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Abstract
This paper presents the implementation of a combined points-
to analysis and rapid type analysis (RTA) for the Java pro-
gramming language, using the ExtendJ Java compiler and
JastAdd. The goal is to superimpose the points-to analysis
on the abstract syntax tree (AST) while interleaving it with
the RTA. The analysis aims to determine which memory
locations a pointer can refer to, which can be used to iden-
tify potential null pointer references. The implementation
leverages JastAdd’s reference attribute grammar to auto-
mate the interleaving of analyses, reducing manual work.
The proof-of-concept demonstrates the feasibility of this
approach, although it currently faces limitations with array
dereferences and generic types. Future work will focus on re-
fining the RTA and evaluating the scalability of the analysis
on larger code bases.

Keywords: Points-to-analysis, Rapid type analysis, JastAdd,
Reference Attribute Grammars

1 Introduction
A frequent problem in creating computer programs is null
pointer dereferencing, which could lead to unexpected crashes.
A points-to analysis, also called a pointer analysis, could help
in finding potential null-pointer dereferences. A points-to
analysis is static program analysis that aims to determine
which memory locations a pointer may be referencing [10].
The result from the points-to analysis can help developers
find if a pointer dereference may result in a null pointer
dereference.

Lhoták and Hendren [6] andMilanova, Rountev and Ryder
[9] proposed that the points-to analysis constructed based
on the result of a rapid type analysis (RTA). The combination
of a points-to analysis and RTA for the Java programming
language resulted in a sound over-approximation with high
precision [6, 9]. The result of the RTA, which is information
about what Java classes different pointers could be an in-
stance of, is used to determine which methods and fields
are being referenced. This especially useful for virtual, or
abstract, methods where the RTA information could be used
to determine which virtual methods may be invoked [6, 9].
Unlike type analysis, points-to analysis combined with

RTA is not required to generate efficient machine code or
bytecode. A compiler and a static checker serve different
purposes. The sole purpose of a compiler is to generate the
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most efficient machine code or bytecode, while the purpose
of a static checker is to find potential issues in the source
code. For example, the Java compiler (javac) performs the
necessary static analyses to generate bytecode, but it does not
include the more advanced analyses like points-to analysis
combined with rapid type analysis. Consequently, program-
mers only using javac miss out on this analysis and the help
in finding possible null pointer dereferences.
In this paper we aim to implement a combination of a

points-to analysis and a RTA for the Java programming lan-
guage. The goal is to superimpose the points-to analysis on
the abstract syntax tree (AST), while interleaving the RTA
with the points-to analysis. The analysis will be built on top
of the ExtendJ Java compiler. ExtendJ is an extensible Java
compiler implemented in JastAdd [11]. The implementation
that is the basis of this paper is in a proof-of-concept state.
Currently the result from the rapid type analysis are incon-
sistent and as a fallback the simpler call graph analysis class
hierarchy analysis [13] was used.

Interleavingmultiple analyses traditionally requires painful
manual work, by implementing the analysis declaratively
the need to manually manage worklist communication can
be automated [2]. To the best of our knowledge ExtendJ is
the only Java compiler implemented in a suitable declarative
framework, namely JastAdd. JastAdd’s reference attribute
grammars will be utilized both to interleave the points-to
analysis with the RTA and to superimpose the analysis on
the AST. JastAdd’s reference attribute grammars are defined
declaratively [3, 8], which means that both the RTA and the
points-to analysis can be implemented declaratively. The
declarative implementation allows for the analyses to be
mutually dependent on each other. JastAdd allows for ref-
erence attributes to be computed using a fixed-point itera-
tion [8], which is used to interleave both analyses. JastAdd
allows us to superimpose the analysis on the AST, since all
equations, which are used to find the values for different
attributes, are defined on AST nodes.

Our approach differs from Lhoták et al. [6] and Milanova
et al. [9], by interleaving the points-to analysis with the
RTA. Both Lhoták et al. [6] and Milanova et al. [9] run both
analyses in separate phases making the call-graph analysis
dependent on the points-to analysis instead of making them
mutually dependent on each other. The second distinction
that is made is that in this paper the analysis is superimposed
on the AST.
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2 Background
The points-to analysis used in this paper is Steensgaard’s
algorithm, see Section 2.1, which will be implemented using
reference attribute grammars in JastAdd.

2.1 Steensgaard’s algorithm
One approach to implementing a points-to analysis is by
use of Steensgaard’s algorithm [10]. The result from Steens-
gaard’s algorithm is a collection of points-to sets. A points-to
set contains the memory locations that each pointer may
reference. This points-to set is built using a unification algo-
rithm [10, 15]. The points-to-set is constructed by finding all
assignments to the pointer, which are then unified.
In the example found in Listing 1 the points-to set of a

contains two memory locations and null. This means that a
may reference either m1 or m2 or be a null pointer. During
unification, when the points-to sets are built, a’s points-to set
will be unified each of its assignments’ points-to sets. When
a is declared it is assigned the value of memory location m1.
In the first step of unification a’s points-to set is a singleton
set containing only the value m1. Steensgaard’s analysis is
flow insensitive [15], meaning that the order of execution
does not matter and there is no distinction between different
points in the program execution [10]. The insensitive nature
of the analysis means that both branches of the if-statement
will be considered during unification. Therefore, a will be
unified with both m2’s and null’s points-to sets.

Listing 1. In this simple code example the points-to-set of a
would be 𝑝𝑡𝑠 (𝑎) = {𝑚1,𝑚2, 𝑛𝑢𝑙𝑙}

Object a = new(); // m1

if (...) { a = new(); /* m2 */ }

else { a = null; }

2.2 JastAdd and reference attribute grammars
Reference attribute grammars (RAGs) is an extension of attri-
bute grammars (AGs) [8] that aims to improve on the limi-
tations of AGs [5]. With RAGs declarative equations are
defined on AST nodes. These nodes can reference any other
AST node and be defined circularly [8]. A circular attribute
is an attribute that is defined recursively and then computed
using fixed-point iteration.

A collection attribute is an attribute in the reference attri-
bute grammar that aggregates values from an unspecified
number of nodes in the AST [7]. In JastAdd the attributes
are defined on the AST node that are collecting the different
values from other nodes. The other AST nodes can contribute
values to the different collection attributes. When a node
contributes a value, it can specify both when and for which
instance of the AST node with the collection attribute, it
should contribute the value to [7].

JastAdd is a meta-compilation system that allows the user
to implement a reference attribute grammar, while also allow-
ing the user to implement imperative code on AST nodes
[3]. JastAdd’s declarative part is implemented using RAGs,
while also allowing the user to write plain old Java code for
the different AST nodes [3]. JastAdd allows the user to call
the imperative parts of the code form the declarative parts
of the code and the other way around as well, meaning that
JastAdd is a mix between a declarative and an imperative
language [3]. This mix of programming paradigms is utilized
when implementing the analysis proposed in this paper. See
Section 3 for more details.

An externally visible side effect is a side effect that can be
seen outside of a method, like printing to standard out or up-
dating an object (that is visible outside of the method). Crea-
ting an object within a method and updating it is considered
a side effect, but not an externally visible side effect, since it
cannot be seen outside of the method. JastAdd does not allow
externally visible side-effects in an attribute equation [3].

3 Implementation considerations
In this paper we want to interleave a points-to analysis
with an RTA and superimpose the combined analysis on the
AST. An interprocedural analysis is an analysis that combine
results between different Java methods [10]. We want our
combination of the points-to analysis to be interprocedural.

3.1 Memory locations

Block

VarDecl

IdDecl Expr

New

IfStmt

Block Block

Assign Assign

IdUse Expr

New

IdUse Expr

Null

Figure 1. A simplified AST of the code in Listing 1. The
green nodes are ordinary AST nodes, while blue nodes are
AST nodes that are memory locations.

To superimpose the points-to analysis on the AST we
need to distinguish between regular AST nodes, which are
not memory locations, and the AST nodes that are memory
locations. The memory location nodes are AST nodes that
have been extended with special properties required to run
Steensgaard’s algorithm (see Section 3.2). In Figure 1, which
is a simplified AST based on Listing 1, we see the distinction
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between regular non-memory location AST nodes and mem-
ory location AST nodes. The green nodes (in Figure 1) are
regular AST nodes, while the blue nodes are AST nodes that
have been extended to memory locations.

To collect points-to information, it is essential distinguish
between memory location nodes and regular AST nodes.
Examples of memory locations in programs include string
literals, object instantiations and lambda expressions. The
AST nodes corresponding to memory locations in the pro-
gram need to be extended to memory location nodes. In
programs pointers are used to reference different memory
locations in the program. Although pointers are not mem-
ory locations in a program the corresponding AST nodes
of pointers are memory location nodes. Making pointers
memory location nodes allows for easy unification between
memory locations, in the program, and the pointers.

3.2 Unification
Steensgaard’s algorithm is a unification-based salgorithm
[10, 15] and a union-find data structure have near constant
time unification. When superimposing the analysis on the
AST we want to mimic the behaviour of the union-find data
structure to get fast unification. This is achieved using the
special properties of the memory location nodes, which are
union and find.

The purpose of the special property union is to unify two
memory locations’ points-to sets with each other, while the
purpose of find is to collect the points-to set of a memory
location. JastAdd does not allow for externally visible side
effects [3], which is a problem for a classic implementation of
the union-find data structure. To prevent this an immutable
structure is required, which stores a grouping of memory
locations. When union unifies two memory locations a new
extended grouping is created and find returns the biggest
grouping for that memory location.

3.3 Interprocedural analysis
To make the analysis interprocedural the formal arguments
of the method declaration were unified with the actual argu-
ments of the method call. In the Java programming language
both method overloading and virtual methods exist. Method
overloading and virtual methods means that there could
be more than one method declaration for a single method.
Method overloading can easily be determined at compile
time, but what virtual method is being invoked is non-trivial
to determine at compile time.

To figure out which method declarations may be invoked
during compile time first a set of all possible method declara-
tions for a given method call was constructed. The possible
method declarations were than pruned using the points-to
information from Steensgaard’s algorithm. The pruned infor-
mation was then used to make Steensgaard’s algorithmmore
precise, which could then be used again to further prune the
possible method declarations. The possible methods and the

result from Steensgaard’s algorithm continue to improve
each other until a fixed point is achieved.

3.4 Null
Two approaches were considered in handling null, which
were having a global null and having multiple local nulls.
The first approach with a global null wouldmean that instead
of a memory location null could be handled as a flag, which
would lead to efficient computation. The drawback of the
global null is that is that it would result in all pointers that
may be null would be unified with each other resulting in
precise results. The second alternative with multiple local
nulls does not have that drawback, since then each null
would be handled as a different memory location. It is more
computationally heavy, but a lot more precise and therefore
the second approach was used.

4 Implementation of the analysis
The implementation of the concepts explained in Section
3 consist of two main parts. These were to interleave the
RTA with the points-to analysis and superimpose the com-
bined analysis on the AST. Both parts had one common task
and that was the unification required to implement Steens-
gaard’s analysis. The analysis could not be superimposed
on the AST if there were no memory location nodes with
their special properties (see Section 3.2) and the points-to
analysis and the RTA were interleaved during unification
(see Section 3.3). The interleaving of both analyses came
for free due to the way JastAdd handles the computation of
circular attributes [12].
To superimpose the analysis on the AST a new interface

was introduced that represented a memory location node.
This interface had twomethods union and find, which corre-
sponds to the special properties of the memory location
nodes (see Section 3.2). The MemoryLocation-interface was
implemented by all AST node classes, generated by JastAdd,
that represents a memory location (see Section 3.1).

4.1 Collection attributes
In contrast to a more traditional program analysis, Jast-
Add evaluates everything on demand. To ensure that the
on-demand evaluation find a correct result each memory
location needs to know what other memory locations it de-
pends on. This was solved with two collection attributes
dataflowTargets and dataflowSources. The collection attri-
bute dataflowTargets contains all memory locations that a
memory location assigned its value to, while the second attri-
bute, dataflowSources, contained all memory locations that a
memory location was assigned to.

These collection attributes, dataflowSources and dataflow-
Targets, were used in the implementation of the special
property find on memory location nodes (see Section 3.1).
find is defined as the union of a memory location and all
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the memory locations it could possible represent. In the
implementation find was defined as the union between a
memory location and all its dataflowSources and dataflow-
Targets.

4.2 Meta memory locations
JastAdd does not allow externally visible side-effects in an
attribute equation [3]. To handle unification without using
externally visible side-effects, we introduce a new memory
location, the meta memory location. This meta memory loca-
tion is an immutable grouping that is extended by creating a
new larger instance of the immutable grouping and thereby
bypassing the externally visible side-effects. To unify two
meta memory locations the first grouping is extended with
the content of the second meta memory location. When
unifying a non-meta memory location and a meta mem-
ory location the grouping of the meta memory location is
extended with the non-meta memory location. The union of
two non-meta memory locations resulted in a meta memory
location containing both non-meta memory locations.

4.3 Circular attributes
As mentioned in Section 3.3 a fixed-point computation was
used to interleave the rapid type analysis with the points-to
analysis. To implement a fixed-point computation in JastAdd,
circular attributes were used. The result of RTA was based
on the result of find, which itself used the result from RTA,
i.e., find and RTA were mutually dependent on each other.
This meant that both RTA and find needed to be circular
attributes.
To ensure that the fixed-point iteration terminates the

memory locations must be compared with each other. For
the meta-memory location, the content of the grouping was
compared meaning that two groupings are equal if and only
if they contain the same elements. For the non-meta memory
locations an index was used. All AST nodes were given an
index start with zero for the top AST node and then each of
its children got an index that was one plus its sibling and
so on. These indices were then used in comparing the AST
nodes between different iterations.

5 Evaluation
The original plan for validating the correctness of the analy-
sis in this paper was to compare the result of the imple-
mented analysis with the result from SootUp [4]. Due to the
unfinished state of SootUp’s documentation it was decided
to fallback to another evaluation approach.

The evaluation approach was to manually generate points-
to information, by hand, for a Java implementation of Jonas
Skeppsted’s and Christian Söderberg’s version of integer
linear programming (intopt)1 [14] and use that as a ground

1Link to implementation on BitBucket.

truth. Then the ground truth was compared to the printed
output of the proof-of-concept version of the analysis.

5.1 Result & Limitations

0.5 0.6 0.7 0.8 0.9 1.0
Execution time (seconds)

ExtendJ

ExtendJ
and

Analysis

Execution time with and without analysis

Figure 2. The execution time of ExtendJ compiling intopt
with and without running the analysis. The bottom boxplot
shows the measurements when running ExtendJ by itself
and the top boxplot shows the measurements when running
ExtendJ and the proof-of-concept analysis.

The intopt program consisted of 579 lines of Java code,
which corresponded to 4697 AST nodes when compiled with
the ExtendJ Java compiler. As can be seen in Figure 2 the
execution time of just ExtendJ is around 0.55 seconds and the
execution time of ExtendJ and the proof-of-concept analysis
is around 0.95 seconds. The delta between the two figures
are approximately 0.4 seconds, which approximates the exe-
cution time of the proof-of-concept analysis for 4697 AST
nodes.

The points-to information produced by the proof-of-concept
analysis were a sound over-approximation of the ground
truth, with some limitations. The observed limitations were
array dereferences and generics. The proof-of-concept analy-
sis does not take array dereferences into account. This means
that if something is stored inside of an array the analysis
would completely disregard of that memory location. The
points-to information is then only a sound over-approximation
of the ground truth, with intopt as input, if array dereferences
are disregarded. If generics are used in the input source code,
then the analysis crashes and no output is produced, meaning
that any program using generics cannot be analysed.

The premise of this paper is that humans are bad at genera-
ting points-to information, which means that the evaluation
using human generated points-to information is a limitation.
The first version of the points-to information used as ground
truth did not take array dereferences into account and was
nearly missed. It cannot be ruled out that the ground truth is
incorrect, but we argue that the ground truth is good enough
to prove that the proof-of-concept is feasible.

4
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The sample size of the evaluation is small consisting of
only one small program is a limitation. This makes it difficult
to draw any conclusions on how the proof-of-concept analy-
sis scales on larger inputs, meaning that the performance,
both in execution time and precision, on larger programs is
unknown.

6 Related work
Lhoták and Hendren utilized a call-graph to improve their
precision of their points-to-analysis. In many ways their app-
roach is similar to what is discussed in this paper. The big
difference is that our analysis is imposed on the abstract syn-
tax tree, which theirs is not. The other thing distinguishing
the two papers is that their points-to analysis depended on
their call-graph analysis, while our analyses are mutually
dependent on each other.

Lhoták et al. [6] and Milanova et al. [9] implemented the
same basic idea of combining a points-to analysis with a
rapid type analysis. Both papers are quite old and uses older
Java versions. In this paper we differentiate also from these
papers by using a more modern version Java (version 11)
and see if the same idea is still feasible.
Bacon and Sweeney [1] showed that RTA was better at

determining which virtual method is being called than class
hierarchy analysis. The distinguishing factor here is that
Bacon and Sweeney only did the RTA, while we combined it
with a points to analysis.

7 Further work
For now, the RTA is not working as expected (as discussed in
Section 5) and a direction to further elaborate on this work
is to fully implement it. This would enable a more grounded
conclusion to be drawn on the feasibility of combining a
points-to analysis with a rapid type analysis.

The evaluation was limited (see Section 5.1) and it is curr-
ently unknown how the proof-of-concept analysis scales on
larger inputs. This could show how well the analysis scales
with code size and if it is actually feasible to use in real world
development.

8 Conclusion
The proof-of-concept analysis proves that it is possible to
superimpose a combination of a call-graph analysis with a
points-to analysis on the AST, meaning that the idea is feasi-
ble. The scalability of the purposed analysis is still unknown
and requires further work to determine.
The proof-of-concept analysis consisting of class hier-

archy analysis as the call-graph analysis combined with a
points-to analysis produced points-to information that were
a sound over-approximation of the ground truth it was eval-
uated against. We argue that if a rapid type analysis were
used as the call-graph analysis instead of a class hierarchy
analysis then the generated points-to information would

be at least as precise as the one generated by the proof-of-
concept analysis. We argue this, since the RTA is at least as
precis as the class hierarchy analysis and often more precise
if all virtual methods are not utilized in the program for that
memory location.
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