
ChocoPy compiler
Tobias Karlsson

Computer Science, Lund University, Sweden
to2525ka-s@student.lu.se

Abstract
The purpose of this essay is to investigate the possibility
of using ChocoPy as the programming language when ed-
ucating students on how to construct a compiler as well as
comparing the performance of the ChocoPy compiler with a
python compiler. The compiler for ChocoPy is implemented
to generate assembly code, targeting X86. ChocoPy could be
advantageous to use when teaching compilers since it is a
simplified subset of Python. When comparisons were made
between the ChocoPy compiler and python interpreter for
a certain type of program, the result was that the ChocoPy
compiler was between 10 and 20 times faster, depending on
the size of the program. A ChocoPy compiler can be created
in a compiler course since the resources and knowledge pro-
vided by the course is enough to handle all the problems
that may arise. Given that the resources and time aspect
is enough as well as the fact that the ChocoPy compiler is
faster than the python interpreter, ChocoPy would be an
advantageous programming language to use in a compiler
course, given that the objective of the course is to construct
a compiler.

1 Introduction
In the process of teaching how to construct a compiler, there
are a few things that are important. Since there is a choice
what language to choose for the compiler construction, it
is of great importance that the language that the compiler
is to compile is small and simple enough so that the com-
piler can be implemented by the students within the time of
the course as well as with the tools provided by the course
[6]. The purpose of this essay is to investigate if there is
a possibility for ChocoPy to be advantageous in the teach-
ing process of constructing compilers as well as comparing
the performance of the ChocoPy compiler with a python
compiler. The essay will also act as a guide through the cre-
ation process of a compiler for the programming language,
ChocoPy. The difference between this compiler and earlier
projects, done at Berkley is that the toolchain used in this
compiler is the same as the one from the compiler course at
LTH, which is different from the one that is used at Berkley.
One additional difference is that it targets x86 assembly code
instead of RISC-V, which is used at Berkley [4].

Course paper, EDAN70, Lund University, Sweden
January 26, 2021.

ChocoPy has big similarities with Python, it can be de-
scribed as a simplified version of Python [5]. This big simi-
larity and simplification of the Python language could mean
that some of the more advanced aspects of a Python compiler
could be implemented during the duration of a course.

The compiler for ChocoPy, constructed in this essay is im-
plemented to generate assembly code, targeting X86. ChocoPy
language is fully specified with both formal grammar and se-
mantic rules [4]. In the construction of this compiler, JastAdd
will be used. JastAdd is a system that implements reference
attribute grammar. Creating a compiler for an unknown but
still highly relevant language, like ChocoPy will increase
the total understanding of how programming languages
work and why they are constructed in such a strict grammar.
Knowledge will also be obtained about the way compilers
handle the different languages and their respective problems,
as well as how to use JastAdd advantageously. One example
of a common issue for compilers is the indentation syntax
that is used in python, instead of the standard brackets that
we know from Java. When comparisons were made between
the ChocoPy and python compilers for certain programs the
result was that the ChocoPy compiler was between 10 and
20 times faster, depending on the size of the program.

Compared to other programming languages, ChocoPy has
some unusual problems. These problems could be beneficial
to handle when it comes to the teaching process. These ad-
ditional problems can be solved with the knowledge that is
given during a compiler course. Given the compiler compar-
ison, it would also be beneficial for the students to construct
a compiler that is faster than big corporate compilers, like
the python compiler. Due to the benefits that the student
can receive from constructing a ChocoPy compiler and the
fact that the resource and time aspect is enough, ChocoPy
would be an advantageous programming language to use in
a compiler course, given that the objective of the course is
to construct a compiler. ChocoPy could, therefore, advanta-
geously be used when teaching the students how to construct
compilers.

2 Background
2.1 ChocoPy
ChocoPy is intended to be a subset of python [4]. It is de-
signed to fit into a classroom setting so that students can,
under a period of 12 weeks, implement a compiler. Since
ChocoPy is designed in such a similar way to Python, every

1



Course paper, EDAN70, Lund University, Sweden Tobias Karlsson

ChocoPy program is meant to be a valid Python program [4].
The syntax is very similar to python but one important as-
pect to know is that a ChocoPy program is only contained
in one file. A ChocoPy program contains one or more of the
following definitions, variable definitions, function defini-
tions and class definitions. The definitions are followed by
one or more statements.

2.2 Off-side rule
A language is said to follow the off-side rule if the blocks are
expressed by indentation and dedentation [1]. This rule is
used by some programming languages, for example, Python.
The languages that are using this rule, have a problem with
noticing and parsing indentation and dedentation as well as
keeping track of previous indentation levels.

3 Compiler construction
The compiler was constructed in such a way that it first
targeted a small part of ChocoPy. As the project continued
and the smaller parts of the language were completed, addi-
tional functionalities of the language were added. A compiler
usually consists of lexical analysis, parsing, abstract syntax,
semantic analysis and code generation [2]. The steps that
were made in this project is displayed below. There are more
steps to making a compiler, but the steps below are the most
crucial.

3.1 Pipeline
This subsectionwill work as an overview of the basic Pipeline
of this compiler. As seen in figure 1, the compilation start by
sending the input file to the preprocessor. The input file is
sent to the preprocessor first since the scanner have a hard
time handling indentation, more on this in section 2. The
preprocessor simplifies the input file by adding indentation
tokens. The next step is to send the file to the scanner which
adds specified tokens and creates an output of tokens. After
the scanner, the file is sent to the parser which uses the
grammar to see if the syntax is correct. If the syntax is correct,
the output of this stage is an Abstract syntax tree.
When the syntax is correct the code is sent to semantic

analysis where Jastadd reference attribute grammars are
used. As an example, the semantic analysis check that as-
signed values to variables is the expected type [3]. The se-
mantic analysis, using reference attributes, creates an attrib-
uted abstract syntax tree [3]. After this, the file is sent to the
assembly code generator which follows the grammar and
produces the correct x86 assembly code. As seen in figure 2.

3.2 PreProcessor
ChocoPy uses indentation to indicate that there is a block of
code. The indentation consists of spaces and is complicated
to notice directly from the scanner. There is one main reason
why indentation is hard to handle from the scanner. The

Figure 1. Pipeline

reason is that whitespace should be ignored in some parts of
the program, it’s, therefore, difficult to count and translate
whitespace into indentations since it is being ignored at the
same time. It is of big importance to notice the indentation
and dedentation since ChocoPy follows the off-side rule. To
make the indentation and dedentation obvious for the scan-
ner, the chocopy program will go through the Preprocessor
first which constructs a new file with tokens for indentation
and dedentation as shown in the figure: 2. The pre-processor
has one attribute that keeps hold of the previous indentation
level and one attribute that contains the local indentation
level. The inner workings of the preprocessor are shown
below in step form for clarity where input file preparation
contains a description in how the file is prepared and han-
dled by the preprocessor and the looping stage describes the
inner workings of the preprocessor.

3.2.1 Input file preparation
The first step is that the pre-processor receives the ChocoPy
program as an input file. This file is translated into lines
of strings, where each line represents a line of the input
program. The lines will be looped through until the end of
the program is reached.

3.2.2 Looping stage
The pre-processor will loop through every character of the
respective line, but only if the character is represented as
space. When the processor notices a character that is not
space, it will translate the number of spaces into a certain
number of indentations or dedentations. The preprocessor
keeps a count of the last indentation level. The knowledge of
the last indentation level and the current number of spaces
will allow the preprocessor to either add a dedentation token
or an indentation token. After this, it will prepare to termi-
nate and continue to the next line and repeat the process.

3.2.3 Example
One example of this is the program that can be seen in figure:
2, containing one function definition with a while loop and
an if statement. Before the if statement there is a dedenta-
tion token, this is since the preprocessor calculated out that
the count integer is zero for the current line and that the

2



ChocoPy compiler Course paper, EDAN70, Lund University, Sweden

previous indentation level was one. The line under the if
statement starts with an indentation token, this is since the
count integer for that line is 4 and the previous indentation
level is one. More details about the preprocessor can be seen
when studying figure: 2.

Figure 2. Explaining image of preprocesor

3.3 Scanner
The first step that was made in the process of creating the
scanner was to decide what basic tokens should be included
in the compiler. This was done by first understanding the
ChocoPy language and stating the basic tokens. More tokens
are added as the language expands. One example of a token
is the if token which tells the scanner to return an IF-token.
This token is used in the parser to notice the start of an if
statement. The main problem that occurred with the creation
of the scanner was to notice indentations or dedentation and
return a token for that, this problem was solved by introduc-
ing the preprocessor that has control over the dedentation
and indentation.

3.4 Parser
The construction of the parser for ChocoPy is much like the
construction of the scanner in the way that it starts small and
then expands. One example of a row of code in the parser is
the following below.

functioncall= idcexpr.id LPAREN parameters.e RPAREN

block= NEWLINE INDENT stmt.s stmtlist.stl DEDENT
The first example above checks for a function call that starts
with an id, followed by a left parenthesis, parameters, and
right parentheses. The second example shows the usage of
indent and dedent, there must be an indent at the start of the
block and a dedent token at the end. If any of the tokens are
wrong, it cannot be matched with a function call or a block.

3.5 Nameanalysis
Name analysis is needed in this stage of the compiler since
it is crucial to check that everything is done according to the
rules of the language. For example, it is important to link all
uses of variables to a variable declaration. This is important
since the compiler has to know whether the variable is de-
clared or not, if it is not declared it should not be accepted
to use it. Another example of when the analysis is needed is
when variables are declared, there must be a way to check

so that there is not already a declared variable with the same
name as the current. This check is done by using a lookup
pattern [3], which looks through the relevant part of the
program.

3.6 Typeanalysis
Type analysis is needed in this stage since it is of great impor-
tance to check that the types used are correct. For example,
it is required to check that an integer variable is not assigned
to a boolean value. This was implemented by introducing
two attributes for each variable declaration and variable as-
signment, these attributes are type and expected type. The
attribute type keeps track of what type is being assigned
to the variable and the expected type is the type that the
variable has. For a better understanding, the example below
is provided, the variable declaration has the type:boolean
and expected type:int.

𝑥 : 𝑖𝑛𝑡 = True

3.7 Code generation
Themain problemwith the code generationwas to keep track
of variable addresses and where to store their values. This
problem was solved by introducing an address attribute for
each Id declaration. The address depends on the local index
of the declaration and if the declaration is a parameter or not.
In the outer level of the program, the local index depends on
previous variables address, where the first index is set and
in functions, the index of the local variable depends on the
quantity and order of the variables, within the function.

4 Implemented part of ChocoPy
In this section, there will be a table showing what is imple-
mented in the ChocoPy language and clarification of major
parts that are not implemented, 4. The big part from the spec-
ification of ChocoPy that is not included is some small things
in the class definitions and the array-type. Function defini-
tions are implemented, as well as while loops and if state-
ments which give the user a chance to run function based
programs. Besides the array type, all other types are imple-
mented. All different binary operations are implemented as
well as literals. The print functionality is implemented as a
base function and does not have to be declared before use.

var def func def class def, lists func call
✓ ✓ ✓+ ✗ ✓

if-stmt while-stmt return-stmt var-assignment
✓ ✓ ✓ ✓

for-stmt pass-stmt binary-operations literals
✓ ✓ ✓ ✓

For a better understanding of what is implemented in the
compiler, there is one example provided in the following

3



Course paper, EDAN70, Lund University, Sweden Tobias Karlsson

figure: 3. This example shows a large part of what can be
done with the implemented language.

Figure 3. Example of program

5 Evaluation
In this section, an evaluation will be done regarding the
possibility of using the construction process of a ChocoPy
compiler when teching a compiler course. There will also be
a performance comparison between the Python compilator
and the ChocoPy compiler, this is a possible comparison
since most ChocoPy programs are compatible as python
program aswell.

5.1 Teaching compilers with ChocoPy
The possibility of using ChocoPy when teaching the inner
workings of creating an compiler has been evaluated with
two main criterias. The first criteria is if it is possible to con-
struct a compiler for ChocoPy during the time of the course.
The second criterion is whether the knowledge gained from
the course and with the help that can be obtained from teach-
ers is enough to create a ChocoPy compiler. For clarity this
will be shown as subsections below.

5.1.1 Time criteria
The evaluation of the time criterion is made based on the
time it took to develop the ChocoPy compiler for this project,
during the time of a project course. The result is that there
was not enough time to develop the compiler for the whole
language of ChocoPy. The time was not enough to create the
complete compiler during the course, one reason for this is
since there were also other elements of the course and since
there were some parts where I did not know enough about.
When evaluating the possibility for a compiler course to
make usage of the ChocoPy language, it was concluded that
the combination of a more structured and controlled work
structure, as well as more allocated time for the construc-
tion process, would be sufficient to construct the complete
compiler for ChocoPy. The conclusion is that time criteria
would not go against the use of ChocoPy.

5.1.2 Knowledge criteria
The evaluation of the knowledge criteria is done during the
same timeframe as the time criteria, during the construc-
tion of the ChocoPy compiler. The knowledge gained from
a compiler course is enough to create a ChocoPy compiler
but there were some parts of the construction process for
a ChocoPy compiler that was difficult and time-demanding
to complete without examples to learn from. When evalu-
ating the possibility for a compiler course, the knowledge
obtained by the students would be enough to deal with a
ChocoPy compiler since there will also exist examples and
clear instruction from the teachers on each part of creating
the compiler.

5.2 Comparison with the Python compiler
Comparisons made of the performance by a Python and
ChocoPy compiler was made with different types of pro-
grams, which were timed. There was one type of program
that was tested in more detail, since the time complexity of
the program is high for the Python interpreter, the program
used in the testing was nested while-loops with a variable
assignment and function call. The while-loop was tested
with a different number of loops. The results are shown in
table 1, the results are shown for six different values of the
number of loops for each loop, represented as n where the
time complexity is O(𝑛2).

n Runtime Python(s) Runtime ChocoPy(s)
9*103 10.04 1.02
12*103 19.56 1.43
15*103 32.74 1.83
20*103 61.56 2.83
25*103 95.63 4.12
30*103 115.31 5.91

Table 1. Python vs ChocoPy compiler

4



ChocoPy compiler Course paper, EDAN70, Lund University, Sweden

From inspecting the table above, it can be concluded that
the execution time for certain programs is much smaller in
the ChocoPy compiler than the Python compiler.

The same type of comparison is done with a certain num-
ber of function calls to see which compiler that can do it the
fastest. The function that is called only perform one addi-
tional operation. The results are shown in table 2, where n is
number of calls. n will be big so that the real difference can
be shown.

n Runtime Python(s) Runtime ChocoPy(s)
8 *107 5.8 0.49
10 *107 7.3 0.5
20 *107 16.12 0.55
50 *107 41.75 0.7
80 *107 60.1 0.88

Table 2. Python vs ChocoPy compiler

6 Conclusion
I have started the development of a ChocoPy compiler with
the toolchain that is used in the compiler course at LTH.
I have evaluated whether the ChocoPy language could be
beneficial to use in a compiler course, where the time and
knowledge aspect was in focus. I have also evaluated the
performance of the ChocoPy compiler versus the perfor-
mance of the Python compiler. The performance evaluation
was done by comparing the runtime of the same program,
executed by either the ChocoPy compiler or the Python com-
piler. In the evaluation done in section 5.2, the Chocopy
compiler was between (Look at)5.4 and 104.54 times faster
than the Python compiler for a program consisting of nested
while-loops. From the comparison result, I concluded that
one additional reason to work with ChocoPy in a compiler
course is that it could be a beneficial aspect of the course
that the students learn that they can, in the span of just one
course, create a compiler that is in some ways more effective
than the Python compiler.
The result of the time and knowledge aspect, evaluated

in section 5.1.2 and 5.1.1 is that the period that a compiler
course runs through would be sufficient to implement the
whole language.
I have concluded that ChocoPy can be used to advantage in
a compiler course if the following points below are met.

· The creation process of the compiler should be in a lab form
with collaboration between two students in each group.
· there must be examples for each part of the creation process
of the compiler. These examples should be from a compiler
that implements a language that is similar to ChocoPy.
· The compiler course should have an additional focus on
object-oriented languages and how to generate code for

these.

Future work is needed before the ChocoPy language could
be adapted within a compiler course. A minimal language
would have to be created, this language should be similar
to ChocoPy but smaller. There must also be examples for
every part of the compiler constructions phase, using the
ChocoPy-alike language created for this course.

Acknowledgments
Feedback and guidence from Alfred Åkesson.

References
[1] Michael Adams. 2013. Principled Parsing for Indentation-Sensitive Lan-

guages Revisiting Landin’s Offside Rule. ACM SIGPLAN Notices 48, 1–12.
https://michaeldadams.org/papers/layout_parsing/LayoutParsing.pdf

[2] Andrew W. Appel and Jens Palsberg. 2002. Modern Compiler Implemen-
tation in Java.

[3] Görel Hedin Niklas Fors and Emma Söderberg. 2020. Principles and
Patterns of JastAdd-Style Reference Attribute Grammars. (2020), 86–100.
https://dl.acm.org/doi/pdf/10.1145/3426425.3426934

[4] Rohan Padhye and Koushik Sen. 2019. ChocoPy v2.2: Language Man-
ual and Reference. (2019), 127–145. https://chocopy.org/chocopy_
language_reference.pdf

[5] Rohan Padhye, Koushik Sen, and Paul N. Hilfinger. 2007. ChocoPy:
A Programming Language for Compilers Courses. In ACM SIGPLAN
SPLASH-E Symposium SPLASH-E ’19, October 25, 2019. ACM, New York,
USA, 1–5. https://doi.org/10.1145/3358711.3361627

[6] Alfred V.Aho. 2008. Teaching the Compilers Course. ACM SIGCSE
Bulletin 1, 1–4. https://doi.org/10.1145/1473195.1473196

5

https://michaeldadams.org/papers/layout_parsing/LayoutParsing.pdf
https://dl.acm.org/doi/pdf/10.1145/3426425.3426934
https://chocopy.org/chocopy_language_reference.pdf
https://chocopy.org/chocopy_language_reference.pdf
https://doi.org/10.1145/3358711.3361627
https://doi.org/10.1145/1473195.1473196

	Abstract
	1 Introduction
	2 Background
	2.1 ChocoPy
	2.2 Off-side rule

	3 Compiler construction
	3.1 Pipeline
	3.2 PreProcessor
	3.3 Scanner
	3.4 Parser
	3.5 Nameanalysis
	3.6 Typeanalysis
	3.7 Code generation

	4 Implemented part of ChocoPy
	5 Evaluation
	5.1 Teaching compilers with ChocoPy
	5.2 Comparison with the Python compiler

	6 Conclusion
	Acknowledgments
	References

