
Call Graph Visualization for Visual Studio Code

Anahita Chavan

CS, Lund University, Sweden

an8168ch-s@student.lu.se

Jacob Johansson

CS, Lund University, Sweden

ja2732jo-s@student.lu.se

Abstract

Understanding how parts within a codebase interact is vital

for software development, especially in large and complex

systems. This paper introduces an approach to call graph

visualization as an integrated extension for Visual Stu-

dio Code. Our solution uses a client-server architecture,

and leverages the Language Server Protocol, to provide

demand-driven call graph generation for Java code. The tool

has features such as selective file analysis, expandable nodes,

and different depth levels of visualization. We evaluate our

approach on simple and complex codebases; the solution has

limitations in scalability and language support, which we

address with proposed future work.

1 Introduction

It is crucial for a good understanding of a codebase to under-

stand the relations between different parts of the code, how

functions depend on each other, and how they interact. In

complex systems, identifying performance bottlenecks, un-

derstanding how changes may affect the rest of the codebase,

or debugging, can be quite difficult when the code is large

with many moving parts. A code analysis tool can provide

the developer with a greater understanding of a codebase,

and how code spread across different files interacts.

One way to analyze code is with call graph analysis. A

call graph [12] is a directed graph that shows relationships

between different functions and other structures inside code-

bases. As shown in Figure 1, functions can be represented as

nodes, with directed edges drawn between caller and callee

functions. Recursive functions can be represented as a node,

with an edge pointing at itself.

Being able to see a call graph while programming can be

very beneficial. Call graphs can make the codebase more

intuitive for the developer, as they provide a visual represen-

tation of how execution flows throughout different sections

of a program. They can also be useful when working with

new codebases that the developer may not be familiar with.

They can additionally also make it easier to find dead code,

specifically functions that are never called. In a call graph,

these would be represented as free-floating nodes, with no

connections to the main call graph. As a debugging tool, call

graphs could be implemented to highlight relevant nodes as

the developer steps through function calls.

Course paper, EDAN70, Lund University, Sweden
January 16, 2025.

Figure 1. Call graph with corresponding code

There is a gap between the tools that developers want in

program analysis and the tools that exist, specifically tools

that are integrated into development environments [2, 11].

Ideally, developers want a tool that is integrated into their

code editor for maximum efficiency. Despite the potential

usefulness of call graph analysis, there seems to be a rather

limited amount of solutions. The current options for call

graph analysis tools usually come packaged as stand-alone

programs, and rarely stay synchronized with code updates.

There is also a somewhat minimal amount of extensions

for development environments that provide the sort of call

graph analysis that we are looking for.

1



Course paper, EDAN70, Lund University, Sweden Anahita Chavan and Jacob Johansson

To integrate call graph analysis into a code editor, one

could leverage language servers. A language server is an

application which provides programming language specific

information about source code, enabling features such as

error highlighting, code suggestions, auto-completion and

syntax highlighting. Language servers typically makes use

of the Language Server Protocol (LSP) [8], a protocol

developed by Microsoft that standardizes communication

between code editors and language servers.

Before language servers and LSP, each editor had to im-

plement language-specific features individually. This meant

that if there was an𝑚 number of programming languages

and an 𝑛 number of editors/IDEs, each editor would need

an integration for each language, resulting in𝑚 ∗ 𝑛 integra-

tions. LSP solves this problem by letting language servers

implement language-specific features once, and by letting

editors implement support for the protocol once. This re-

sults in𝑚 + 𝑛 implementations. Number of language servers

(one for each language) + number of editors (one per editor)

implementations (see Figure 2).

Figure 2. How LSP solves the𝑚 ∗ 𝑛 problem

LSP and language servers save developer efforts for both

editors and language tools by letting them focus on one in-

tegration with the protocol. This makes it easier to integrate

existing tools with new editors or languages. LSP also en-

sures consistency by providing the same language features

across different code editors.

This paper presents the following contributions:

• We present a solution to the problem of lack of inte-

grated call graph analysis tools by developing an ex-

tension for a widely-used code editor (Our Approach).

• We evaluate our approach by testing it on different

codebases, analyzing its feature set, limitations, and

possible areas for future improvement (Evaluation).

Finally, we discuss related work (Related work) and con-

clude the paper (Conclusion).

2 Our Approach

To address the limited number of integrated call graph anal-

ysis tools, we developed a call graph visualization exten-

sion for Visual Studio Code, a widely-used code editor

developed by Microsoft. Our tool uses a typical client-server

approach, where the client is an application that requests ser-

vices, and the server provides those services to the client. The

client initiates communication with the server by sending

it a request. The server listens for incoming requests, pro-

cesses them, and sends responses back to the client. In our

approach, the Visual Studio Code extension is the client

and the language server is the server. We named the client

cat-viz and the server cat-server. For a visualization of

how they interact, see Figure 3.

Figure 3. Sequence diagram showing communication be-

tween cat-viz and cat-server.

2.1 Demand-driven graph generation

We took precautions to ensure that neither the developer

nor the server would get overwhelmed by a large amount of

data. Generating a call graph representing a whole complex

codebase could lead to performance issues, as a large amount

of files would need to be analyzed. A large call graph could

also make it harder for the developer to interpret the graph,

as it may include a lot of unnecessary information. With

these issues in mind, we chose to implement our solution

using a demand-driven approach, where only the source

code files that are specified by the user will be analyzed. This

2



Call Graph Visualization Course paper, EDAN70, Lund University, Sweden

enables users to selectively analyze the code that is relevant

at the given moment, while ignoring everything else.

2.2 Server

We built the server by extending another project called CAT,

short for Callgraph Analysis Tool [10], which is a call

graph analysis tool for the Java programming language. CAT

is built as an extension to the ExtendJ Java compiler [9] and

functions as a stand-alone command-line tool.

ExtendJ generates an abstract syntax tree (AST), a tree-

like structure that represents the structure of a program. Ex-

tendJ is built using Reference Attribute Grammars (RAGs),

a system for assigning attributes to nodes in tree-like struc-

tures, such as abstract syntax trees [5, 6]. These attributes

are defined by equations, which are computed for each node.

In the context of a compiler, RAGs can be used to create ref-

erences between declarations and their corresponding uses.

ExtendJ uses RAGs to link function calls to their respective

function definitions, with each node representing a function

call containing a pointer to the node representing the func-

tion definition. This in turn makes call graph analysis rather

simple to implement, as it is just a matter of recursively iden-

tifying all function calls within a function body, retrieving

the corresponding function body for each call, and repeating

the process while storing each function call in a tree-like

structure.

In order to integrate CAT into our solution, we decided

that it would be expanded and turned into a language server.

Instead of functioning as a stand-alone command-line tool,

the server sits in the background and accepts incoming re-

quests for call graph analysis from the client. Each request

contains a list of source code files that the user wants to

analyze. Upon a valid request the server will compute the

call graph, and then pass the resulting data back to the client.

2.3 Client

The client is built as a Visual Studio Code extension. For

displaying the call graph, we chose to use Cytoscape.js [4],

which is an open-source graph visualization library written

in JavaScript.

The extension has the following features, listed and de-

scribed below:

• A sidebar component with the files that the user wants

to analyze. The files that the user wants to analyze are

called dependencies. .java files can be added as depen-
dencies, and .jar files and directories can be added

to the classpath. Dependencies are added through the

file explorer through an option in the context menu.

See Figure 4.

• Nodes can be either circle-shaped or diamond-shaped,

depending onwhether themethod belongs to a file that

is listed as a dependency. If the file is a dependency, the

node is displayed as a circle. Otherwise, it is displayed

as a diamond. See Number 5 in Figure 5.

• If a diamond-shaped node exists on our classpath, the

user can right-click on the node and select "Expand".

This will add the file with the corresponding method

to the list of dependencies, and update the graph ac-

cordingly. Some diamond-shaped nodes cannot be ex-

panded as they are derived from standard libraries or

have unknown file locations. See Number 4 in Figure 5.

• Before a call graph can be generated, an entry point

must be entered. The entry point is the method at the

center of the call graph, which the call graph builds

upon. The entry point can be changed at any point,

see Number 3 in Figure 5.

• The user can choose to view the graph on a method

level, class level, or package level. This feature allows

the user to potentially gain a greater understanding

of the codebase by showing not only the relationships

between methods, but also between classes and pack-

ages. See Figure 6 and Number 2 in Figure 5. By right-

clicking on a class or package, the "Expand" function

can be used to expand to a lower level. See Number 4

in Figure 5.

• The user can highlight a node by left-clicking on it.

Once a node is highlighted, the extension displays

its forward call graph, showing all the nodes that

are reachable from the highlighted node. The reach-

able nodes are highlighted in red, while the remaining

nodes are grayed out. See Number 6 in Figure 5.

• The tool has a search feature, allowing the user to

search for specific nodes. See Number 1 in Figure 5.

Figure 4. Sidebar component with list of dependencies

The communication between the code analyzer and code

editor is done through a custom protocol that is built on

top of LSP. The specifications for LSP do not include any-

thing related to call graph analysis. We therefore had to fill

3



Course paper, EDAN70, Lund University, Sweden Anahita Chavan and Jacob Johansson

Figure 5. The call graph view

Figure 6. Different depth levels

Figure 7. Bonus features

in the gaps, where LSP is lacking, in order for our solution

to function properly. Visual Studio Code allows plug-in

developers to hook into specific events caused by user inter-

action, in accordance to the LSP standard. Our solution is

built upon these event hooks, allowing the communication

with the code analyzer whenever the developer interacts

with their code or their editor. This lets us update the call

graph in real-time, reflecting the changes which the user has

made.

The client uses the aforementioned event hooks, in order

to detect when the user is interacting with the editor. This

information is then passed along to the server, where the

source code is processed, and a call graph is then generated

and displayed inside of the code editor. See Figure 3 for a

visualization.

3 Evaluation

We tested the code on both a simple example with inherited

classes and functions, and then a complex project. The ex-

tension has a scalability limit. It is easy to generate large

graphs as more files are added to the list of dependencies (see

Figure 8). This means that in practice there is an upper limit

to how many files can be analyzed at a time before the call

graph is too messy to read. The list of dependencies is easy

to add to and remove from, which allows the user to switch

out files when the graph reaches an unintelligible level of

node and edges. The different depth level feature may also

be used to get a higher overview of how files interact with

fewer nodes, at the cost of detailed information.

Figure 8. Extension on complex project

3.1 Limitations

We focused specifically on the Java programming language

and our tool therefore only supports Java code currently,

4



Call Graph Visualization Course paper, EDAN70, Lund University, Sweden

although the client of our solution could technically be re-

worked to fit any object-oriented programming language.

The server is language specific, but it may be switched out

for a different language server if the data it returns follows

the JSON format accepted by the client.

We do not generate graphs from bytecode in our solution,

since that would require a decompiler to be implemented in

order to handle the task, which was considered out-of-scope

for this project. The drawback of this is that methods that

are contained within compiled .class or .jar files cannot
be expanded.

3.2 Future work

In our current solution we need to manually choose an entry

point. It would be pleasant to have buttons allowing the call

graph to start with an entry point from where we are in the

code, as visualized in Figure 9.

Figure 9. Starting call graph from within code

In our current implementation, we can highlight a for-

ward call graph from a specific node. A forward call graph

entails all nodes reachable from that node. As implemented

in Figure 9, our tool could be further developed to show a

backward call graph. A backward call graph would instead

show all nodes that the selected node is reachable from. A

backward call graph could be misleading, as there may be

files not in our list of dependencies that call the current node.

We may think a node is never called and therefore dead code,

when in reality we have not analyzed the files where the code

is used. The only reliable way to find dead code would be

to analyze the whole codebase, which could lead to serious

performance and readability issues if the codebase is large

enough.

An improvement with no drawbacks that we did not im-

plement would be to have the server start automatically with

the client, rather than forcing the user to start the server

manually.

As mentioned in our introduction, the tool could be de-

veloped to be a visual debugging tool, which would step

through each node inside the graph together with the usual

debugger.

4 Related work

A similar project to ours is Crabviz [7]. Crabviz is, just as our

approach, an LSP-based call graph generator. It is available

for Visual Studio Code, and offers a variety of functionality,

such as highlighting, support for multiple languages, export-

ing graphs as SVGs, etc. The call graph is visually different

from our extension, with nodes that are text boxes similar

to that of a UML diagram, rather than the simple geometric

shapes used in ours.

CodeProber with IntraJ is a tool for visualizing control-

flow graphs on top of source code [1]. As in our approach, the

tool utilizes RAGs and ASTs, and is a visual tool for program

analysis.

Our project took some visual inspiration, such as having

multiple depth levels and expandable nodes, fromCodeScene,

a software analysis tool used to help visualize contributions

and code quality in software projects [3].

5 Conclusion

In this paper, we addressed the need for visual program

analysis tools within development environments. By using

the LSP and a client-server architecture with the server as

a language server, we presented a call graph visualization

tool integrated into Visual Studio Code. Our tool allows

developers to analyze parts of a Java codebase, leading to

better understanding of the code. With its many features,

the tool provides a flexible call graph. Our contribution is

a demonstration of how tools integrated with development

environments can provide support to developers.

It is limited in language support, only being developed

for Java, and in scalability for larger codebases. Future work

includes extending support to other programming languages,

backward call graph generation, and integration with debug-

gers for even deeper insights.

References

[1] Anton Risberg Alaküla. 2024. CodeProber - Source code based ex-

ploration of program analysis results. https://github.com/lu-cs-sde/
codeprober. (2024).

[2] Maria Christakis and Christian Bird. 2016. What developers want

and need from program analysis: An empirical study. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineering
(ASE). 332–343.

[3] CodeScene. [n. d.]. CodeScene. https://codescene.com/. ([n. d.]).
[4] Max Franz, Christian T. Lopes, Gerardo Huck, Yue Dong, Onur

Sumer, and Gary D. Bader. 2015. Cytoscape.js: a graph theory

library for visualisation and analysis. Bioinformatics 32, 2 (09

2015), 309–311. https://doi.org/10.1093/bioinformatics/btv557
arXiv:https://academic.oup.com/bioinformatics/article-

pdf/32/2/309/49016536/bioinformatics_32_2_309.pdf

[5] Görel Hedin. 2000. Reference Attributed Grammars. Informatica 24, 3
(2000), 301–317.

5

https://github.com/lu-cs-sde/codeprober
https://github.com/lu-cs-sde/codeprober
https://codescene.com/
https://doi.org/10.1093/bioinformatics/btv557
http://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/32/2/309/49016536/bioinformatics_32_2_309.pdf
http://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/32/2/309/49016536/bioinformatics_32_2_309.pdf


Course paper, EDAN70, Lund University, Sweden Anahita Chavan and Jacob Johansson

[6] Görel Hedin. 2011. Tutorial: An Introductory Tutorial on JastAdd

Attribute Grammars. In GTTSE III (Lecture Notes in Computer Science),
Vol. 6491. 166–200. https://doi.org/10.1007/978-3-642-18023-1_4

[7] Chan HoCheung. 2024. Crabviz. https://github.com/chanhx/crabviz.
(2024).

[8] Microsoft. 2024. Language Server Protocol. https://microsoft.github.
io/language-server-protocol/. (2024).

[9] ExtendJ Project. [n. d.]. ExtendJ: The Extensible Java Compiler. https:
//extendj.org/. ([n. d.]). Accessed: 2024-12-23.

[10] Idriss Riouak. 2024. CAT - CallGraph Analysis Tool. https://github.
com/IdrissRio/cat. (2024).

[11] Idriss Riouak, Niklas Fors, Jesper Öqvist, Görel Hedin, and Christoph

Reichenbach. 2024. Efficient Demand Evaluation of Fixed-Point At-

tributes using Static Analysis. In Proceedings of the 17th ACM SIGPLAN
International Conference on Software Language Engineering (SLE ’24).
Association for Computing Machinery, New York, NY, USA, 56–69.

https://doi.org/10.1145/3687997.3695644
[12] B.G. Ryder. 1979. Constructing the Call Graph of a Program. IEEE

Transactions on Software Engineering SE-5, 3 (1979), 216–226. https:
//doi.org/10.1109/TSE.1979.234183

6

https://doi.org/10.1007/978-3-642-18023-1_4
https://github.com/chanhx/crabviz
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://extendj.org/
https://extendj.org/
https://github.com/IdrissRio/cat
https://github.com/IdrissRio/cat
https://doi.org/10.1145/3687997.3695644
https://doi.org/10.1109/TSE.1979.234183
https://doi.org/10.1109/TSE.1979.234183

	Abstract
	1 Introduction
	2 Our Approach
	2.1 Demand-driven graph generation
	2.2 Server
	2.3 Client

	3 Evaluation
	3.1 Limitations
	3.2 Future work

	4 Related work
	5 Conclusion
	References

