu+21Db]] Markov ~ Random | - Outperformed Recursive
Fields for inferring | Bayesian Incremental Learn-
user’s likely object | ing.
usage intentions - Targeted for objects used for

daily activities.

[Dun14] Proposed a novel | - Recognized human intentions
probabilistic graph- | based on the objects in the scene
ical model called | and the potential actions associated
Object-Action  In- | with these objects.
tention Network
(OAIN).

Table 10: Summary of Robot Intent Recognition

References Overview Findings/Contributions

Gaze-Like Cues in Hu-
manoid Robots
[Mut+09]

Tested whether hu-
mans could detect
robot gaze cues to
infer intentions.

- Participants recognized robot in-
tent better with gaze cues.

- Reinforced the importance of
gaze in HRIL.
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Light and Motion-
Based Approach
[Lem+21]]

Tested three light-
based and three
motion-based meth-
ods while working
with a human.

- Light-based LED method on the
wrist of the robot was the most no-
ticeable among all six signals.

- Head-pan was most noticeable
among motion-based.

Visual Communica-
tion Cues

[Koa+13||

Explored the possi-
bility of untrained
humans compre-
hending the robot’s
intentions correctly.

- Wizard-of-oz approach for guid-
ing participants to specific sound
sources.

- Participants succeeded with gaze
and head motion as important com-
munication cues.

[Sci+15]

Used humanoid
robots to  study
human ability to
read movements as
intention indicators.

- Robots offered control, natural
reciprocity, and shared physical
space.

Robot Understandabil-
ity
[HB18]

Defined robot un-
derstandability, sig-
nificance, and de-
sign principles.

- Introduced a term called "commu-
nicative actions", and a model of
interaction understanding based on
the first-level and second-level the-
ory of mind.

VR, AR, XR in HRI
[Wal+23, Mat06,
LHS13, |LKK11},
PKO09,|CA15,|Coo+14,
SA22, Ish+09),
Omi+15, |Ghi+14]
New+22| [Ros+19]

VR, AR, XR to
help communicate
robot’s motion
intentions and be-
haviours which
enhances collabora-
tion.

- Optimized collaboration.

- Visual and auditory modalities to
convey the intent and state of the
robot.

- MAR-CPS workspace projection
system.

- Navigation area markers using
gestures.

[Bam+19, [Yua+19]]

AR to communicate
dynamic trajectory
updates.

Indicated grasp points and target
positions in response to human
presence.
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Appendix A - Documents for User Study
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Faculty of Engineering

FACULTY OF
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UNIVERSITY
{Ayesha.Jena,Elin_A.Topp,Jacek Malec } @cs.Ith.se

System evaluation of the mixed reality based human-in-the-loop robot control
system / User study - General information

First of all: Thank you for participating! Now, to get you settled, this instruction sheet should give
you some more information about what is going on.

With this study, we aim to investigate the effectiveness and efficiency of a mixed reality-based
system, along with the underlying methods for user support in search and rescue situations
involving otherwise autonomous systems.

You are going to test an interface that we developed which lets you control a simulated robot in a
search and rescue setting—or lets you ride along with the robot (as a teleoperator). You will be
provided with 2 scenarios. Both the scenarios work a bit differently. In one scenario you will have
to use your eye gaze directions (left, right, up and down) and then keyboard press J,L,LK (left,
right, up and down) to move the simulated robot across the search and rescue scene in order to
reach the end of the parking lot in the scene. In the second scenario you will have to press F, and the
1obot moves in the scene, as the system is aware of where to take you. The common task in both
scenarios for you is to evaluate how important each area of the scene is in each scenario based on
your understanding. Here, scenarios refers to two possibilities (human assisted, system assisted),
the term scene refers to the overall space where the task needs to be performed, and area is a
smaller location within scene where you could identify the important points of interest.

The task is to count the points of interest you encounter and put corresponding priority markers for
each of them. You will also be provided with a small reference sheet before the experiment starts to
give a general idea.

We want to see whether the methods we use to make robotic interfaces better would be suitable for
users while guiding a robot in a high-risk environment, e.g. in a search and rescue setting. We are
also investigating the use of non-verbal gestures and natural human way of viewing scenes to gauge
the effectiveness, usability and understanding of and provided by our tools in reducing the
teleoperator’s work and / or cognitive load while performing such tasks.

In other words, we want to investigate whether we can provide natural and mtuitive interactions
with robots. This means that we want to test our ideas and their impact on your performance, not
your personal capabilities or suitability as driver of a robot.

‘We will record your interaction with the interface, potentially also record your reactions (audio) and
create internal data logs of your session with the system. Additionally, we ask you to answer a
couple of questionnaires about you and the interaction. Data will be stored in anonymized form.




Now the REALLY IMPORTANT INFORMATION:
You can refrain from continuing your trial at any time without stating why. An experimenter will
always be close by to help if any confusing or uncomfortable situation arises. You can withdraw

your consent to use the captured data (video and robot platform data logs) at any time.

On the following pages you will find a more detailed description of the session and your task.

Experiment session
1) Introduction to the simulator, making yourself familiar with the interface

You will be able to “play around” with the interface for controlling the simulated robot for some
minutes during which you can also ask the experimenter for clarifications.

2) Evaluating the interface
You will be provided with 2 scenarios, in a random order. In both the scenarios you would have to

assist the robot in performing Search and Rescue by using the best of your abilities to identify the
points of interest in the scene.
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In this scenario, you will be provided with a system which has identified the important parts in the
scene. Once you click inside the scene and press F, the system will plan a path for the robot to the
places of importance. However, you would not see all the information in the scene, but only a few
specific parts. This is done to reduce unnecessary additional information in the display, similarly to
how the vision system filters out non-necessary information in a scene. Once you reach a location,
provide a number for how many important objects are in the location and click on the importance
tabs (low, medium, high) for each of them. You continue pressing F each time you are done with a
designated location the robot has taken you to. You can keep doing this until you reach the end of the
map (the parking lot in this case). Once done, you will have to provide a system evaluation,
workload evaluation and some questions related to the system.

Objects Importance

Rubbles (includes rocks, broken brick structures etc) [ |

Things hidden inside rubbles

Humans trapped in the scene

= (W=

Human operators

Toys

Fire

Smoke

Electrical equipment

T || ..

Destroyed properties with possibility of further mspection (building,
car,)

Sparks M

‘Water tanks or destroyed vehicles L
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In this scenario, you will have to use your eye gaze directions (left, right, up and down) and then
keyboard press J.L 1K (left, right, up and down) to move the simulated robot across the search and
rescue scene. That is, you will be driving the robot using your eye motion to select the screen, and
the keyboard clicks of J,L,LK to confirm the motion. Once the robot moves and you see the motion
in the scene, you can stop at any location and provide priority points (as many you consider should
be given). That is, provide a number for how many important objects are in the location and click on
the importance tabs (low, medium, high) for each of them. You continue doing this until you reach
the end of the map. You are free to move about, however considering it is a search and rescue scene,
the task should be done as quickly as possible. Once done, you will have to provide a system
evaluation, workload evaluation and some questions related to the system.

In order to give an idea of what you could encounter,

Objects Importance

Rubbles(includes rocks, broken brick structures etc)

Things hidden inside rubbles

Humans trapped in the scene

= (m| =

Human operators

Toys

Fire

Smoke

Electrical equipments

=l R BN BEe

Destroyed properties with possibility of further inspection (building, car,
)

Sparks M

Water tanks or destroyed vehicles L
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System evaluation of the mixed reality based human-in-the-loop robot control system /
User study - Demographics Information

1. Participant ID (in numbers)

2. Age (in numbers)

3. Gender

Male
Female

Other

4. Experience with operating robots

Mark only one oval.

No experience Highly experienced

5. Experience with Virtual/Augmented/Mixed Reality

Mark only one oval.

No experience Highly experienced
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6.  Experience using controllers (controllers could be joystick, keypad, gamepad. Teachbox
and teach pendants for robots would also be considered controllers)

Mark only one oval.

0 1 2 3 4 5

No experience Highly experienced

7.  Experience in providing support for disaster relief scenarios.

Mark only one oval.

No experience Highly experienced

8. Any degree of vision impairment.

Mark only one oval.

Yes
No

Maybe

9.  Profession

10. Field of study
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System evaluation of the mixed reality based human-in-the-loop robot control system / User
study -Human Assisted Search

The non-verbal interactive interface helped me to provide assistance to the robot.

Strongly disagree Strongly agree

The non-verbal interface was intuitive and easy to use.

Strongly disagree Strongly agree

Can you describe your strategy for guiding the robot in this scenario?

What factors did you consider when indicating area for the robot to search apart from the ones provided?

The robot accurately followed my guidance.

1 2 3 4 5

Strongly disagree Strongly agree
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How did you decide which objects and areas to mark as important during the search?

What criteria did you use to make these decisions?

What challenges, if any, did you encounter when providing guidance to the robot in this scenario?

Were there any limitations to the robot's movements or your ability to convey directions?

| am satisfied with the overall outcome of the search task.

Strongly disagree Strongly agree
My assistance contributed to the successful completion of the task.
1 2 3 4 5
Strongly disagree Strongly agree

What improvements or enhancements would you suggest for the non-verbal interactive interface and the
robot's capabilities to make the assistance process more effective?
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Human assistance is beneficial for the robot in a search task in a cluttered environment.

Strongly disagree Strongly agree

If yes, under what conditions and with what technologies?
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System evaluation of the mixed-reality-based human-in-the-loop robot control system / User
study - System Assisted Search

Thad a good experience with System assisted search for providing assistance to the robot in this case.

1 2 3 4 5

Strongly disagree Strongly agree

The foveated view field improved my experience in finding points of interest and importance in the
scene.

Strongly disagree Strongly agree

I trust the systems understanding of the scene to guide me to particular locations in the scene.

Strongly disagree Strongly agree

‘Were there any instances where the system assisted search posed challenges or limitations in providing
accurate guidance to the robot?

Were there any instances where the foveation posed challenges or limitations in providing accurate
information to you?
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T'had a good experience with System assisted search and foveation for providing assistance to the robot in
this case.

Strongly disagree Strongly agree

How did you decide which objects to mark as important during the search?

What criteria did you use to make these decisions?

What challenges, if any, did you encounter when providing guidance to the robot in this scenario?

Were there any limitations to the robot's movements or your ability to convey directions?

| am satisfied with the overall outcome of the search task.

Strongly disagree Strongly agree

My assistance contributed to the successful completion of the task.

1 2 3 4 5

Strongly disagree Strongly agree
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I am confident in the robot's ability to find the important locations.

Strongly disagree Strongly agree

What improvements or enhancements would you suggest for the system-assisted interface with
foveation to make the assistance process more effective?

Human assistance is beneficial for the robot in a search task in a cluttered environment.

Strongly disagree Strongly agree

If yes, under what conditions and with which technologies?
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System evaluation of the mixed-reality-based human-in-the-loop robot control system / User
study — End of Experiment

In terms of search efficiency and accuracy, do you believe the robot's performance improved in the
guided and foveated view?

Were there any specific adjustments you had to make to your guiding strategy due to the introduction of
the foveated view?

Imagine you are remotely controlling the robot as in this scenario. But there are also search and rescue
operator in the scene with the robot. And someone asks to give your control to them. Would you do so? If
yes, why? If not, why? (The operator would also control the robot using gestures but from a different
perspective than yours)

Do you think there is a chance of conflict arising in such situations? Consider the operator on field might
have better knowledge of the scenario.




9.2 Appendix B - Posters

Poster I: Mixed-Initiative Interaction for Collaborative Robotics
Presented during the poster session at the COMPUTE Summer Retreat in Arild,
2022

Poster II: Mixed-Initiative Interaction for Collaborative Robotics
Presented during the poster session at the ELLIIT Annual Workshop in Linkoping,
2022

Poster III: Chaos to Control: Human Assisted Scene Inspection
Presented during the poster session at the HRI Conference in Stockholm, 2023

Poster I'V: Mixed-Initiative Interaction for Collaborative Robot
Presented during the poster session at the WASP Winter Conference in Nor-
rkoping, 2024

Poster V: Towards Understanding the Role of Humans in Collaborative Tasks
Presented during the poster session at the ELLIIT Annual Workshop in Lund, 2024

Poster VI: Support for critical collaboration tasks through gaze guidance and
visual augmentation

Presented during the poster session at the WASP Winter Conference in Nor-
rkoping, 2025

Poster VII: Impact of Gaze-Based Interaction and Augmentation on Human-
Robot Collaboration in Critical Tasks
To be presented during the poster session at ROMAN Conference, 2025
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Mixed-Initiative Interaction for Collaborative
Robotics

LUND

AYESHA JENA, DEPARTMENT OF COMPUTER SCIENCE, ROBOTICS AND SEMANTIC SYSTEMS(RSS),

UNIVERSITY FACULTY OF ENGINEERING(LTH)}, LUND UNIVERSITY
SUPERVISORS: ELIN ANNA TOPP, JACEK MALEC, BJORN OLOFSSON
Motivation Research Goals

The challenge of developing robots operating in il eiele Sy 0 Ikl

shared spaces within dynamically changing Action - Anticipation - Feedback framework

scenarios is multi-dimensional. Considering Mixed- Human intent interpretation through observable
Initiative approach to optimise operational actions

performance in Human-Robot Interaction (HRI) is

Coordinated virtual interaction system for
promising. Our aim is to have an interaction and optimizing performance

reasoning framework for effective HRI collaboration

Adaptation of results from one-to-one to multi-

in Search and Rescue (SAR) scenario. agent scenarios

e | N @ |

1
! i
1 = 1
=Y - o o
1 ? I 1 :
H Non-verbal methods of 1 1 : Fiessotin Bosient
| _ communication _ |1 | bm==muiil .
—————————— 1
Human : Intel Realsense cameras [ ﬁ :
I i Lu} : Heron Robot
| o | 7!
. i
1 2 1
1 ﬁ : Cognitive System :
e S — Fl
I Seencinput |
1 1
......... i
Intended Methodology

+ Develop a good understanding of different methods of non-verbal communication

+ Leverage the reasoning capability by combining directed instructions with cognitive architectures

« Design a coordinated interaction system in a virtual environment

= Broaden the interaction aware decision-making process to facilitate adaption from one-on-one interaction

into dynamic situations

Contact
Ayesha Jena, Doctoral student at RSS, Faculty of Engineering (LTH), Lund University,
ayesha jena@cs. lth se § i
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Mixed-Initiative Interaction for Collaborative Robotics

A. Jena, B. Olofsson, J. Malec, A. Robertsson, E. A. Topp

The project approaches Mixed-Initiative in Human-Robot Collaboration scenarios.

Human-Robot
Interaction

ACTIVITY RECOGNITION

Action-Anticipation-Feedback

Human-in-the-loop system
framework

design

'ROBOT OPERATING SYSTEM USER BEHAVIOUR INTERPRETATION
- Prediction Intent
of intent g

VIRTUAL AUTONOMOUS MISSION ASSIST Adaptation of results from
Coordinated virtual
. one-to-one to multi-agent
interaction system Visualizing In 3D environment

scenarios

Robot status.
indicator

Spit screen view for

bettr task execution

Point cloud 10 map.

The challenge of developing robots operating in shared spaces within dynamic scenarios is multi-dimensional. Considering a mixed-initiative
approach to optimise operational performance in Human-Robot Interaction (HRI) is promising. Our aim is to have an interaction and reasoning
framework for effective HRI collaboration in Search and Rescue (SAR) scenarios. We base our assumptions on insights from previous efforts to
understand human communicative intent by interpreting observable behaviours in an interactive mapping scenario [1]. We also consider earlier
investigated techniques to support remote supervision during mission execution and control of unmanned surface vessels [2]. Further steps
would include leveraging the reasoning capability by combining these insights with a suitable cognitive architecture. The current project will
make use of the insights and provide both means to communicate, but also to reason and act under the mixed-initiative interaction paradigm.

What is the human trying to

do? Considering the action, |
il try to understand the intent
‘and assist during the

I will reduce the human
workload by visualizing
the environment and

relay ne

References
1. E. A, Topp, “Interaction patiems in human augmented mapping,* Advanced Roboics, vol. 31, no. 5, 2017, pp. 256-267.
2. M. Lager, E. A. Topp and J. Malec, "f Unmanned Surface Interfaces,” 2019 2019, 546-547.

< Project B09: Distributed Situation Awareness and Mixed-Initiative Interaction for Collaborative Robotics >
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about?

Itis a mixed reality-based human-in-the-loop robot control
system for the teleoperation of a mobile robot in an unknown
environment using gaze and gesture as methods of
communicating intent in a search and rescue scenario.

Chaos to Control: Human Assisted Scene Inspection
Ayesha Jena, Elin Anna Topp

2023
STOCKHOLM, SE

There are mainly 3 parts to it (a) a virtual system with
reconfigurable screens, (b) real-time visual
reproduction of the target environment, and (c) use of
gaze and gesture for robot control. Here, take a look:

That sounds nice. hat e

are you doing in tha

So, how are they interacting with each
othel

The gaze and gesture inputs obtained using camera are sent
to the virtual space, which then are mapped and coupled to
provide user inputs. The inputs are then used for controlling
the orientation and motion of the robot through screen
mapping in the virtual space, which is further communicated
to the robot via ROS.

The system uses a facial detection model [1] with
98.61% precision, a hand detection model [2] wi
95.7% precision and has a 10 ms latency for data
communication between user input and virtual space
over LAN with no concern for packet loss due to high
data collection frequency. We plan to test it in WARA-
PS 3] as well.

Have you already tested it out?

1 wonder why you came up with this idea
and what the future research for this

ike? And what is WARA-PS?

Firstly, WARA Public Safety (WARA-PS) [3] is an initiative
which is aimed at exploring autonomous collaborative rescue
robotics for public safety scenarios in land, air and marine

environments. | wanted to focus on land missions, with the
idea of mixed interaction design and humans’ intuition to
minimize effort and maximise time.

I have put all information regarding the paper and
useful resources in the QR. Just scan it. You can also
ask me questions and provide feedback in the other QR
below. Try and let me know.

And how can | know more about
it?

References:

[}
Neural Face Detection on Mobile GPUS. https://doi.org/10.48550/ARXIV.1907.05047

2019,

2] Google. 2022. Mediapipe. Retrieved Dec 2, 2022 from https://google.github. o/ mediapipe/

3] Olov Andersson, Patrick Doherty, Marten Lager, Jens-Olof Lindh, Linnea Persson, Elin A Topp, Jesper Tordenlid, and 8o Wahlberg.
2021. WARA-PS: a research arena for d llaborative rescue
Aut

Intelligent Syste

Ayesha Jena Elin Anna Topp
hajena@cs.th. in_ th.
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1(2021), 1-31
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Mixed-Initiative Interaction for Collaborative Robots

eacoury oF Lund University
UNIVERSITY

P Introduction

Ayesha Jena', Jacek Malec?, Bjorn Olofsson?, Elin Anna Topp*
LTH 124Department of Computer Science, *Department of Automatic Control

The lack of mature algorithms and control
schemes for autonomous systems makes it still
difficult for them to operate safely in high
environments [1]. Our approach involves utilizing
humans’ inwition of the environment through
intention recognition to reach the final desired

atc, i.c., goal, by having a defined action plan.
Thus, to achieve this mixed-initiative interaction as
a part of human-robot symbiosis, we need the
means to describe both expectations of  the
humans and deviations from them to refine the
knowledge and contextual understanding of the

sk

environment where this interaction takes

In first case, a human operator (fig. a) levera
their intuition to guide the robot in SAR using

gaze and hand signaling controls” while
identifying arcas of interest.

In the other casc, the system identifies potential
parts of the scene (robot view is shown in fig. b
and top view of the scenc in fig. ¢) and rd
this information to the operator by a
technique similar o foveated rendering.

In both cases, the operator needs to indicate the
level of priority in SAR considering factors such
as the urgency of the situation, potential risks,
and the likelihood of successful rescuc.

clectivel

st operators to
control a robot using gaze and hand signals [1].

Currently, we expect to build an understanding of how
humans operate in Search and Rescue (SAR) in terms of
prioritizing various cl

efforts.

lements in a scenc to maximize rescue

Using the findings from the experiment and previous
work in cognitive robotics [2we plan to explore human
intent interpretation through obscrvable actions to signify
a goal-oricnted motive.

* The preliminary results indicate that models can
accuratly detect these signals from any camera, with
low inference time,
processing [1].

In the experiment, higher points are given to
dangerous clements like fire, clectrical cquipment,
and trapped humans, prioritizing rescue  cfforts
where needed. Lower scores arc assigned to less
critical items with the scoring mechanism totaling to
a hundred

uggesting quick information

points to identify arcas of
, cvaluating the operator's ability to identify
important regions in onc case and assisting the user
in a concentrated and controlled scarch using points
from wider reconnaissance in the second case.

Heron robor”, courtsy Roborb LTH

Main Takeaways

Integration of the eye gaze and hand signaling with the navigation capabilities
of a simulated robot.
An interface system, its application in Scarch and Rescue

points are used o prioritize rescuc efforts and guide the human ope

system during different tasks

A method for improving the operation of autonomous systems in high-risk
environments by incorporating human intition and possible intention
recognition.

WALLENBERG AL
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM
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Towards Understanding the Role of Humans in Collaborative Tasks

A. Jena, B. Olofsson , J. Malec, E. A. Topp

The project approaches Mixed-Initiative in Human-Robot Collaboration scenarios

This work investigates the dynamics of human-robot collaboration, focusing on hum d and syst 1 approaches
within search and rescue operations. Utilizing virtual and mixed-reality interfaces, the study assessed task performance, workload,
usability, and participant experiences.

Human-assisted system

Mapped non-verbal
modalities

Virtual Control Interface

Eye position estimation Information processed inside Unreal Engine

Head pose gaze data point extraction
Rotation (x, y,2)

Processing of visualized gaze vector for directional mapping

Information sent to Unreal Eng
UDP.

Execution of mapped head pose with tactile confirmation for virtual
teleoperation

Figure 2: Field of view of the users in both

Figure 1: An image of the different aspects of mixed-reality based human-in-the-loop robot control system. Seeraiion

Results and Findings:

System Usability Scale Workload Rating

n
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0 100
o o o

System Asssted Human Assse

Average completion time

1 System Assisted

Human Assisted System Asisted Human Assisted

Subjective feedback provides insights for system improvements and protocol development, underscoring the value of integrating
human collaboration to boost operational efficiency in complex, high-risk settings. The study also explores mixed-initiative interaction
in Human-Robot Interaction (HRI), highlighting the importance of non-verbal cues in dynamic control sharing during missions.

Future Work:

Preliminary findings on gaze and gesture control emphasize the
potential of mixed-reality systems in understanding and

References:

[1] Jena, A. and Topp, E.A., 2023, March. Chaos to Control: Human Assisted Scene
Inspection. In Companion of the 2023 ACM/IEEE Intemational Conference on Human-

categorizing non-verbal communication for effective human-
robot teamwork, paving the way for advanced research in
intention recognition and collaborative dynamics.

Robot Interaction (pp. 491-494).
[2] Jena, A. and Topp, E.A., 2024, February. Towards Understanding the Role of
Humans in Collaborative Tasks. In 7th International Workshop on Virtual, Augmented,
and Mixed-Reallity for Human-Robot Interactions.

< Project B09: Distributed Situation Awareness and Mixed-Initiative Interaction for Collaborative Robotics >
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I
Support for critical collaboration tasks
through gaze guidance and visual augmentation

A. Jena’, B. Olofsson?, J. Malec’, E. A. Topp?
Department of Computer Science?, Department of Automatic Control?
Lund University uNHEﬁPV

LTH

FACULTY OF
ENGINEERING

Motivation

Critical tasks like search-and-rescue and hazardous environment operations require seamless human-robot
collaboration to enhance decision-making and efficiency. Existing systems often suffer from high cognitive workloads
and limited adaptability. Our work addresses these issues through a modular system that integrates gaze detection,
visual augmentation, and input mapping to reduce user workload and improve task performance. By seamlessly
connecting automation with human intuition, this approach ensures scalability and effectiveness across diverse, high-
stakes scenarios.

Results: System Validation and User Study

Fig 1: System Architecture

1. System Architecture

Modular design with the following components:
Gaze Detection: Tracks user head gaze direction
Input Mapping: Maps gaze to commands using dual-
confirmation
Robot Command Generation: Translates inputs into
real-time commands
Visual Feedback: Displays real-time robot camera

Fig 2: Difference in user behavior for SA and HA scenarios.

views Measure Value
+ Augmentation Module: Highlights areas of interest Latenoy s
(AOIs) Data Transmission Rate 60Hz
2. Validation
Tested in a search-and-rescue scenario comparing: Table 1: Core components achieved low latency and high data
« System-Assisted (SA): Augmented AOls for user fransmission rates, ensuring smooth operation in dynamic
guidance' environments.
* Human-Assisted (HA): Manual navigation with == m—
) y k
keyboard inputs. (sA) (HA)
3. Key Takeaways Task Completion 274418 678.88s
+ Faster and efficient visual search due to guided focus Timei
in high stake scenarios Cognitive Load 334 53.86
. o . . (NASATLX)
G:ze stability and reduced exploratory behaviour in System Usabilty 3013 5861
S Scale

:Ig;er %'eg's"’.". i ?_tter;“fon guidahce iSA, Table 2: Comparing the System-Assisted (SA) and Human-Assisted
educe Ogmt'vle oad for users (HA) approaches demonstrates that SA significantly enhances
Extrafoveal attention capture around key AOls human performance by reducing cognitive load and improving task
Combining human intuition with automation ensures efficiency.

improved decision making and system usability

References Contact

[1] Jena, A. and Topp, E.A., 2023, March. Chaos to Control: Human Assisted Scene Inspection
In Companion of the 2023 ACM/IEEE international Conference on Human-Robot Interaction (pp. 491-
494)

[2] Jena, A. and Topp, E.A., 2024, February. Towards Understanding the Role of Humans in
Collaborative Tasks. In 7th International Workshop on Virtual, Augmented, and Mixed-Reality for
Human-Robot Interactions.
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Impactof Gaze-Based Interaction and Augmentation

on Human-Robot Collaboration in Critical Tasks
A. Jena, S. Reitmann, E. A. Topp
Department of Computer Science
LUND Lund University
“Enhancing Collaboration through Mixed-Initiative Interaction”

Critical tasks like search-and-rescue and hazardous environment operations require seamless human-robot collaboration to
enhance decision-making and efficiency.

Existing systems often suffer from high cognitive workloads and limited adaptability.
We introduce a novel integration of head-gaze based interaction and real-time foveation-based visual augmentation for

collaboration in a critical search-and-rescue scenario and present a user study to evaluate its impact.

Overview

Task exccution loop

Moblla Robot
Compute 30 Vectors

2 Systom Asstod i
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b Simulatod Sorch an Roscuo » - = —

o |

Comrol Ream; User Egocentric View [ Robot View b -
— Operstor Decision }_

b
TR L

 Study sottings
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Results Summary

We collected data across three phases of the study: Augmentation streamlines focus and enables faster task
® Pre-experiment: demographics data. execution, while reducing cognitive load.
* During-experiment: time taken, number of humans saved, head It reduces task completion time by an average of 60% and
gaze values, gesture inputs, robot state transformations, cognitive workload by 37.9%.
marked regions, items located. Foveated regions aligns with gazed regions in 2/31 of the
® Post-experiment: NASA TLX score, System usability score, cases during augmentation.
System Assisted questionnaire, Human Assisted questionnaire, 1/3¢ of the cases show extrafoveal attention capture
End of experiment questionnaire. around key areas of interest.
2obed o s benap i zh Combining human intuition with automation ensures
improved decision-making and system usability.
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