
Extending JastAdd Bridge: Bringing more features
from LSP into JastAdd

Julia Karlsson
D20, Lund University, Sweden

ju3007ka-s@student.lu.se

Philip Sadrian
D20, Lund University, Sweden

ph8605sa-s@student.lu.se

Abstract—Many features exist in modern IDEs to improve the
programming workflow of developers, such as code completion,
go to definition, refactoring and symbol outlines of a text file.
These features are often provided by language servers. However,
implementing a language server is tedious, even though the Lan%
guage Server Protocol exists to standardize the process. In this
paper, we present continued work on the JastAdd Bridge (JAB)
extension for Visual Studio Code (VS Code), thus expanding
the translation layer between JastAdd defined languages and the
Language Server Protocol.

Our work resulted in the addition of symbol outline and
code completion functionality. We found that JAB now seems to
support most integral LSP functionality, while still being simple
to implement through both a case study of integration with
ExtendJ and a small user study.

Keywords—language server protocol, jastadd, jastadd bridge,
ExtendJ

I. Introduction

To simplify the implementation of IDE features, a protocol
called Language Server Protocol (LSP) can be used. Most modern
IDEs support the client side of the protocol. They connect to
Language Servers in order to compute what to display in the
IDE, such as the value of a variable when hovering over it. The
abstraction layer provided by LSP allows a single server to be
used in multiple IDEs, thus removing the need to develop a new
server for each IDE. This is means LSP reduces the previous
𝑚 × 𝑛 problem to a 𝑚 + 𝑛 problem instead, where 𝑚 is the
number of editors and 𝑛 the number of languages [1].

The meta-compiler JastAdd [2] can be used to create com-
pilers and static analysers, and is described as “[…] a safer
and more powerful alternative to the Visitor pattern”. Jast-
Add works by using Reference Attribute Grammars (RAG) [3],
which are an extension to Attribute Grammars (AG) [4]. AGs is
a method to declaratively define valued properties of symbols
in a context-free grammar. A limitation of AGs is that it is
impossible to reference non-local nodes in the AST, which
means that other nodes cannot be used in calculations. This is
instead addressed in RAGs [3].

Supporting LSP requires some implementation work, how-
ever, there are tools to facilitate the implementation of the
protocol. One way to do this for languages generated with Jast-
Add is by using the tool called JastAdd Bridge (JAB) [5]. This
enables a simpler way to support LSP functionality without
having to write a brand new language server from scratch,
saving development time. JAB translates JastAdd attributes to
LSP interactions, by having the compiler author implement
special, pre-defined attributes. This translation is done by

Course paper, EDAN70, Lund University, Sweden
January 13, 2025

implementing a server interface defined in LSP4J [6], which is
a tool that can be used to develop a language server in Java.

In this paper we present work on extending the functionality
of JAB to increase its usefulness for programming language
developers wanting to support Language Server functionality.

To exemplify use of JAB with a feature-complete compiler
and compare the results, we used ExtendJ. It is a Java compiler
developed with JastAdd, designed to be extensible [7]. We also
performed a small user study to further evaluate our additions.

II. Background

The first iteration of JAB [5] implemented a subset of the
functionality defined by the LSP. These were hover tool-tips over
symbols, error diagnostics, quick-fixes, go to symbol definitions,
and a run lens that enables running a program. That work was
done as a part of the same course as this paper (EDAN70 Project
in Computer Science), and had quite a limited development
time. It offers a good foundation to continue development on as
the underlying communication and structure of the extension
itself can be reused.

As mentioned in Section I, the integration between a com-
piler and JAB is achieved by the compiler author implementing
special JastAdd attributes. These are prefixed with lsp_ to
avoid name clashes. The initial version of JAB expected the
following attributes to provide the supported functionality [5]:

syn String ASTNode.lsp_hover();
coll Set<Diagnostic> Program.lsp_diagnostics();
syn ASTNode ASTNode.lsp_definition()
syn ASTNode Program.lsp_main();
public void Program.lsp_run();

Fig. 1: All attributes that were implemented in the initial version of
JastAdd Bridge

As a part of the first iteration of JAB [5] the interop
library was created, defining the Java classes required by the
attributes shown in Fig. 1. The library simplifies integration
by allowing a compiler developer to import the package and
use the needed classes, instead of writing classes from scratch
that conform to the requirements of JAB. Some notable classes
contained in interop are Diagnostic and Edit, that enable
the LSP features of diagnostics and quick fixes.

III. Solution

To improve JastAdd Bridge, the features Document Symbol
Outline and Code Completion were deemed useful for the end
user. We considered other features, but chose to focus on
expanding support of LSP functionality. For a listing of the
new attributes introduced in this paper, see Fig. 2.

1

mailto:ju3007ka-s@student.lu.se
mailto:ph8605sa-s@student.lu.se

Course Paper, EDAN70, Lund University, Sweden Julia Karlsson and Philip Sadrian

coll Set<Symbol> ASTNode.lsp_symbols();
syn Set<CompletionItem> ASTNode.lsp_completions();

Fig. 2: The special attributes that were added as part of the solution.

A. Document Outline
In order for a developer to get an overview of the contents
of a file when writing a program, we added the possibility
to generate a hierarchical document outline of the symbols in
a document. Some examples of symbols are classes, functions
and variables. This is used similarly to diagnostics and is easily
implemented with a collection attribute in JastAdd [8]. The
special attribute that the compiler needs to define is named
lsp_symbols(), which returns a Java set Set<Symbol>. Con-
sequently, to let a certain type of node appear in the outline,
let it contribute a Symbol to lsp_symbols(). The class Symbol
is defined in the interop library as:

class Symbol {
 String getName();
 Object getNode();
 int getKind();
 int getStartLine();
 int getStartColumn();
 int getEndLine();
 int getEndColumn();
}

The getKind() method is required to return a number be-
tween 1 and 26, and must match the LSP definition [9] of
SymbolKind to render the expected document symbol icons
in the outline. There is a static class in the interop library
that contains all available types of symbols. They are mapped
to the corresponding values of SymbolKind defined by the
LSP specification. The method getNode() must return the AST
Node that belongs to the symbol.

Using a tree-traversal algorithm in the server, JastAdd Bridge
automatically detects whether there is a hierarchy in the doc-
ument symbols or not, as can be seen in Fig. 3. The algorithm
removes the need of manually specifying the hierarchy in Jast-
Add. This is done by using the information in the AST and
building a new tree to describe the outline. In detail, the
algorithm works as follows: first, let

𝑁 = {AST nodes in a program},
𝑆 = {instances of the Symbol class},
𝑇 = {𝑛 ∈ 𝑁 | ∃𝑠 ∈ 𝑆, s.getNode() = 𝑛},

𝑃𝑛 = {𝑝 ∈ 𝑇 | 𝑝 ancestor to 𝑛},
𝑃𝑛 ⊂ 𝑇 ⊆ 𝑁.

(1)

For every node 𝑛 ∈ 𝑁 , the tree is traversed bottom-up, and
when the first ancestor 𝑝 with a symbol is found (𝑝 ∈ 𝑃𝑛), that
node becomes the parent in the outline—that is, 𝑛 becomes
a child of 𝑝. The outline depth for 𝑛 is 𝑑𝑛 = #(𝑃𝑛), and 𝑑𝑛
determines the level of indentation in the hierarchy. This is
visualised in Fig. 4 for two different programs in a C-like
language:

a) In Fig. 4a), 𝑛 = 𝑥 and 𝑃𝑥 = {fac}. The function fac is
the parent of the variable 𝑥, thus letting the variable
be a child of the function. This results in one level of
indentation (𝑑𝑥 = 1).

b) In Fig. 4b), 𝑛 = 𝑎 and 𝑃𝑎 = {class, func}. Here, class
is the parent of func, and func the parent of a. Thus,
there are two levels of indentation (𝑑𝑎 = 2).

Fig. 3: Hierarchical outline of a program compiled with a JastAdd
compiler, showing the functions at the top level and the function
variables as children.

B. Code Completion
To enable code suggestions to be shown to a developer when
writing a program, we added support for defining the code
completion items in a compiler, in a similar manner to the
Document Outline. An example of Code Completion being used
in Visual Studio Code can be seen in Fig. 5. The new special
attribute lsp_completions() (the full signature can be seen
in Fig. 2) can be implemented for a node and must return
a Java set Set<CompletionItem> containing all names that
are available for completion at that node. The node that has
precedence is the bottom-most node in the AST that can be
found at the current cursor position in the text editor. The class
CompletionItem is defined in the interop library as:

class CompletionItem {
 String getName();
 int getKind();
}

The attribute could be implemented in different ways by a
compiler author depending on the language being created. An
appropriate solution for a language that has global scoping
rules could be to use a collection attribute [8] at the root node
which is then broadcast to all nodes.

fac() main()

x y z

res

class

func()

a

a) One level of outline hierar-
chy. Corresponds to the outline
in Fig. 3. The function f is omit-
ted from this figure on purpose.

b) Two levels of outline hierar-
chy.

Fig. 4: Example of ASTs where the double circled nodes contribute
instances of Symbol to lsp_symbols(). This means that those
nodes have a SymbolKind, and thus the nodes are elements of 𝑇 .

2

Extending JastAdd Bridge Course Paper, EDAN70, Lund University, Sweden

Fig. 5: Code completions for variables and functions in a C-like lan-
guage. The values shown in the completion list are correctly scoped,
so that the variable inside is only visible in the block of the if
statement.

When more complex scoping rules are required, a combi-
nation of synthesised and inherited attributes could be used
instead. This is due to the fact that the Set returned for a node
lower in the AST must include the values from higher nodes
as well to access them. That is, the broader scope must be
unionised with the narrower scope at the lower node.

To trigger completions, a language server can define certain
trigger characters. These must however be defined when con-
tact between the server and client is established. Since this
cannot be fetched by JAB from the compiler until after the
handshake, some trigger characters were defined as a default.
If customisation is wanted, the user is recommend to redefine
these within the server. Unfortunately, this means that JAB
might need some changes itself to work according to a lan-
guage developer’s requirements.

IV. Case Study

During development of new JAB features, continuous internal
testing was performed. For this, we mainly used the provided
CalcRAG project from the repository, and one of our own Sim-
pliC compilers from the EDAN65 Compilers course at LTH.

However, we preferred to have a more thorough test inte-
gration in lieu of relying solely on experimental compilers.
Therefore, we chose to perform a case study where JAB was
integrated with a larger, feature-complete compiler. In this
section, we describe the integration and the achieved results.

A. Introduction
To test if the features of JAB work in a real-world scenario, we
decided to integrate it with the ExtendJ compiler. This gave
knowledge on whether it would be possible to integrate it with

Fig. 6: The document outline for a Java program when using ExtendJ
and JastAdd Bridge.

a fully-fledged compiler. Additionally, it gave insights on how
the functionality and ease of implementation compared to the
small compilers used for continuous testing. More specifically,
it demonstrated that LSP features could be added to a Java
compiler with little effort.

B. Method
When deciding on which feature-complete compiler to use for
this integration, ExtendJ was chosen. It was deemed suitable
for the case study due to it being a JastAdd-based compiler for
Java [10]. After choosing the compiler, the questions that we
sought to answer were:

1) Is it possible to integrate JastAdd Bridge with ExtendJ
without considerable effort?

2) If possible, how does this result compare to another
Java language server?

The integration of JAB with ExtendJ was created by choosing
to implement Hover, Go To Definition, Document Outline and
Code Completion for Java 8. This version of Java was chosen
as it was the latest version that was almost fully supported by
ExtendJ [7]. The language server that JAB was compared with
is called Language Support for Java(TM) by Red Hat, version
1.38.0 available in the VS Code marketplace [11].

To begin with, the ExtendJ repository was forked and cloned.
Thereafter, a new .jrag file was created with the attributes
as defined in Section III. ExtendJ was then compiled and the
client settings of JAB in Visual Studio Code were set to point
to the ExtendJ compiler. However, the source code of the
interop library had to be manually copied to ExtendJ as there
were some crashing issues, seemingly due to mismatching Java
versions when using interop as a dependency. Finally, when
the implementation was finished, the file was committed to
the JAB repository.

C. Results
Integrating JAB and ExtendJ resulted in functioning imple-
mentations of Hover, Go To Definition, Document Outline
and Code Completion, of which the Document Outline can be
seen in Fig. 6 and the Code Completion in Fig. 8. This can
be compared to the output when using the Red Hat language
server, where the document outline can be seen in Fig. 7 and
the code completion in Fig. 9.

Minor differences between JAB and the Red Hat language
server can be noted. For example, the hierarchy differs in
the outline—and unlike JAB, the code completion for the
Red Hat language server shows type information and function
signatures.

D. Discussion
The integration of JAB and ExtendJ proved to be simpler than
initially estimated. Since we were unsure whether it would be

Fig. 7: The document outline for a Java program when using the Red
Hat language server.

3

Course Paper, EDAN70, Lund University, Sweden Julia Karlsson and Philip Sadrian

Fig. 8: Code completion list for a Java program when using ExtendJ
and JastAdd Bridge.

feasible to integrate it or not considering the time constraints,
we were pleased to see the results working as we expected.
Overall, we were generally satisfied with both the results and
by the fact that they did not differ by a significant amount
compared to Red Hat’s language server. The integration was
achieved with a .jrag containing about 100 lines of code
(LOC), and a part of it is displayed in Fig. 10.

Worth noting is that we simplified the implementation of
code completion slightly by not checking whether a variable or
a field is a constant, which is why the icons for PI in Fig. 8 and
Fig. 9 differ. Also, we did not include the parameter args in the
completion list, however adding it would not be a significant
adjustment.

After performing the first iteration of our integration, we
noticed that its appearance was similar to the Red Hat language
server’s. Judging by the small differences, it seemed like only
minor modifications had to be made to match that appearance.
Thus, we aimed to update the code to achieve a more similar
result. Consequently, we were pleased to see that we could
easily achieve comparable functionality and appearance to an
established language server. One thing we considered remark-
able was achieving this with a minimal working solution.
Furthermore, implementing basic scoping rules was also easier
than expected, as it was similar to the implementation for
SimpliC.

A noteworthy detail in Fig. 6 is that the document outline
for JastAdd Bridge shows the class nested under the package
name, which is not the case for Red Hat’s server in Fig. 7.
Removing the nesting to match Red Hat’s implementation is
impossible due to the automatically hierarchical document
outline that we described in Section III–A. This could be con-
sidered undesirable behaviour and a limitation in cases where
a lack of nesting is expected.

Unfortunately, the bugs that affected both the CalcRAG and
the SimpliC compiler were also apparent when using ExtendJ,
in addition to other issues. Ideally, we would like to fix these
issues if more time was available. For example, the issue with
interop causing crashes resulted in a less adequate solution.
Due to the aforementioned time constraint in addition to not
knowing the root cause, it was decided that we copy the source
code of interop to ExtendJ in order to get a minimal working
solution.

Initially, a lack of fault tolerant parsing caused issues, but
it was resolved after completion of the case study. With our
implementation in place, if the ExtendJ compiler failed its
parsing, it immediately crashed the JAB server. This required
a restart of VS Code. This was a critical issue since it meant
that no unparsable programs could be written, significantly
reducing the usefulness of JAB. This issue, in combination with
enabling auto-saving in VS Code per our own recommendation,

Fig. 9: Code completion list for a Java program when using the Red
Hat language server.

made it entirely unusable. At first, it resulted in the desired
integration barely being achieved. The issue was resolved by
introducing the function CodeProber_parse to ExtendJ’s main
program.

To summarise, the case study resulted in a working demon-
stration of the integration between JastAdd Bridge and Extendj
in around 100 LOC—notably with simple scoping rules that
could be extended to cover the full Java scoping rules without
considerable effort. Furthermore, imitation of the behaviour
of Red Hat’s language server was achieved with minor adjust-
ments. Lastly, not all JAB features were integrated due to time
constraints. Due to issues with an unknown root cause, the
interop library had to be manually copied into ExtendJ.

V. User study

JastAdd Bridge is a tool that aims to aid developers when
programming. Introducing functionality while disregarding
usability and user experience is not enough for it to be appre-
ciated by users [12, pp. 520–521]. Providing a well-designed
system is therefore an important factor for users to appreciate
it. Therefore, evaluating the users’ interaction with the system
is an appropriate way to gain the required understanding of
their opinions.

A. Introduction
One way of conducting evaluations for technological products
is to perform In-the-Wild Studies [12, p. 530]. This is a type of
evaluation that is performed in regular environments outside
of testing labs. Compared to other more controlled types of
evaluation, the evaluators let the participants use the system
with minimal involvement. This gives a realistic indication of
how the system is used and what opinions the users have of it.
One method that can be used to perform an In-the-Wild Study
is to conduct interviews.

aspect LSPOutline {
 coll Set<LSPSymbol> Program.lsp_symbols() [new HashSet()]
 with add root Program;

 ClassDecl contributes LSPSymbol.of(
 getID(), SymbolKind.CLASS, lsp_range(), this
)
 to Program.lsp_symbols() for program();

 MethodDecl contributes LSPSymbol.of(
 getID(), SymbolKind.METHOD, lsp_range(), this
)
 to Program.lsp_symbols() for program();

 // ...

Fig. 10: A part of the .jrag file for ExtendJ.

4

Extending JastAdd Bridge Course Paper, EDAN70, Lund University, Sweden

B. Method
During the development of our additions to JAB, the features
were designed with usability and user experience in mind.
However, to evaluate the real level of these metrics, In-
the-Wild interviews were carried out. Specifically, semi-struc-
tured interviews were carried out, meaning that additional
questions could be asked, despite the use of prepared ques-
tions [12, p. 286].

Three students that had previous experience of compiler de-
velopment in JastAdd volunteered to participate in the study.
The criteria for participation was based on whether they had
taken the course EDAN65 Compilers, which is taught at Lund
University.

Before conducting the interviews, the questions found in
Appendix A were prepared. Furthermore, a consent form that
the participants were required to sign was prepared. For the
presentation of the results, we will use the aliases A, B and C
for the participants.

C. Results
Out of the three participants, only interviewee C knew of
LSP, although all participants regularly use features typically
provided by language servers. All three used VS Code as their
primary editor, with interviewee A also using Vim.

The terminology for certain features, such as “outline”, was
not intuitive for the participants, and none of them recognised
the term initially. It became clear after reading our documen-
tation or seeing the feature in VS Code. Both interviewees
A and B found the outline potentially helpful for navigating
larger projects, but interviewee C preferred using derivative
features like Show All Symbols or Go to Symbol in the command
palette instead. Worth noting is that Go to Symbol utilises the
outline within the current file, whereas Show All Symbols goes
through all symbols in the workspace. This means that JAB
does implement Go to Symbol, but it would require multi-file
support for the full feature.

Regarding code completion, all participants were familiar
with it and had used the feature, though interviewee B initially
confused it with AI-assisted code generation (e.g. GitHub
Copilot). All participants agreed that Code Completion was a
valuable tool that they frequently used during development.

In regards to further improving JAB, some changes were
suggested. Interviewee A expressed that a more complex code
completion is desired, exemplified with their preferred Java
language server suggesting to replace the text main to a full
function signature, as well as placing the cursor within the
body of the function. As of right now, JAB only supports code
completion inserts, not replacements, and the cursor cannot be
placed arbitrarily. This might be mitigated by utilising diagnos-
tics combined with a quick-fix edit, but it is not tested. Show
all Symbols in VS Code is dependent on multi-file support, but
participants otherwise struggled to come up with features not
yet implemented in JAB that they regularly use.
a) Implementation experience:

In this section we present our observations from the inter-
views, as well as feedback given by the participants. At the
time of the interviews, there were no clear examples on, or
pictures of specific features in the documentation.

Document Outline: Implementing the Document Outline
feature presented varying levels of difficulty among partici-
pants. However, all participants managed to complete the task.

Interviewee A communicated that they had forgotten some
JastAdd concepts since taking the Compilers course and this

likely caused the initial difficulty. They also expressed that
there was a lot of information to process when reading the
documentation. It was overwhelming to understand which
parts were actually relevant to the task in a short amount
of time.

Interviewee B first wanted to understand what the feature
was, and read only the outline section in the documentation.
They understood the task after seeing an example of an outline
shown in VS Code, and could easily add a symbol to the outline
using JastAdd after that. They mainly used examples found in
the repository to aid with JastAdd syntax to complete the task.

Interviewee C wanted to read a minimal amount of docu-
mentation, and thus skimmed through some of the paragraphs
in the outline section of the documentation. They initially did
not understand the role of JAB in simplifying protocol handling
but accepted the task after an explanation of the separation
of semantics and protocol handling using the specially named
attributes. They were prompted to read some specific para-
graphs in the documentation, and thus found examples in the
repository. After this, they managed to complete the task.

All interviewees found the process manageable after some
guidance on getting started, and relied heavily on examples
within the provided repository. Common feedback included
that the README could benefit from more examples showing
clear steps for adding AST nodes to the outline, especially
for participants less familiar with JastAdd or compiler design.
Additionally, explaining key concepts like SymbolKind and the
connection to the LSP definition in more detail would help
reduce confusion.

Code Completion: For the code completion task, all inter-
viewees found the implementation easier after completing the
outline task, as the two features shared similarities.

However, interviewee C thought the trivial implementation
of a global suggestion incomplete and in its current state,
unnecessary. They cited issues with a lack of fault-tolerant
parsing and unclear triggers for suggestions. This is due to
the CalcRAG compiler itself, and as such, we discussed ways
this could be better implemented. We found that it would
require changes to the language and parsing, and using inher-
ited attributes for code completion to achieve the result they
expected, but that it is ultimately out of scope for JAB to try
to handle it automatically.

In general, participants wished for more detailed examples
in the README, showing how code completion integrates with
typical use cases, such as variable declarations and scoping.
While they appreciated the feature itself, interviewee B and
C highlighted that implementation guided solely by our doc-
umentation is difficult due to CompletionItemKind and its
connection to LSP not being explained properly in the same
manner as SymbolKind. They also recognised that code com-
pletion would be harder to implement for non-trivial cases i.e.
with scoping rules.

D. Discussion
Although this was a small and homogenous group, their ap-
proaches to the tasks differed significantly. Interviewee A was
a thorough reader, while interviewee C aimed to avoid reading
unnecessarily. Interviewee B fell somewhere in between, as
they wanted to understand the reason for certain implementa-
tion details. While we cannot draw any definitive conclusions
due to the small number of participants, we still gained valu-
able insights from their different approaches. They also offered
helpful suggestions on improving the documentation, which
has since been updated with clearer examples.

5

Course Paper, EDAN70, Lund University, Sweden Julia Karlsson and Philip Sadrian

We had anticipated that a user of Vim would utilise the
outline feature more, thus motivating the implementation of
it. This was not the case, but the feature was still deemed
useful by all participants due to it providing an overview of
the current file and position, and fast navigation.

The results of the study seems to indicate that the most im-
portant LSP functionalities are implemented, but that it needs
to be improved. Multi-file support is needed for full support of
current features, and changes to Code Completion are desired.
Code Completion supporting inserts only was a choice we made
during development as we thought it better to simplify the
integration between a compiler and JAB. However, this study
shows that there is an interest in more flexibility.

In general, participants indicated that they appreciated JAB,
and could see real use cases for it.

VI. Related Work

Most relevant to this paper is the previous work by Hemberg
and Hardt [5], creating the initial version of JastAdd Bridge.
As pointed out in their work, a similar solution to JAB is
MagpieBridge [13].

Additionally, CodeProber which is a live exploration tool
for program analysis results [14], is used as a dependency in
JAB. CodeProber is either used to locate AST nodes, extract
position information from an AST node, or to get syntax errors
for diagnostics [5].

Earlier participants of the EDAN70 course have made their
own LSP servers specifically for ExtendJ, which could be com-
pared with the implementation in our case study. One project
implemented a server and extensions for two different editors,
capable of error handling [15]. Another project implemented
a Language Server where ExtendJ was used as the backend,
in a similar manner as to how JAB assumes that the compiler
calculates the semantics [16].

VII. Conclusion

We continued working on JastAdd Bridge, a tool that simplifies
implementing language server functionality for languages de-
fined with the meta-compilation system JastAdd. JAB handles
communication through the language server protocol, which
enables use of all editors which implement it.

Our main focus was expanding supported functionality and
evaluating the project, mainly focusing the evaluation on our
additions and further work. Additions to functionality enable
users to:

• create an automatically hierarchical outline for their
language.

• easily define which AST nodes should be included in the
outline.

• customise the labels that are shown in the outline.
• show general code completion suggestions for certain

nodes.
• implement scoped code completions.

To do this, a JastAdd compiler should handle the semantics of
its own language, and expose the results to JAB through certain
JastAdd attributes. The attributes must match our specification
for the integration to work.

A. Further work
There are many alternatives to improve JAB, where several
approaches were mentioned in the initial paper [5]. Below,

we present some alternatives in order of descending perceived
importance.

Documentation: As made clear during our user study, the
documentation was not easy to understand for an uninitiated
user. Even though we tried to remedy this after the study,
we suspect much more should be done. We were planning on
dividing the documentation into smaller, more easily readable
parts, and expand the usage examples. Ultimately, we did
not have time to do so, but we believe that it could be an
appreciated improvement.

Responsiveness: This is something we did not work on, and
as such, the introducing paper explains the state quite well [5].
We have however added the recommendation of setting VS
Code to autosave the current file every second, but this does
not resolve the underlying issue. Additionally, when using a
compiler that does not have a fault-tolerant parser, it can
possibly cause crashes.

Multi-File support: According to both our small user study
and internal evaluation, the next feature to be implemented
should be multi-file support. It is necessary for the full utili-
sation of Go to Definition, or outline through Show all
Symbols. Not only that, there are few real life applications in
which all source code is contained within one file.

ExtendJ integration: It would be interesting to continue
improving the integration with ExtendJ, both to be able to
test the limits of JAB, but also to enable extended use of the
alternative compiler in the future.

Other LSP functionality: Here, both improvements and
new functionality could be implemented. For example, en-
abling details to be added to a DocumentSymbol in the
outline to show the type of a function would improve
user experience. The same applies to CompletionItem,
which contains both the field detail for general info like
type or symbol information, and labelDetails containing
CompletionItemLabelDetails for function signatures or type
annotations and descriptions.

Otherwise, as indicated by the user study, the possibility of
not only inserting completions, but replacing code could be a
good addition.

Furthermore, we found a study analysing 30 different
language servers and lists each server’s implemented LSP
features [17]. This could be utilised to identify relevant func-
tionality to add to JAB.

Expansion to other editors: As JAB implements LSP, it has
the potential to be used with many modern editors. To support
this, each editor needs to have client-side specific code, but
the server could remain as is. The client is still assumed to
support all functionality of which the server supports, which
is not always true, and should be fixed to reduce the number
of unnecessary messages. This issue should be resolved in the
server, as contact is being established. Furthermore, we have
not implemented another communication channel, and as such,
only communication through a WebSocket is supported.

Custom trigger characters: A possible improvement is
adding the ability to customise the trigger characters used for
Code Completion in a more user-friendly manner. Currently,
compiler developers need to modify the source code of the
JAB server to modify it. Although the required changes are
minimal, being able to specify custom trigger characters from
the client or from within the compiler would improve the user
experience.

6

Extending JastAdd Bridge Course Paper, EDAN70, Lund University, Sweden

Acknowledgements

We would like to thank Johannes Hardt and Dag Hemberg for
laying the groundwork of JastAdd Bridge, and Anton Risberg
Alaküla for his enthusiastic supervision and help during this
project. We also thank the anonymous participants of our user
study for their time and feedback.

Appendix A

A. Questions for User Evaluation
The following questions were asked at the interviews in the
user evaluation:
a) General questions:

1) Do you know what the LSP (Language Server Protocol)
is? Do you normally use a Language Server or something
similar when developing programs?

2) What IDE do you normally use when you are program-
ming?

b) Questions regarding document outline:
1) Do you know what the outline in your editor is? Is it

something that you usually use when you are program-
ming in general?

2) We have prepared a compiler for the language CalcRAG
with the corresponding aspect files. We would like you
to read the README of JastAdd Bridge and try to add an
AST node of your choice to the outline.

3) [When the interviewee is done]:
• How difficult did you consider it was to implement

the outline?
• Do you think it is a useful function?

c) Questions regarding code completion:
1) Do you know what code completion is? Is it something

that you usually use when you are programming in
general?

2) We would like you to read the README again and try to
make a AST node of your choice work with the code
completion.

3) [When the interviewee is done]:
• How difficult did you consider it was to implement

code completion?
• Do you think it is a useful function?

d) Closing questions:
1) Did you think it was easy to follow the README to

understand what you had to do?
2) Is there anything you felt needed a better explanation,

or if anything is missing in the README?
3) When you read about the features listed in the README,

were there any other feature that you would like to see
implemented in JastAdd Bridge?

References

[1] J. Kjær Rask, F. Palludan Madsen, N. Battle, H. Daniel Macedo,
and P. Gorm Larsen, “The Specification Language Server Protocol:
A Proposal for Standardised LSP Extensions,” Electronic Proceedings
in Theoretical Computer Science, vol. 338, pp. 3–18, Aug. 2021, doi:
10.4204/eptcs.338.3.

[2] G. Hedin and E. Magnusson, “JastAdd — an aspect-oriented compiler
construction system,” Science of Computer Programming, vol. 47, no.
1, pp. 37–58, 2003, doi: 10.1016/S0167-6423(02)00109-0.

[3] G. Hedin, “Reference attributed grammars,” Informatica, vol. 24, no.
3, pp. 301–317, 2000.

[4] D. E. Knuth, “Semantics of context-free languages,” Mathematical sys#
tems theory, vol. 2, no. 2, pp. 127–145, 1968, doi: 10.1007/bf01692511.

[5] D. Hemberg and J. Hardt, “JastAdd Bridge: Interfacing reference at-
tribute grammars with editor tooling,” Lund University, 2023, [Online].
Available: https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProj
ects/2023/Reports/hardt-hemberg.pdf

[6] “Eclipse-Lsp4j/Lsp4j: A Java Implementation of the Language Server
Protocol Intended to Be Consumed by Tools and Language Servers
Implemented in Java..” Accessed: Dec. 05, 2024. [Online]. Available:
https://github.com/eclipse-lsp4j/lsp4j

[7] “ExtendJ - The JastAdd Extensible Java Compiler.” Accessed: Dec. 05,
2024. [Online]. Available: http://extendj.org/

[8] E. Magnusson, T. Ekman, and G. Hedin, “Extending Attribute Gram-
mars with Collection Attributes — Evaluation and Applications,”
Seventh IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM 2007), Source Code Analysis and
Manipulation, 2007. SCAM 2007. Seventh IEEE International Working
Conference on, pp. 69–80, 2007, doi: 10.1109/SCAM.2007.13.

[9] Microsoft, “Language Server Protocol Specification — 3.17.” Accessed:
Nov. 20, 2024. [Online]. Available: https://microsoft.github.io/language-
server-protocol/specifications/lsp/3.17/specification/

[10] J. Öqvist, “ExtendJ: Extensible Java Compiler,” in Conference Com#
panion of the 2nd International Conference on Art, Science, and
Engineering of Programming, Nice, France: ACM, Apr. 2018, pp. 234–
235. doi: 10.1145/3191697.3213798.

[11] “Language Support for Java(TM) by Red Hat.” Accessed: Jan. 08,
2025. [Online]. Available: https://marketplace.visualstudio.com/items?
itemName=redhat.java

[12] H. Sharp, Y. Rogers, and J. Preece, Interaction Design: Beyond Human#
Computer Interaction, 6th ed. Hoboken: John Wiley & Sons, Inc, 2023.

[13] L. Luo, J. Dolby, and E. Bodden, “MagpieBridge: A General Approach
to Integrating Static Analyses into IDEs and Editors (Tool Insights
Paper),” LIPIcs, Volume 134, ECOOP 2019, vol. 134, pp. 1–25, 2019,
doi: 10.4230/LIPIcs.ECOOP.2019.21.

[14] A. Risberg Alaküla, G. Hedin, N. Fors, and A. Pop, “Property Probes:
Source Code Based Exploration of Program Analysis Results,” in
Proceedings of the 15th ACM SIGPLAN International Conference on
Software Language Engineering, Auckland, New Zealand: ACM, Nov.
2022, pp. 148–160. doi: 10.1145/3567512.3567525.

[15] F. Siemund and D. Tovesson, “Language Server Protocol for ExtendJ,”
Dec. 2018, [Online]. Available: https://fileadmin.cs.lth.se/cs/Education/
edan70/CompilerProjects/2018/Reports/SiemundTovesson.pdf

[16] J. Ericson, “Language Server Protocol for ExtendJ,” Feb. 2019, [On-
line]. Available: https://fileadmin.cs.lth.se/cs/Education/edan70/Compi
lerProjects/2018/Reports/Ericson.pdf

[17] D. Barros, S. Peldszus, W. K. G. Assunção, and T. Berger, “Editing
Support for Software Languages: Implementation Practices in Language
Server Protocols,” in Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems, in MODELS
'22. New York, NY, USA: Association for Computing Machinery, Oct.
2022, pp. 232–243. doi: 10.1145/3550355.3552452.

7

https://doi.org/10.4204/eptcs.338.3
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.1007/bf01692511
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2023/Reports/hardt-hemberg.pdf
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2023/Reports/hardt-hemberg.pdf
https://github.com/eclipse-lsp4j/lsp4j
http://extendj.org/
https://doi.org/10.1109/SCAM.2007.13
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://doi.org/10.1145/3191697.3213798
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://marketplace.visualstudio.com/items?itemName=redhat.java
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://doi.org/10.1145/3567512.3567525
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2018/Reports/SiemundTovesson.pdf
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2018/Reports/SiemundTovesson.pdf
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2018/Reports/Ericson.pdf
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2018/Reports/Ericson.pdf
https://doi.org/10.1145/3550355.3552452

	Introduction
	Background
	Solution
	Document Outline
	Code Completion

	Case Study
	Introduction
	Method
	Results
	Discussion

	User study
	Introduction
	Method
	Results
	Implementation experience
	Document Outline
	Code Completion

	Discussion

	Related Work
	Conclusion
	Further work
	Documentation
	Responsiveness
	Multi-File support
	ExtendJ integration
	Other LSP functionality
	Expansion to other editors
	Custom trigger characters

	Acknowledgements
	Appendix A
	Questions for User Evaluation
	General questions
	Questions regarding document outline
	Questions regarding code completion
	Closing questions

	References

