JVM Bytecode Backend for SimpliC

Lukas Trojer
Lund University, Sweden
lukas.trojer@gmail.com

Abstract

In this paper we introduce a Java Virtual Machine (JVM)
backend for SimpliC, a small language similar to C. A pro-
gram written in SimpliC can thus be compiled to Java byte-
code and run on the JVM. This allows for the use of many fea-
tures that are often desirable, like platform independence and
runtime optimizations. We then evaluate the performance
of our generated bytecode using various benchmarks. Our
results show that, compared to the bytecode generated by
javac, our generated bytecode has virtually identical steady-
state performance and only slightly worse start-up perfor-
mance. Furthermore, the performance only becomes better
with newer versions of Java. Our generated bytecode has not
been able to be on par with optimized x86 assembly compiled
from C, but can easily beat unoptimized x86 assembly on
longer-running tasks.

1 Introduction

As part of an undergraduate compilers course, we imple-
mented a compiler for SimpliC. SimpliC is a programming
language that is similar to C, but implements only basic
constructs. It supports integer variables, basic control flow
and I/O like reading user input and printing. The SimpliC
compiler generates x86 assembly code, which is assembled
to machine code and linked to an executable. Having the
compiler generate machine code is a quite common approach
used by many languages, such as C, C++ and Go. These lan-
guages generate highly optimized machine code, whereas
our compiler performs no optimizations. SimpliC also lacks
memory management and other common features found in
other languages. Since the compiler only generates x86 code,
it will not run directly on other computer architectures, such
as RISC, without using emulation or virtualization methods.

An alternative to generating machine code is to instead
let the compiler emit bytecode that will run on an emula-
tor or virtual machine. The Java virtual machine, JVM, is
an example of such a platform. The JVM handles memory
management and optimises the code at runtime using a JIT
(Just-In-Time) compiler. Furthermore, it is also platform in-
dependent, so a JVM program can run without modifications
on any platform that supports the Java Runtime Environ-
ment (JRE), which includes all popular hardware platforms.
A language that runs on the JVM can adopt all the previously

Course paper, EDAN70, Lund University, Sweden
January 15, 2024.

Suleyman Zahi
Lund University, Sweden
su4117za-s@student.lu.se

mentioned features without having to implement them. Be-
cause of this, there are several popular non-Java languages
that run on the JVM and utilize the features it provides [10].
The main goal of this course paper is to implement a JVM
backend for SimpliC, enabling it to generate bytecode which
can then be run on the JVM. A secondary goal is to take ad-
vantage of JVM’s memory management facilities and extend
SimpliC with integer arrays, which have native support in
JVM.

2 Background
2.1 SimpliC and JastAdd

A brief introduction to SimpliC was given in the previous
section. The scanner for the compiler was implemented using
JFlex, where one defines the regular expressions for each
of the tokens in a specification. The parser was generated
using NeoBeaver[8]. In the semantic actions of the parsing
grammar, the abstract syntax tree, AST, is built. The AST is
created with an abstract grammar file in the JastAdd meta-
compiler [4]. The abstract grammar is a simpler version of
the parsing grammar, stripping tokens with no semantic
value and removing nonterminals that were introduced to
resolve ambiguities in the parsing grammar [7]. JastAdd is
a Java framework for implementing compilers and related
tools. An abstract grammar in JastAdd is defined by a list
of productions, where a production denotes an AST node.
We can further define child nodes of the AST node, as well
specify a superclass for it. When the grammar specification
is compiled, JastAdd will generate concrete Java classes for
all nodes, as well as methods for accessing child nodes and
intrinsic attributes, for example the numerical value of a node
representing an integer literal [7]. This and some other key
techniques in JastAdd allows us to implement the backend
of the compiler, whether that is generating machine code or
JVM bytecode.

2.2 JVM

The Java Virtual Machine, JVM, is a virtual machine that
executes a specialized instruction set, called Java bytecodes.
JVM takes input in the form of a binary format called class
file format. The class file contains the Java bytecode. A byte-
code is not too dissimilar to a regular x86 machine code
instruction. It has a one-byte opcode which denotes what
operation it performs, optionally followed by operands. The
amount of operands depends on the instruction [11].

Course paper, EDAN70, Lund University, Sweden

JVM is a multithreaded platform, meaning it supports mul-
tiple threads of exection, commonly shortened to threads. A
JVM thread has its own stack, where frames are stored. Every
time a method is invoked, a new frame is put on the stack.
Once the method invocation is done, the frame is simply
removed. A frame contains an array of local variables and
an operand stack. This architecture makes JVM stack-based.
All bytecodes interact with the operand stack, whether it’s
for adding new data or grabbing operands from the stack.
To illustrate this, consider the iadd instruction. The i prefix
denotes that this instruction performs integer addition, so
other datatypes such as double have their own addition in-
structions. The iadd instruction takes 2 integers as operands.
These can be pushed to the operand stack, from previous
instructions, as constants or loaded from the local variable
array. The instruction pops the operand stack two times to
get the values, performs the addition and pushes the result
back to the stack. Now, subsequent instructions can use the
value added to the stack [11].

In addition to having a operand stack and a local variable
area, a frame also stores a reference to a class-specific con-
stant pool. This constant pool is allocated from the heap.
The heap is available to all JVM threads, it is here that object
instances and arrays are stored. JVM uses a garbage collector
to manage memory in the heap, though the constant pool is
not garbage collected [11].

A programming language that correctly compiles to the
class file format can be executed on the JVM. Such a lan-
guage can be considered a JVM language. The most signif-
icant JVM language is Java. This is because the JVM was
designed as part of the Java platform to execute programs
written in Java. As such, it has support for special constructs
defined in Java such as classes, arrays, objects and exceptions.
Other JVM languages are Kotlin and Scala, to name a few.

3 Extending SimpliC with arrays

In order to be able to generate and run more interesting
programs, we decided to extend SimpliC with integer ar-
rays. Having the idea that we will generate Java bytecode
in mind, this is the only area where SimpliC departs from
working like C. Functionally it’s closer to Java in two ways.
First, our SimpliC arrays can be reassigned to have a dif-
ferent length than it did originally. This is unlike C where
the length of an array is part of its type. Second, the arrays
contain information about their lengths. This makes it much
more convenient to pass arrays around to functions, since
functions operating on arrays don’t have to include an extra
parameter containing the size.

The array syntax is however different from both C and
Java, and is shown in listing 1. The function concat12345
concatenates an array with the five numbers [1, 2, 3, 4, 5]

Lukas Trojer and Suleyman Zahi

and returns the result. The number sign (#) is used for the
length operator, a syntactic choice that is also found in a few
other languages like Lua and]J.

int[] concat12345(int[] arr) {
// int[n] creates a zeroed array of size n
int[] res = int[#arr + 5]; // # means size
// array literals use [], not {3}
int[] nums = [1, 2, 3, 4, 51;
int i = 0;
while (i < #arr) {
res[i] = arr[il;
i=1i+1;
3
while (i < #res) {
res(i] = nums[i - #arr];
i=1+1;
3

return res;

Listing 1. Example of arrays in SimpliC

3.1 Implementation

Adding support for arrays in the scanner, parser, name anal-
yser, and type checker was not that difficult. We were able
to reuse much of the structure we already have. For exam-
ple, for type checking we have a JastAdd attribute type()
which computes the actual type of some expression and an-
other attribute expectedType() which computes the type it
should have. When these attributes conflict, there’s a type
error. Adding support for arrays here was simply a matter of
enumerating the different cases for the new constructs and
specifying which types it has or should have.

The biggest changes that had to be done to the existing
code involved function declarations and parameters. Previ-
ously they didn’t need to contain any type information, but
now we distinguish between integers and arrays of integers
for return and parameter types. This means that in several
places in our code we treat the two cases separately. If we
were to develop this further it would be natural to refactor
the code to handle type information more independently
that it currently is. This would make it easier to add more
types to the language in the future, but at this point it’s not
really necessary.

4 JVM Backend

The Java class file format is well documented, and it is pos-
sible to generate class files directly in binary form by fol-
lowing the class file specification. However, this can be a
time consuming and error prone task, so we went a different
route. There exists bytecode transformation libraries that

JVM Bytecode Backend for SimpliC

abstracts away the low-level details of the class file format
into a higher-level API. The API can express common op-
erations in the form of methods. For example, the bytecode
to initialise a variable with a value, which involves multiple
instructions can be compounded into a method.

4.1 Bytecode library

There are several bytecode libraries to choose from. From
our comparison, each one has a particular niche which it is
specialized in. Our particular use case involves generating
bytecode and not so much analysing existing bytecode. For
this reason we have opted to use Apache Commons Bytecode
Engineering Library (BCEL) [2]. The library was previously
called JavaCirass[3], before being renamed to BCEL. We felt
that its API was intuitive and more geared towards byte-
code generation. Examples of other bytecode transformation
libraries include ASM [13], Javassist [1] and Byte Buddy [14].

4.2 Implementation

As was discussed in section 2.1, the parser builds the AST for
a given source file. The nodes in the AST represent language
constructs, thus we can have each node define what byte-
code it will generate. This is convenient to do in JastAdd,
because of its support for static aspect-oriented program-
ming. Instead of extending each class with the code we want
to add, we can implement it as a separate module, or aspect,
with inter-type declarations. An example of this is illustrated
in listing 2. When JastAdd compiles the abstract grammar
specification and the declared aspects, the aspect code will
be added to the respective Java classes generated from the
grammar [7].

aspect Bytecode {
public void Add.bytecodeGen() {

/] ...

3

public void Mul.bytecodeGen() {
/...

}

3

Listing 2. Adding an inter-type declared method bytecode-
Gen() to AST nodes Add and Mul in a separate aspect.

The root AST node in SimpliC is Program, which repre-
sents a source file. As the class file name implies, such a file
is created for each top-level class defined in a Java file. Thus
the Program node is represented as a Java class in our im-
plementation. In BCEL, this is done by creating a ClassGen
object. As mentioned in section 2.1, each class has an asso-
ciated constant pool. Likewise, the ClassGen class has an
instance attribute of ConstantPoolGen, which models the
JVM constant pool. This attribute is significant since it will
be passed as an argument for each declared SimpliC function

Course paper, EDAN70, Lund University, Sweden

that we generate bytecode for. As the compiler traverses the
AST of a program, it will attach methods, fields and other
code to the ClassGen object. When complete, we can simply
call getJavaClass() to generate the final Java class [2].

A SimpliC program consists of function declarations and
a main function which is the entry point for execution. To
create functions, BCEL provides the MethodGen class. The
classes we have discussed so far create the structure of
a class file, so they are analogous to scaffolding. To add
the JVM instructions, bytecodes, we utilize a class named
InstructionlList. A function normally contains a list of
statements and those in turn can contain expressions. When

we iterate through those statements, we can pass an InstructionlList

to them. They will in turn add bytecodes to the list, build-
ing up the function. The list instance will be unique for
each function. An example of bytecode generation is given
in listing 3. In the example, the getter methods are child
nodes representing the operands. When the bytecodes for
the operands have been generated, we simply generate the
final iadd bytecode. In this case the bytecode was just an
enum, but this depends on the instruction. Some bytecodes
like istore, which create a local integer variable, requires
more code since we have to interact with the array of local
variables. BCEL provides a convenient API to achieve that.
When the traversal of the function’s child nodes is done, a
MethodGen is finalized as a Method. The Method then is just
added to the ClassGen [2].

public void Add.bytecodeGen(ConstantPoolGen cp,
InstructionList il) {
getLeft().bytecodeGen(cp, il);
getRight().bytecodeGen(cp, il);
il.append(InstructionConst.IADD);

}

Listing 3. Bytecode generation for an AST node performing
addition.

We will now look at how control flow is implemented.
Structurally it is similar to the implementation for x86 as-
sembly. A comparison bytecode, if_icmp, is used to check
the boolean condition. Each comparison operator has a spe-
cific bytecode. Like x86 assembly, a negated condition is used
to skip the body if the condition is not fulfilled. To jump to a
specific point, we can set a target directly on the if_icmp or
goto bytecode. A target in this case is a byte offset within
the bytecode array. Since our implementation uses dynamic
dispatch to generate bytecode for AST nodes, the exact in-
structions aren’t known at compile-time. As a workaround
we insert no-operation, NOP, instructions at the points we
need to jump to. Functionally, the NOP instructions are then
equivalent to jump labels in x86 code. When the bytecode

Course paper, EDAN70, Lund University, Sweden

list is finalized, we can iterate through all branch instruc-
tions and update their targets. New target will be the next
bytecode appearing after the NOP they targetted previously.
Thus, the NOP bytecodes can be safely deleted.

4.3 Bytecode arrays

Lastly, we will describe how bytecode generation for arrays
is done. By implementing arrays, more AST nodes were
added. These nodes represent constructs like arrays literals,
declaration, assignments and element access. To create a new
array instance, we use the newarray bytecode. It takes the
size as an operand. The JVM will then allocate space for the
array from the heap. To access an element from an array
or assign a value to an element, we can utilize iaload and
iastore respectively.

Listing 4 shows how array literals are created. The com-
ment on the first line showcases what an array literal is,
an array and all the expressions its elements contain. First,
the size of the array is pushed to the operand stack, which
newarray will pop to instantiate the array reference. Then,
we loop through all elements and store them in the the ar-
ray. iastore receives as operands the array reference, the
index and the expression. We can use dup to duplicate the
array reference to the stack, instead of loading in the variable
repeatedly.

// [1,2,3,4,5] is an ArraylLiteral
public void ArrayLiteral.bytecodeGen(
ConstantPoolGen cp,
InstructionList il) {
il.append(new PUSH(cp, getNumElem()));
il.append(new NEWARRAY(Type.INT));
for(int i = @; i < getNumElem(); i++) {
il.append(new DUP());
il.append(new PUSH(cp, i));
getElem(i).bytecodeGen(cp, il);
il.append(new IASTORE());

3

Listing 4. Bytecode generation for creating a new array
literal in JVM.

5 Evaluation
5.1 Introduction

After verifying that our implementation works correctly
using rigorous automated test cases, we evaluate our com-
piler by running benchmarks for different scenarios. One
important thing to evaluate is the performance difference
between SimpliC programs compiled with our compiler and
equivalent Java programs compiled with javac. Since most
optimizations happen during runtime we expect that the

Lukas Trojer and Suleyman Zahi

SimpliC programs won’t differ that much in performance
compared to the Java programs. We also evaluate the per-
formance of our generated bytecode compared to x86 ma-
chine code generated in two different ways. On one hand
we have the existing SimpliC to x86 assembly compiler that
we implemented in the compilers course. The code that is
generated by this compiler is entirely unoptimized. On the
other hand we have gcc, which we use to compile equiva-
lent C code using optimization level O2. For shorter-running
programs, we expect that our generated bytecode will be
significantly slower as the JVM takes some time to start. For
longer-running tasks, this might not be the case however.
Lastly, we compare running the same SimpliC programs us-
ing different versions of Java, in order to see if there has been
any significant improvements over time.

The first time a program is run on the JVM it might not
be very fast. However, if you let it run several times more on
the same JVM instance it will likely be significantly faster.
The reason for this is twofold. First, the JVM has a significant
start-up time. Second, the bytecode will be better optimized
the more times it is run. It is therefore important to distin-
guish between the performance at start-up, and the perfor-
mance at the steady-state when no more optimizations can
be performed. We will produce benchmarks measuring both.

As individual benchmarks can be subject to substantial
random variations, it’s also important that we run each
benchmark several times. There are however many ways
to consolidate the individual benchmarks into one or a few
values that we use to draw our conclusions. We could pick
the best time, the worst time, the mean, or the median. We
could pick the interval between the best and worst values,
or we could produce a confidence interval at some level of
confidence, to just name a few options. It is of utmost impor-
tance that the benchmarking strategy is statistically rigorous.
Otherwise, we face the risk that our conclusions are mislead-
ing, or simply false at worst. These issues are discussed by
Georges, Buytaert, and Eeckhout [5] in their paper Statis-
tically Rigorous Java Performance Evaluation. They suggest
a methodology using confidence intervals that we follow
closely.

5.2 Method

For the start-up benchmarks we use the Bash time command
to run the same program from start to finish n = 20 times.
From this sample we calculate the sample mean and a 95%
confidence interval for the true mean.

For the steady-state benchmarks, the process is more com-
plicated, and works as follows. First the JVM is started. Then
we iteratively run the program, measuring the time it took
using Java’s System.nanoTime () method. The program is

JVM Bytecode Backend for SimpliC

run again and again until the last 100 iterations has a co-
efficient of variation (the ratio of standard deviation over
mean) at or lower than 0.02. This is the threshold at which
we determine that a steady-state has been reached, so we
then return the mean of the last 100 iterations. This whole
process is repeated n = 20 times, restarting the JVM between
each time. Like for the start-up benchmarks, we calculate
the sample mean and a 95% confidence interval for the true
mean using this sample.

5.3 Result and Discussion

In figure 1 we compare the start-up performance of our
generated bytecode from SimpliC to bytecode generated
from Java using javac. We use two different kinds of tasks.
The first is to construct an array in reverse order and sort it
using bubble sort, while the second is to simulate Conway’s
Game of Life on a small board for a number of generations.
For the start-up performance we see that our bytecode is
slightly slower than that of javac. We think this is because
the bytecode that java produces is a bit more optimimal
than ours. While most of the optimizations happen during
runtime by the JIT compiler, javac does optimize the code to
some degree. For the steady-state performance, we see not
significant difference at all. This is unsurprising as the JIT
compilation will likely have produced very similar or even
identical code when the steady state has been reached.

Start-up performance in SimpliC and Java

0.5 { HEE SimpliC
Hl java

0.4 4

execution time (s)

0.1

0.0 -

Bubblesort 1

Game of Life 1

Figure 1. Start-up performance in SimpliC and Java

Course paper, EDAN70, Lund University, Sweden

Steady-state performance in SimpliC and Java

7000 - E Simplic

HE Java

6000

5000 -

4000 1

3000 -

execution time (ns)

2000

1000

Bubblesort 2

Game of Life 2

Figure 2. Steady-state performance in SimpliC and Java

In figure 3 we compare the start-up performance of our
generated bytecode to that of x86 machine code, generated
in the two ways described above. When counting the num-
ber of primes up to 1000, our generated bytecode is slower
by several orders of magnitude. When the limit is increased
to 50000 however, the situation looks very different. Now
the x86 code generated from SimpliC is by far the slowest.
This is not unexpected as it hasn’t been optimized at all. The
optimized x86 code generated using gec is the fastest. How-
ever, the difference in performance between the bytecode
program and the C to x86 program is not significantly dif-
ferent between when the limit is 1000 and when it is 50000.
That is, the “extra work” that is needed when the limit is
50000 takes roughly the same amount of time. This shows
that, at least in this case, the JIT compilation is working as
it should, optimizing the code to be pretty fast.

Counting number of primes

0.8 4

H SimpliC -> x86
I SimpliC -> Java bytecode
[C-> x86 (gcc -02)

execution time (s)

primes = 1000 primes = 50000

Figure 3. Counting number of primes

We also performed benchmarks running the same SimpliC
programs using three different versions of Java, namely Java

Course paper, EDAN70, Lund University, Sweden

11, Java 17, and Java 21. The task is a similar bubble sort task
as before. For the steady-state (figure 5) we saw a significant
performance increase between Java 17 and Java 21. For the
start-up performance (figure 4) we also saw a significant
performance increase, this time between Java 11 and Java
17. We may see further improvements in future versions of
Java, and SimpliC programs will then be able to run faster
“for free”. This is yet another benefit of having our compiler
target an existing virtual machine like the JVM.

Start-up time of bubble sort in SimpliC using different Java versions

0.08

0.07 4

0.06

0.05 4

0.04 4

execution time (s)

0.03 4

0.02

0.01 4

0.00 -
java 11 java 17 java 21

Figure 4. Start-up time of bubble sort in SimpliC using dif-
ferent Java versions

Steady-state time of bubble sort in SimpliC using different Java versions

4000 A

3000

2000 -

execution time (ns)

1000 A

java 11 java 17 java 21

Figure 5. Steady-state time of bubble sort in SimpliC using
different Java versions

6 Related work

Attribute grammars, AGs, are a formalism that allow us to
assign attributes to nonterminal symbols in a grammar. An
attribute can either be synthesized or inherited, whereby
they are defined by attributes of child symbols or parent

Lukas Trojer and Suleyman Zahi

symbols [9]. Reference attributed grammars, RAGs, build
upon AGs and let AST nodes reference attributes of other
nodes in the tree [6]. Our implementation of the SimpliC com-
piler extensively uses JastAdd, which itself supports RAGs.

Extend] is a Java compiler that is designed to further ex-
tend Java with new constructs. It was implemented with
JastAdd [12]. Like our compiler, it also generates Java byte-
code. The difference is that Extend]’s implementation is made
from scratch by following the JVM specification, whereas
we use a bytecode library.

7 Conclusion

The aim of this project was to implement a JVM backend for
SimpliC. The motivation was to make the compiler faster
and more efficient but also extend the language with more
constructs, namely arrays. To create the JVM backend, we
had to generate Java bytecode. BCEL was the tool used to
achieve this goal. It was used in tandem with JastAdd, which
let us write the bytecode generation for all AST nodes, pre-
viously defined in JastAdd as part of an abstract grammar.
Our evaluation consisted of comparing the performance of
the JVM backend to the x86 one and the C language. We also
looked at the performance for different versions of the JVM.
The results we obtained show that the steady-state perfor-
mance of SimpliC was on par with that of Java, whilst the
start-up performance was slightly worse. When performing
a task with few iterations, both x86 SimpliC and C performed
better. But when we increased the number of iterations, JVM
SimpliC performs better than the x86, though still lags be-
hind C. Lastly, we saw that newer JVM versions performed
better on the same benchmark.

What we can conclude is that we can gain significant
performance improvements by adopting a JVM backend,
compared to unoptimized assembly code. We get the bet-
ter performance at no cost, since JVM itself performs the
optimizations. We also benefit from future releases and im-
provements of the JVM platform, if we opt to use them. One
downside to using JVM that the results showcased is that we
incur a penalty to the performance because of the start-up
overhead of the virtual machine. In some scenarios, this may
not be ideal. Still, for language implementers, targeting a
virtual machine like the JVM can be a viable option to boost
their languages performance and increase the feature set.

References

[1] Shigeru Chiba. 2000. Load-time structural reflection in Java. In Euro-
pean Conference on Object-Oriented Programming. Springer, 313-336.

[2] Markus Dahm. 1999. Byte code engineering. In JIT’99: java-
Informations-Tage 1999. Springer, 267-277.

[3] Markus Dahm. 2001/2002. The Byte Code Engineering Library. https:
//bcel.sourceforge.net/. (2001/2002). Accessed: 2023-11-21.

[4] Ekman, Torbjérn and Hedin, Gorel. 2007. The JastAdd system —
modular extensible compiler construction. 69, 1-3 (2007), 14-26. https:

https://bcel.sourceforge.net/
https://bcel.sourceforge.net/
https://doi.org/{10.1016/j.scico.2007.02.003}
https://doi.org/{10.1016/j.scico.2007.02.003}
https://doi.org/{10.1016/j.scico.2007.02.003}

JVM Bytecode Backend for SimpliC

(9]

(10]

(11]

(12]

(13]

(14]

//doi.org/{10.1016/j.scic0.2007.02.003}

Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically
rigorous Java performance evaluation. In Proceedings of OOPSLA 2007.
ACM, Montreal, Canada, 57-76. http://doi.acm.org/10.1145/1297027.
1297033

Gorel Hedin. 2000. Reference attributed grammars. Informatica (Slove-
nia) 24, 3 (2000), 301-317.

Gorel Hedin and Eva Magnusson. 2003. JastAdd—an aspect-oriented
compiler construction system. Science of Computer Programming 47, 1
(2003), 37-58. https://doi.org/10.1016/S0167-6423(02)00109-0 Special
Issue on Language Descriptions, Tools and Applications (L DTA’01).

Jesper Oquist. [n. d.]. NeoBeaver. ([n. d.]). https://bitbucket.org/
joqvist/neobeaver/src/master/ [Online; accessed 10-Decemeber-2023].
Donald E. Knuth. 1968. Semantics of Context-Free Languages. Mathe-
matical Systems Theory 2, 2 (1968), 127-145. https://doi.org/10.1007/
BF01692511

Wing Hang Li, David R. White, and Jeremy Singer. 2013. JVM-Hosted
Languages: They Talk the Talk, but Do They Walk the Walk?. In Pro-
ceedings of the 2013 International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages,
and Tools (PPP ’13). Association for Computing Machinery, New York,
NY, USA, 101-112. https://doi.org/10.1145/2500828.2500838

Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley, and Daniel
Smith. 2023. The Java Virtual Machine Specification. https://docs.oracle.
com/javase/specs/jvms/se21/html/index.html

Jesper Oqvist. 2018. Extend]: extensible Java compiler. In Companion
Proceedings of the 2nd International Conference on the Art, Science, and
Engineering of Programming. 234-235.

OW2. [n. d.]. ASM. ([n. d.]). https://asm.ow2.io/index.htm| [Online;
accessed 30-November-2023].

Rafael Winterhalter. [n. d.]. ByteBuddy. ([n. d.]). https://bytebuddy.
net/# [Online; accessed 30-November-2023].

Course paper, EDAN70, Lund University, Sweden

https://doi.org/{10.1016/j.scico.2007.02.003}
https://doi.org/{10.1016/j.scico.2007.02.003}
http://doi.acm.org/10.1145/1297027.1297033
http://doi.acm.org/10.1145/1297027.1297033
https://doi.org/10.1016/S0167-6423(02)00109-0
https://bitbucket.org/joqvist/neobeaver/src/master/
https://bitbucket.org/joqvist/neobeaver/src/master/
https://doi.org/10.1007/BF01692511
https://doi.org/10.1007/BF01692511
https://doi.org/10.1145/2500828.2500838
https://docs.oracle.com/javase/specs/jvms/se21/html/index.html
https://docs.oracle.com/javase/specs/jvms/se21/html/index.html
https://asm.ow2.io/index.html
https://bytebuddy.net/#
https://bytebuddy.net/#

	Abstract
	1 Introduction
	2 Background
	2.1 SimpliC and JastAdd
	2.2 JVM

	3 Extending SimpliC with arrays
	3.1 Implementation

	4 JVM Backend
	4.1 Bytecode library
	4.2 Implementation
	4.3 Bytecode arrays

	5 Evaluation
	5.1 Introduction
	5.2 Method
	5.3 Result and Discussion

	6 Related work
	7 Conclusion
	References

