
Projection Boxes in CodeProber
Vera Paulsson

D20, Lund University, Sweden
ve2675pa-s@student.lu.se

Klara Tjernström
D20, Lund University, Sweden

kl4257tj-s@student.lu.se

Abstract
We introduce projection boxes, a live programming feature,
into the client-server application CodeProber. CodeProber
provides its user with live feedback to visualize and inves-
tigate the AST created from the analysis tool. Examples of
CodeProber’s use cases are the compiler and program analy-
sis courses at LTH. Our addition of projection boxes extends
CodeProber’s liveness by displaying runtime values inline
with the code, eliminating workflow interruptions caused by
existing hover-based interactions. The projection boxes are
evaluated with a user study, with the aim to explore what
impact the feature has on a programmer’s development pro-
cess. Results indicate that projection boxes enhance usability
and effectiveness while maintaining minimal performance
overhead.

1 Introduction
Developing tools for programming languages, such as com-
pilers and static analyzers can be a challenging task. To help
developers with this task, several tools and techniques have
been developed, such as CodeProber. CodeProber is a tool
which provides developers a way to explore their analysis
results, helping bridging the gap between complex imple-
mentations and their underlying behavior. [15] It achieves
this through several live features, such as property probes
which acts as live observers of properties of Abstract Syntax
Tree (AST) nodes.

Liveness, as defined by Tanimoto, is "the ability to mod-
ify a running program" [16]. In addition, the programming
environment provides the programmerwith immediate infor-
mation on what they are changing. In other words, it always
presents up-to-date values when the user makes changes.
For example, the values in the CodeProber probes are au-
tomatically updated whenever the user makes edits in the
editor or rebuilds the underlying compiler or static analysis
tool.

Kramer et al. [9] performed an experiment in which they
compared the same development environment with andwith-
out feedback. This experiment gave insight in the positive
effects live programming has from a debugging aspect. The
result showed that programmers in the experimental en-
vironment more often switched between developing and
debugging, reducing the time spent fixing bugs.

Course paper, EDAN70, Lund University, Sweden
January 15, 2025.

A study of students using CodeProber revealed that live-
ness is one of the tool’s most appreciated aspects [14]. In
this paper, we aim to further improve CodeProber’s liveness
by extending it with Projection Boxes. Projection Boxes, as
presented by Lerner [10], are a novel visualization technique
which displays runtime values in a program. Lerner’s paper
includes a formative study where projection boxes were im-
plemented in a tool called VERSABOX. It was demonstrated
that users found projection boxes and their configurability
useful for example for finding and fixingmistakes right when
they were introduced and guiding the code writing. It was
also shown to be useful for testing the entire code after it
was written to check if it would output the right results.
Furthermore, they found that a programmer’s experience
with a programming language affected how much imme-
diate feedback the person would want. More experienced
programmers would in general want less information.

When presenting live feedback it is important to take inter-
face design into consideration. Lerner’s study [10] shows that
the previous programming experiences, together with lan-
guage knowledge creates various conceptual models which
affect how visualisation should be implemented. Another
aspect covers the amount of information shown in the boxes.
Some participants in the study wanted more information to
be presented when they entered a debugging phase while
other participants always wanted a large amount of informa-
tion. There were also participants that wanted the opportu-
nity to hide the boxes entirely. This creates a difficulty when
presenting projection boxes. They should be presented in
such a way that it helps the programmer rather than being a
distraction.
In CodeProber, developers can already extract the infor-

mation shown in the projection boxes by using the squiggly
lines feature. By hovering over a variable, users can view
relevant runtime data. This approach interrupts the devel-
oper’s workflow as it requires the use of a mouse or touchpad
to access the information. Projection boxes address this by
displaying the information directly on the same line as the
variable, eliminating the need for mouse interactions. The
data remains visible at all times, creating a more seamless
and immediate debugging experience.
One use case of CodeProber is the Program Analysis

course at LTH. In the course, students implement analy-
ses on a JastAdd-based compiler for TEAL, a gradually typed
imperative language, following provided compilers and lab
instructions. Students in the Program Analysis course would
benefit from projection boxes to visualize computed analysis

1



Course paper, EDAN70, Lund University, Sweden Vera Paulsson and Klara Tjernström

results directly [14]. The projection boxes would simplify
the comparison between expected and actual values. An-
other use case of CodeProber is the Compiler course at LTH,
which will be further discussed in the Use Case section of
this report.

Finally, we believe that the feature could be useful beyond
academia, for example in industry. By integrating projection
boxes, we aim to make CodeProber a more comprehensive
tool for programming language developers.

2 Background
2.1 Attribute Grammar
Knuth introduced attribute grammars (AGs) as a technique
for defining semantics of programming languages [8]. The
formal structure of a language can be defined by a context-
free grammar, which the attribute grammar builds on. At-
tribute grammars specify the ’meaning’ of languages by stor-
ing semantic information in attributes associated with ter-
minal and non-terminal symbols of the grammar.
The intrinsic meaning in the code is unveiled during the

parsing of a program, which determines the structure of
the parse tree by describing the parent-child relationships
between nodes or different program elements. These intrinsic
relationships provide the foundation for deriving non-trivial
values with attributes.

Knuth defined two types of attributes in his paper: syn-
thesized and inherited. Synthesized attributes compute in-
formation based on a given tree node and its descendants. In
contrast, inherited attributes are defined by the ancestors of
a given node. The inherited attribute can for example be a
symbol table which will associate variable names with their
types and by propagating this information down in the tree,
it can be used for checking type correctness of expressions.

2.2 Reference Attribute Grammars
Reference Attribute Grammars (RAGs) is an extended type
of canonical attribute grammars. RAGs is non-circular and
it has the addition of references in its attributes. References
make it possible for nodes to create direct links between each
other as well as access its properties.

By making use of references in the grammar, other graph
structures can be built on top of the AST. This makes is
possible for information to traverse these edges instead of
the original edges of the AST. The benefits of this is the
possibility to pass unwanted nodes or attributes and access
certain nodes and attributes directly [7].
When RAGs are used in JastAdd, it is specified in mod-

ules called Jrag. Jrag supports a modified Java version and
these modules includes class declarations which consists of
equations and attributes. Attributes are specified with a key-
word "syn", for synthesized, or "inh", for inherited, to specify
where in the AST the execution is to be done.

2.3 JastAdd: Just add to the ast
JastAdd is a Java based system with support for RAGs. This
is done by a combination of imperative and declarative struc-
tures. The combination of these makes it possible to divide
and work with smaller problems within the compiler [6].

JastAdd uses different modules to weave together the com-
piler. These modules consists of the abstract grammar as well
as behavioural aspects. These parts are combined in jastadd
to generate AST classes written in ordinary Java. When these
files and corresponding classes are generated, a tree hierar-
chy is created. The AST classes also includes methods which
makes the tree traversable [1].
JastAdd, and RAGs in general, uses lazy dynamic eval-

uation which means that dependencies are evaluated on
demand. Rewrites of AST nodes are only performed when
the traversal API is used to access the node. The benefits of
this is that there are only a cost if the attribute are accessed,
which is a efficient way of evaluation. [7]

The structure of JastAdd and its Java based system makes
it possible to "just add to the ast" [7].

2.4 ExtendJ
ExtendJ, "The JastAdd Extensible Java Compiler"[2], is a Java
based compiler that works equal to a normal Java compiler.
ExtendJ is built with JastAdd which makes it possible to
easily extend the compiler into static analysis tools as well
as extending the Java language constructs[1].
Ekman and Hedin added support for Java 1.4 and Java 5

for ExtendJ [1]. They also performed tests on the compiler
with the conclusion that the structure of JastAdd and the
system of only using the AST as data structure has shown
to be a workable way of handling compiler structures.
Öqvist added support for Java 7 to ExtendJ[12]. Öqvist

compared the extension of Java 7 to javac and ExtendJ with
the conclusion that ExtendJ was easier to extend. This was
compared through added amount of source code, source line
of code (SLOC).

3 Projection Boxes in Codeprober
The addition of projection boxes would make CodeProber
more comprehensive as it introduces a new way to present
diagnostic information. These boxes visualize data such as
execution traces, offering a side-by-side format alongside
the corresponding lines of code. The feature enhances clarity
and usability by complementing existing diagnostics such
as squiggly lines.

3.1 CodeProber Architecture and Protocol
CodeProber is aweb-based client-server application designed
to facilitate live feedback for code analysis and debugging. It
is implemented using Java and TypeScript and comprises two
main components: the client-side interface and the server-
side backend. The client side, built on the Monaco editor,

2



Projection Boxes in CodeProber Course paper, EDAN70, Lund University, Sweden

provides users with an interactive environment to explore
code, visualize runtime values, and investigate diagnostics
such as variable states or errors. The server side, integrated
with analysis tools like ExtendJ, handles requests from the
client to deliver live feedback and computations.
Diagnostics in CodeProber are computed on the server

side, where the analysis tool parses the edited text into an
Abstract Syntax Tree (AST) and populates it with function-
alities that can be explored using probes.
Probes act as live observers, dynamically evaluating and

displaying properties of specific AST nodes. For example, a
probe might show the type of an expression or the runtime
value of a variable, presenting this data directly within the
editor.
To expand the existing diagnostic infrastructure, projec-

tion boxes were introduced as a new diagnostic type. A pro-
jection box displays information side-by-side with the corre-
sponding line of code.

3.2 Implementation and Design Considerations
Projection boxes use Monaco’s deltaDecorations API to
dynamically display relevant information. When a user mod-
ifies code, the client sends an updated representation of the
code to the server. The server processes the changes, com-
putes the new state of the AST, and generates diagnostic
data. This data is then rendered as projection boxes.
On the client side, projection boxes are styled using CSS

to ensure clarity and avoid overwhelming the user. Neu-
tral colors such as gray and white were chosen to maintain
simplicity and formality, avoiding unintended emotional
associations linked to diagnostic colors like red or yellow.
Placement on the right-hand side of the code editor follows
established design principles, such as the Golden Ratio theo-
rem, to present additional information in a way that mini-
mizes cognitive load and distractions [4].
While projection boxes could offer always-on feedback,

such an approach risks cluttering the interface and detract-
ing from the user experience. By using the existing toggling
option in CodeProber, the user can choose to enable or dis-
able projection boxes as needed, adapting the tool to their
workflow.

3.3 Use Cases
Two of the use cases covers different courses given at LTH.
One of them are the program analysis course and the other is
the compiler course. These two courses presents CodeProber
as a tool to be used during the lab assignments. Depending
on the goal of the assignment, CodeProber presents differ-
ent attributes or data to be presented but has not before
presented live feedback in the format of projection boxes.

During the program analysis course, the goal is to improve
the understanding of the language as well as being able to
analyse the executed value of the code in comparison to the
expected.

In the compiler course, the goal is to be able to follow the
interpretation steps when SimpliC is developed. Figure 1 il-
lustrates how CodeProber appears without projection boxes,
while Figure 2 demonstrates its appearance with projection
boxes.

Figure 1. Example of how CodeProber looks without pro-
jection boxes

Figure 2. Example of how CodeProber would look with
projection boxes in the compiler course

Another use case apart from the academic studies pre-
sented above are the industry. The development of new com-
pilers is an ongoing process and the implementation process
can be complex and difficult. By using CodeProber and pro-
jection boxes, several steps of development could be easily
improved due to the opportunity of live feedback and data
presentation. The version of projection boxes developed in
this paper is primarily designed to address after the needs of
students. It remains future work to identify more concrete
examples of industry use cases where projection boxes could
help, and whether our design addresses these cases.

3



Course paper, EDAN70, Lund University, Sweden Vera Paulsson and Klara Tjernström

4 Evaluation
4.1 Introduction
This section evaluates the impact of projection boxes on
usability and performance. The evaluation combines perfor-
mance benchmarks, analysis of required lines of code, and
qualitative feedback from students who used CodeProber
during the 2023 and 2024 compiler courses.

4.2 Method
The evaluationwas conducted in two stages: a pre-questionnaire
followed by hands-on sessions where participants actively
engaged with CodeProber and its projection box feature.
During these sessions, participants were tasked with creat-
ing a program and debugging deliberately introduced errors,
enabling an assessment of how projection boxes support
various tasks such as interpreting program behavior and
identifying issues.

Participants for the study were drawn from students who
had taken the compiler course in 2023 or 2024. The pre-
questionnaire focused on understanding participants’ prior
usage of CodeProber during laboratory assignments. Specific
attention was paid to their experience with Lab 4, which in-
volved implementing name analysis for the SimpliC compiler,
and Lab 5, which focused on developing an interpreter.

The pre-questionnaire included two key questions:
1. How much did you use CodeProber in Lab 4 (name

analysis) in the compiler course? (1 - Not at all, 5 - A
lot)

2. How much did you use CodeProber in Lab 5 (inter-
preter)? (1 - Not at all, 5 - A lot)

Performance metrics were measured by comparing the
time required to complete specific tasks with projection
boxes enabled versus disabled to complete 1,000 iterations.
Additionally, the lines of code required for projection box
implementation were analyzed, with distinctions made be-
tween unique and boilerplate code.

4.3 Results
The pre-questionnaire revealed varying levels of CodeProber
usage among participants, with responses indicating mod-
erate to high reliance on the tool during labs. Notably, the
average usage of CodeProber was higher in Lab 4 (4.33) com-
pared to Lab 5 (3.33). These findings established a baseline
for assessing projection boxes’ impact during the hands-on
sessions.

Participants valued the projection boxes’ ability to provide
immediate feedback on variable values and program behav-
ior, particularly in illustrating how values were evaluated
across different namespaces. This functionality was high-
lighted as especially useful in debugging custom language
implementations.
However, several areas for improvement were identified.

Users suggested increasing the spacing between code and

boxes for improved readability and requested more detailed
runtime error explanations. Additionally, concerns were
raised about the limited scope of the projection boxes, as they
only visualized the main program and did not account for
functions with static variables. The handling of long outputs
was also highlighted as an issue, with users suggesting fea-
tures like prioritizing the display of final values or managing
overflow to improve navigation.
To incorporate projection boxes in the analysis tool, 70

lines of code (LOC) are needed, including 20 lines which
could be made into boilerplate code.

The results of the performance metric demonstrated a neg-
ligible performance impact, with total times of 30.29 seconds
without projection boxes and 30.71 seconds with projection
boxes. This slight difference reflects the additional rendering
and processing overhead introduced by projection boxes,
amounting to an average server-side increase of 0.1 millisec-
onds per evaluation.

4.4 Discussion
The results show that there are practical benefits of projec-
tion boxes, particularly for the debugging experience. While
quantitative performance impacts were negligible, the qual-
itative feedback underscores the value of projection boxes
in making diagnostics more accessible. The ability to visual-
ize executed values alongside corresponding code lines was
appreciated, aligning with the intended goals of improved
usability and comprehension.

The performance evaluation demonstrated that Projection
Boxes introduce only a negligible overhead to the system.
With an average server-side increase of 0.1 milliseconds
per evaluation, the total runtime difference between tasks
completed with and without projection boxes was minimal
(30.29 seconds versus 30.71 seconds for 1,000 iterations). This
finding suggests that projection boxes can be integrated
into CodeProber without significantly compromising system
responsiveness or performance.
The user study exclusively involved students who had

prior experience with CodeProber, which could introduce
bias into the findings. Their familiarity with the tool may
have influenced their appreciation of projection boxes, as
they were likely already accustomed to its interface and
workflows. This makes it potentially misleading to generalize
the results to broader programming contexts or to users with-
out prior experience with CodeProber. Future studies should
aim to include participants with varying levels of familiarity,
including those with no prior exposure to CodeProber. This
would provide a more balanced perspective on the usabil-
ity and effectiveness of projection boxes and help identify
whether the observed benefits are equally applicable to first-
time users. Additionally, this approach would allow for better
assessment of the learning curve associated with projection
boxes, ensuring the tool is intuitive and accessible for all
users.

4



Projection Boxes in CodeProber Course paper, EDAN70, Lund University, Sweden

The user study revealed varying opinions on how the
projection boxes should be designed, emphasizing the im-
portance of tailoring their design to accommodate individual
user preferences and workflows. As highlighted in prior stud-
ies [10], excessive information flow can overwhelm users,
particularly during debugging phases. This issue is evident in
the current implementation of projection boxes in CodeProber,
where loops generate visualizations spanning a large number
of iterations. Currently, all values are displayed on a single
row, making it challenging for users to locate the most rele-
vant information—often the final value of a variable. Scrolling
to the far right of the screen to find this value undermines
the purpose of projection boxes, which are intended to re-
main readily visible to the programmer without requiring
a switch from the keyboard to the mousepad. Future iter-
ations could address this by prominently highlighting the
final value and positioning it first, thereby reducing both
cognitive and physical effort.

Finally, to further validate the utility of projection boxes,
future evaluations should involve larger and more diverse
participant groups, exploring complex use cases and real-
world industry scenarios. Such studies would provide deeper
insights into the broader applicability and effectiveness of
projection boxes across various programming contexts.

5 Related work
Lerner [10] discusses design choices when implementing pro-
jection boxes. Lerner also presents different aspects to take
in consideration when designing them, such as information
overload.

Ferdownsifard et. al. presents live programming and their
new paradigm called "Small-Step Live Programming by Ex-
ample" [3]. Their tool, SNIPPY, exemplifies this approach by
leveraging projection boxes to dynamically generate code
based on changes in output specifications. The paper presents
the benefits of live programming and the innovative capabil-
ities of their method.
McDirmid [11] presents live programming as a method

which increases the flow in programming experiences. Fur-
thermore, they present a solution by probing information
within the editor together with the benefits of this type of
live programming experience.

Research papers covering CodeProber and its correspond-
ing property probeswas initially published by Risbers Alaküla
[14]. Moreover there has been several publications such as
Hardt et.al[5] and Riouak[13] that includes the usage of
CodeProber.

6 Conclusion
This study presents the integration of projection boxes into
CodeProber, in the educational context of compiler and pro-
gram analysis courses at LTH. By extending CodeProber with

projection boxes, the tool now offers a new visualization of
runtime values alongside corresponding code.
The evaluation demonstrates that projection boxes im-

prove usability by providing immediate, contextual feed-
back, which aids debugging and understanding program
behaviour. Performance analysis indicates a negligible im-
pact on processing speed, with an average increase of only
0.1 milliseconds per evaluation on the server side.

Additionally, the implementation effort to integrate projec-
tion boxes in another compiler is modest. It requires 70 lines
of code, including 20 lines of reusable boilerplate, making it
feasible to integrate into similar analysis tools.
User feedback highlights several strengths of projection

boxes, particularly their ability to facilitate error identifica-
tion and program analysis. However, areas for improvement
were also identified, such as increasing output readability,
improving the handling of long visualizations, and expand-
ing the functionality to support additional program features
beyond the main function. These observations provide a
foundation for targeted design refinements in future itera-
tions.
In conclusion, projection boxes constitute a valuable en-

hancement to CodeProber, improving its usability and ef-
fectiveness in educational contexts. Although currently de-
signed for compiler courses, the feature’s implementation
and functionality suggest potential for adaptation to broader
programming and debugging scenarios, subject to further
development and evaluation.

Acknowledgments
We wish to thank Anton Risberg Alaküla for being our su-
pervisor during this project. We really appreciate the helpful
feedback and guidance the development and writing of this
report. We would also like to thank Görel Hedin for the
opportunity to work with a compiler project during this
semester.

5



Course paper, EDAN70, Lund University, Sweden Vera Paulsson and Klara Tjernström

References
[1] Torbjörn Ekman and Görel Hedin. 2007. The jastadd extensible java

compiler. In Proceedings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’07). Association for Computing Machinery, New York, NY,
USA, 1–18. https://doi.org/10.1145/1297027.1297029

[2] ExtendJ. [n. d.]. ExtendJ: The JastAdd Extensible Java Compiler. ([n.
d.]). https://jastadd.cs.lth.se/web/extendj/

[3] Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner,
and Nadia Polikarpova. 2020. Small-Step Live Programming by Ex-
ample. In Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology (UIST ’20). Association for Comput-
ing Machinery, New York, NY, USA, 614–626. https://doi.org/10.1145/
3379337.3415869

[4] Interaction Design Foundation. 2016. What is the Golden Ratio? In-
teraction Design Foundation (08 2016). https://www.interactiondesign.
org/literature/topics/golden-ratio

[5] Johannes Hardt and Dag Hemberg. 2023. JastAdd Bridge: Interfacing
reference attribute grammars with editor tooling. (2023).

[6] Görel Hedin and Eva Magnusson. 2003. JastAdd—an aspect-oriented
compiler construction system. Science of Computer Programming 47, 1
(2003), 37–58. https://doi.org/10.1016/S0167-6423(02)00109-0 Special
Issue on Language Descriptions, Tools and Applications (L DTA’01).

[7] JastAdd. [n. d.]. JastAdd Concept Overview. ([n. d.]). https://jastadd.
cs.lth.se/web/documentation/concept-overview.php

[8] Donald Ervin Knuth. 1968. Semantics of context-free languages.Mathe-
matical systems theory 2.2 (1968), 127–145. https://api.semanticscholar.
org/CorpusID:5182310

[9] Jan-Peter Kramer, Joachim Kurz, Thorsten Karrer, and Jan Borchers.
2014. How live coding affects developers’ coding behavior. In 2014
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 5–8. https://doi.org/10.1109/VLHCC.2014.6883013

[10] Sorin Lerner. 2020. Projection boxes: On-the-fly reconfigurable vi-
sualization for live programming. Proceedings of the 2020 CHI Con-
ference on Human Factors in Computing Systems (Apr 2020). https:
//doi.org/10.1145/3313831.3376494

[11] Sean McDirmid. 2013. Usable live programming. In Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward! 2013). Association
for Computing Machinery, New York, NY, USA, 53–62. https://doi.
org/10.1145/2509578.2509585

[12] Jesper Öqvist and Görel Hedin. 2013. Extending the JastAdd ex-
tensible Java compiler to Java 7. In Proceedings of the 2013 Interna-
tional Conference on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools (PPPJ ’13). As-
sociation for Computing Machinery, New York, NY, USA, 147–152.
https://doi.org/10.1145/2500828.2500843

[13] Idriss Riouak. 2024. Towards Declarative Specification of Static Analysis
for Programming Tools. Doctoral Thesis (compilation). Department
of Computer Science. Defence details Date: 2024-11-22 Time: 13:15
Place: Lecture Hall E:A, building E, Klas Anshelms väg 10, Faculty of
Engineering LTH, Lund University, Lund. External reviewer(s) Name:
De Roover, Coen Title: Prof. Affiliation: Vrije Universiteit Brussel,
Belgium. —.

[14] Anton Risberg Alaküla. 2024. Property Probes: Live Exploration of Source
Code Analysis. Licentiate Thesis. Department of Computer Science.

[15] Anton Risberg Alaküla, Görel Hedin, Niklas Fors, and Adrian Pop.
2022. Property Probes: Source Code Based Exploration of Program
Analysis Results. In Proceedings of the 15th ACM SIGPLAN International
Conference on Software Language Engineering (SLE 2022). Association
for Computing Machinery, New York, NY, USA, 148–160. https://doi.
org/10.1145/3567512.3567525

[16] Steven L. Tanimoto. 2013. A perspective on the evolution of live
programming. In 2013 1st International Workshop on Live Programming

(LIVE). 31–34. https://doi.org/10.1109/LIVE.2013.6617346

6

https://doi.org/10.1145/1297027.1297029
https://jastadd.cs.lth.se/web/extendj/
https://doi.org/10.1145/3379337.3415869
https://doi.org/10.1145/3379337.3415869
https://www.interactiondesign.org/literature/topics/golden-ratio
https://www.interactiondesign.org/literature/topics/golden-ratio
https://doi.org/10.1016/S0167-6423(02)00109-0
https://jastadd.cs.lth.se/web/documentation/concept-overview.php
https://jastadd.cs.lth.se/web/documentation/concept-overview.php
https://api.semanticscholar.org/CorpusID:5182310
https://api.semanticscholar.org/CorpusID:5182310
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/2500828.2500843
https://doi.org/10.1145/3567512.3567525
https://doi.org/10.1145/3567512.3567525
https://doi.org/10.1109/LIVE.2013.6617346

	Abstract
	1 Introduction
	2 Background
	2.1 Attribute Grammar
	2.2 Reference Attribute Grammars
	2.3 JastAdd: Just add to the ast
	2.4 ExtendJ

	3 Projection Boxes in Codeprober
	3.1 CodeProber Architecture and Protocol
	3.2 Implementation and Design Considerations
	3.3 Use Cases

	4 Evaluation
	4.1 Introduction
	4.2 Method
	4.3 Results
	4.4 Discussion

	5 Related work
	6 Conclusion
	Acknowledgments
	References

