A Coroutine Extension to Java

Adam Ohlsson

D13, Lund University, Sweden
zbal0aoh@student.lu.se

Abstract

This paper present an extension to the ExtendJ Java com-
piler that enables the use of asymmetric, first-class, stackless
coroutines. The extension perform syntactic sugaring and
generate standard Java code, acting as a translator. The ex-
tension currently provide support for a fairly large subset of
Java but does not provide error checking or error messages.

1 Introduction

The subject of coroutines was first introduced by Melvin
Conway in 1963 [1]. A Coroutine can be described as a gen-
eralisation of a subroutine. The key separating factor is that
a coroutine can be paused and reentered several times during
its life time. Each time, execution picks up from where it pre-
viously left off. More specifically, inside a coroutine one may
specify a control statement, detach, that returns control to
the caller, similar to a return statement for a subroutine. A
coroutine will always resume execution directly after the
previous call to detach in subsequent activations.

The lifetime of a routine could be thought of as the time
during which its state can be referenced in a meaningful
way. In a language using a stack based model of computation
where arguments are passed on a stack, the lifetime of a
routine would then be equal to that of its corresponding
stack frame. Out of neccessity, a coroutine therefore require
its own stack (or equivalent construct) in order for it to be
able to operate with the required flexibility.

Indeed, this is the approach used by Stadler et al. providing
native support for coroutines in the Java HotSpot" VM [7].
Though there clearly are benefits in changing the underlying
machinery to support coroutines, as reported, this approach
has well known drawbacks in terms of portability and thus
also support.

It is possible to simulate the behaviour of coroutines using
standard Java but the complexity of the resulting code does
not scale very well. The main challenge for the developer
is to keep track of different code paths as well as managing
resources available to the routine which have to be exposed
to the class in order to avoid destruction on detach. The
resulting code is difficult to manage and unsafe since any
method in the same class may manipulate the coroutine state.

The goal in this report is to present an alternative method
by which coroutines can be supported in Java, taking a defen-
sive approach by extending the ExtendJ[3] compiler using

Course paper, EDAN70, Lund University, Sweden
January 15, 2018.

Erik Lefller
Pi16, Lund University, Sweden

er1110le-s@student.lu.se

JastAdd, a meta-compilation system[5]. The extension of
Java to support coroutines result in a language that is similar
to Java which we will call Javasim.

The extension supports the following:

o Relocation of coroutine local state.

e Inlining of method calls that utilize the coroutine APL

e Translation from Javasim into equivalent standard Java
code.

Introducing coroutines using this method has several ad-
vantages. Standard Java code is portable, and thus also the
code generated by the extension. The extension can also be
integrated with other extensions developed using the same
toolset.

Coroutines are introduced in the Java language with little
or no impact on existing code and runtime environment
while enabling the corresponding features to the developer.

A limitiation of our implementation is that coroutines are
stackless and does therefore not allow the user to define
recursive coroutines.

2 Background
2.1 Coroutines

When the coroutine concept first was introduced by Conway
he described it as "an autonomous program which communi-
cates with adjacent modules as if they were input or output
subroutines”"[1]. A more concrete definition was encapsu-
lated by Merlin [6] as follows:

e "the values of data local to a coroutine persist between
successive calls;”

e “the execution of a coroutine is suspended as control
leaves it, only to carry on where it left off when control
re-enters the coroutine at some later stage.”

More specific ways of classifying coroutines has since been
proposed by Moura et al. [2] where the three distinguishing
properties were stated as:

e "the control-transfer mechanism, which can provide
symmetric or asymmetric coroutines;"

e "whether coroutines are provided in the language as
first-class objects, which can be freely manipulated by
the programmer, or as constrained constructs;"

e "whether a coroutine is a stackful construct, i.e., whether
it is able to suspend its execution from within nested
calls.

The concept of asymmetric coroutines entail that control is

returned to the caller of a coroutine by use of a detach state-
ment. From within a symmetric coroutine however, control

Course paper, EDAN70, Lund University, Sweden

is passed by invoking yet another coroutine and hence, does
not necessarily need to return to the caller. The Java exten-
sion presented in this paper enable asymmetric, first-class,
stackless coroutines.

In this implementation, a coroutine is represented by a
class that implements an interface called Coroutine. The
Coroutine interface contains two methods, one is a de-
fault method called detach and the other doActivate. The
doActivate method is meant to be overridden by the user to
define the behaviour of a coroutine and is also the entry point.
The detach method is used to return control directly to the
process that activated the coroutine through its doActivate
method, a mechanism that is required for asymmetric corou-
tines.

When the doActivate method in the example shown in
listing 1 is called, the first print statement is executed after
which execution is returned to the caller. Following a second
call to doActivate, execution is resumed from where the
method previously detached and the second print statement
is executed.

public class Example implements Coroutine {

public Example () {
}

public void doActivate () {
System.out. println (" First");
detach () ;
System.out. println ("Second") ;

}

Listing 1. A simple coroutine example.

2.2 JastAdd

JastAdd is a Java based compiler construction framework
[5]. JastAdd is used for specifiying the structure of the Ab-
stract Syntax Tree (AST). JastAdd enable both declarative
techniques using Reference Attribute Grammars and impera-
tive techniques for modifying and performing computations
upon the AST. The AST is represented by a class hierarchy
where every node is an instance of a specific class. For a
complete and comprehensive introduction to JastAdd we
refer you to the official documentation.

2.3 Extend]

Extend] is a JastAdd based Java compiler [3]. The underly-
ing frameworks of the compiler allow for extensions and
modifications to be realized through the addition of modules.
Extend] currently support Java versions 4 through 8 and is
being developed and maintained at Lund University. We refer
you the the official Extend] website for more information.

Adam Ohlsson and Erik Leffler

3 Motivating example

In this section we will demonstrate the usefulness of corou-
tines by showing an example of a hospital simulation. The
simulation is meant to model the work flow of a simplified
hospital. The simulation will consist of the following objects
and events:

e A Hospital, which will generate patients according to
some temporal distribution;

e Patients, that arrive at the hospital, whilst waiting for
available doctors, are stationed in a waiting room;

e Doctors that, after having finished treating a patient,
will either treat the next patient in line for a random
amount of time or, if the wait room is empty, have a
break in the coffee room.

The Doctor class will be implemented as a coroutine. This
allow the doctors to, either whilst waiting in the coffe room
or treating a patient, return control back to the simulation
environment. In listing 2 we demonstrate what such a class
might look like.

public class Doctor implements Coroutine {
private Hospital h;
private Patient p;

public Doctor(Hospital h) {
this.h = h;
}

private boolean waitRoomIsEmpty () {
return h.waitRoomEmpty () ;

}

private void waitInCoffeeRoom () {
h.addToCoffeeRoom (this) ;
detach () ;

}

private void treatNextPatient () {
Patient p = h.nextPatient ()

System.out. println ("Treating Patient: " + p);
h.makeUnavailable (this, p.treatmentTime ());
detach () ;

System.out. println ("Treatment done: " + p);

}

public void doActivate () {
while (true) {
if (waitRoomIsEmpty ()) {
waitInCoffeeRoom () ;
} else {
treatNextPatient () ;

}

Listing 2. The Doctor class

http://jastadd.org/web/documentation/reference-manual.php
https://extendj.org/

Inside of the doctor coroutine body, doActivate, there
are calls to two detaching helper methods, waitInCoffeRoom
and treatNextPatient. The waitInCoffeRoom method is
meant to simply add the doctor to the coffee room (imple-
mented as a list) and then return control back to the caller.
The treatNextPatient method retrieves the next patient
in the waiting room, specifies a time for which the doctor
is unavailable due to treating the patient, and then returns
control back to the caller

The use of coroutines in this example allow the doctor
class to easily pass control back to the simulation environ-
ment whilst still maintaining all of its runtime state.

4 Implementation

This section describes our implementation of the coroutine
extension to Extend].

Before going into the implementation details, lets review
the goal of this extension. The goal is to read source files
containing Javasim code and produce the equivalent standard
Java source code as output. Hence, the compiler extension
presented in this article simply provide syntactic sugar on
top of the Java language.

An important design choice made early-on is that the
Javasim language is syntactically equivalent to standard Java.
If the compiler does not recognize extension specific triggers
in the input file, the resulting output will be equal to the
input.

This implementation effectively provide asymmetric corou-
tines as first-class objects but not stackful. A single method,
doActivate is used as the global (re-)entry point for a corou-
tine. Method calls in the body of doActivate that at some
point leads to a call to detach are inlined. This effectively
vanquish the requirement for a stack but at the same time
prohibit the interpretation of recursive coroutines.

There are two aspects (not entirely independent) of a
coroutine implementation which requires special attention.
The first is data and state management and the second is
control flow [2].

The local state of a coroutine has to be stored in such
a way that it does not fall out of scope as the coroutine
detaches. Since each coroutine is meant to be implemented
in a separate class, the straightforward choice is to move
all local state defined in detaching methods into its body
as protected field declarations. State includes local variable
declarations as well as method parameters. Constructors
may not detach and are therefore always copied as they are
defined by the user.

Now then, since recursion or any form of circular activa-
tion scheme is prohibited, uses of the parameters and local
variables of a detaching methods never nest. It is therefore
safe to create a single set of parameters and local variables as
field declarations for each detaching method in each corou-
tine class.

Course paper, EDAN70, Lund University, Sweden

In order to be able to invoke an overridden version of a
detaching method, the field declarations representing the
parameters must be visible in derived classes. Since, such
methods must also be able to reference local state when
inlined, local state and parameters should be declared with
protected access when transferred to the coroutine class as
field declarations.

We will now consider the method by which the coroutine
body, the doActivate method, is translated from Javasim
into standard Java and how control flows within a coroutine.
Note that Javasim has the same semantics as standard Java,
but also contains the control statement detach which is re-
alized as a method invokation to the default method detach
in the Coroutine interface.

A coroutine body is translated to a switch-statement wrapped
in a while(true)- statement in standard Java. The switch-
statement has a state variable as expression and can there-
fore be used to access a specific case. The while statement
makes sure that several cases can be accessed during each
activation. At the end of each case, the state variable is up-
dated to specify the next block to be executed, followed by
either a break or a return statement to continue to the next
case or to detach, respectively.

To generate a sequence of switch-cases from a coroutine
body, all control constructs, control statements, and detach-
ing method accesses each must be dissassembled into one
or more blocks which can be collected and concatenated to
form a single list of blocks for the whole body. A detaching
method call is inlined by replacing it by the corresponding se-
quence of blocks that makes up the associated method body.
Since control statements cause control to be transferred to
new switch-cases, these must be treated with just as much
care as calls to detach.

In order to convert Javasim statements into blocks, we
introduce the abstract CoStmt which is used to represent
blocks of Javasim statements. From CoStmt, separate classes
for control structures and control statements are derived each
of which can represent the corresponding Javasim statement
as a sequence of CoStmts. All Javasim statements that do
not require any special care with regards to control flow
is represented by a derived class called CoInst which can
represent a sequence of Javasim statements. Thus, the whole
body of doActivate can be represented by a sequence of
CoStmts.

For example, the following Javasim coroutine body:

void doActivate () {
if (isTrue()) {
detach () ;
System.out.println ("Hello, World!");

}

System.out. println ("Finished!");

Course paper, EDAN70, Lund University, Sweden

is converted into a CoIf followed by a CoInst. CoIf contains
a CoStmt representing the condition followed by a sequence
of CoStmts representing the body of the statement. The
following standard Java code is generated:

void doActivate () {
while (true) {
switch (statevar) {
case 0: {
statevar = (isTrue()) ? 1 : 3;
break ;
}
case 1: {
statevar = 2;
return; // detach
1
case 2: {
System.out. println ("Hello, World!");

statevar = 0;
}
case 3: {
System.out. println ("Finished!");
statevar = 0;
break;

1

A desugaring procedure is also applied in the conversion
to CoStmts. Desugaring makes sure that local variable decla-
rations are converted to variable assignments of the corre-
sponding field declarations and that uses of those symbols
are substituted accordingly. Also, detaching method calls
are transformed into assignments of corresponding parame-
ter field declarations followed by a CoStmt representing the
body of the inlined method.

Control statements all get their own derived CoStmt-class
and are transformed directly into instances of these. These
are CoBreak, CoContinue, CoReturn. Calls to detach are
transformed into CoDetach.

At the time of writing, while, for, and if statements
(including else if- and else-variations) are considered
by the implementation along-side the control statements
mentioned above. If-statements are converted into CoIf, for-
statements into CoFor, and while-statements into CowWhile,
respectively.

On these new node types, declared using abstract syntax,
attributes are defined in the abstract syntax tree allowing us
to reason in terms of CoStmt instead of standard Java state-
ments. Basically, each CoStmt has an attribute which deter-
mine its state (its index in the resulting list of CoStmt) which
can be used as a case label in the generated switch-statement.
Combining this with another attribute which determine the
next block to be executed in the sequence (preserving the
semantics of standard Java extended with the detach state-
ment) the state variable can be updated accordingly at the
end of each block.

Adam Ohlsson and Erik Leffler

In order to link this tree of CoStmts with the abstract syn-
tax tree produced by the parser, a non-terminal attribute (nta)
is placed on the AST-class ClassDecl defined by Extend]. The
nta evaluates to a new desugared version of type ClassDecl
which is used to generate the desugared code.

Code is generated by refining the prettyPrint method
for ClassDecl (defined in aspect PrettyPrint of Java4) to
evaluate the nta placed on ClassDecl described above and
to prettyPrint the desugared version of the class declaration
instead.

The prettyPrint method is used to convert an abstract
syntax tree into its corresponding source code.

5 Evaluation
5.1 Hospital simulation

A hospital simulation similar to the one demonstrated in
the motivating example section was provided to us by the
computer science department at Lund University at the start
of this project. The simulation was written in regular Java
code and has now been rewritten to utilize our compiler
extension. The result is code that is more concise and easy
to read. Listing 3 show the original doActivate method in
the Doctor class. The same method is displayed in listing 4,
rewritten to use the extension presented in this paper.

public void doActivate () {
while (true) {
switch (pCase) {
case "initial":
if (h.waitRoom.isEmpty()) {
h.coffeeRoom.add(this); // wait(
coffeeRoom)
return;
} else {
currentPatient = h.waitRoom.removeFirst
(O
h.log("Patient " + currentPatient + "
started treatment by " + this);
hold (Rand.exp(1/Hospital .treatmentTime))

pCase = "step2";
return;

}

case "step2" {// my timer, i.e. patient
treated
h.log("Patient

ended treatment by "

" + currentPatient + "
+ this);
pCase = "initial";
}
}
}
}

Listing 3. The Doctor coroutine body prior to utilizing the
presented extension.

public void doActivate () {
if (!'h.waitRoom.isEmpty ()) {
currentPatient = h.waitRoom.removeFirst () ;
h.log("Patient " + currentPatient + "
started treatment by " + this);

hold (Rand.exp(1/ Hospital . treatmentTime));

detach () ;
h.log("Patient " + currentPatient + " ended
treatment by " + this);
} else {
h.coffeeRoom.add(this);
detach () ;

}

Listing 4. The Doctor coroutine body after to utilizing the
presented extension.

Both simulations were executed with a seeded random
function and identical results were obtained. This strengthen
the validity of the compiler extension that is presented.

6 Related work

Today, coroutines are available in varying forms in several
modern general purpose programming and scripting lan-
guages. Alternatives compatible with Java are for example
through a language called Kotlin which claims interoper-
ability and a 100 % compatibility with existing Java-based
technology stacks, or alternatively by using a modified JVM
such as described by Stadler et al.[7].

7 Conclusion

A method for enabling the use of asymmetric coroutines in
Java was presented. By using a uniform activation method
and an inlining technique we allow the user to define stack-
less (non-recursive) coroutines. Whether the consequences
of stacklessness are acceptable is of course arguable, though,
statements have been made in the past that recursive corou-
tines are exceedingly rare [4] . Despite this, coroutines man-
ifest as classes and are therefore first-class objects and can
be moved around freely by the user.

There are several improvements that can be made on this
implementation. For example, only a handful of Java state-
ments have been considered and transformed into CoStmts.
More can easily be implemented by deriving new classes
from CoStmt and define a small number of attributes for
them. New Constructs can be added in a methodical way
with only a small overhead in terms of attributes and equa-
tions.

The current release generate a large number of states
where in many places adjacent states could be concatenated
into a single state. Such a state reduction algorithm is partly
implemented though, due to time constraints, have not been
completed.

Course paper, EDAN70, Lund University, Sweden

The most pressing improvement that is required for the
implementation to be taken seriously is the addition of error
checking and informative error messages. At the time of
writing, no such messages are given to the user and the user
is assumed to know the implementation in and out.

Generic constructs have not been considered at all.

Acknowledgments

We want to thank our supervisor Gorel Hedin for her support
and guidance during the execution of the project that lead up
to this report. We also thank Boris Magnusson for explaining
the coroutine concept to us, providing us with material and
discussing the desired functionality.

References

[1] Melvin E Conway. 1963. Design of a separable transition-diagram
compiler. Commun. ACM 6, 7 (1963), 396-408. https://doi.org/10.1145/
366663.366704

[2] Ana Lucia de Moura and Roberto Ierusalimschy. 2009. Revisiting

coroutines. ACM Transactions on Programming Languages and Sys-

tems (TOPLAS) 31, 2 (2009), 6.

Torbjérn Ekman and Gérel Heding. 2007. The jastadd extensible java

compiler. In Proceedings of the 22nd annual ACM SIGPLAN conference on

Object-oriented programming systems and applications. ACM, Montreal,

Canada, 1-18. https://doi.org/10.1145/2500828.2500843

[4] Dick Grune. 1977. A View of Coroutines. SIGPLAN Not. 12, 7 (July
1977), 75-81. https://doi.org/10.1145/954639.954644

[5] Gorel Hedin and Eva Magnusson. 2001. JastAdd - a Java-based system

for implementing front ends. Electronic Notes in Theoretical Computer

Science 44 (2001), 59-78. https://doi.org/10.1016/S0167-6423(02)00109-0

Christopher D Marlin. 1980. Coroutines: a programming methodology, a

language design and an implementation. Number 95. Springer Science

& Business Media.

Lukas Stadler, Thomas Wiirthinger, and Christian Wimmer. 2010. Ef-

ficient Coroutines for the Java Platform. In Proceedings of the 8th

International Conference on the Principles and Practice of Program-

ming in Java (PPPJ ’10). ACM, New York, NY, USA, 20-28. https:

//doi.org/10.1145/1852761.1852765

3

—_

G

—

[7

—

https://kotlinlang.org/
https://doi.org/10.1145/366663.366704
https://doi.org/10.1145/366663.366704
https://doi.org/10.1145/2500828.2500843
https://doi.org/10.1145/954639.954644
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.1145/1852761.1852765
https://doi.org/10.1145/1852761.1852765

	Abstract
	1 Introduction
	2 Background
	2.1 Coroutines
	2.2 JastAdd
	2.3 ExtendJ

	3 Motivating example
	4 Implementation
	5 Evaluation
	5.1 Hospital simulation

	6 Related work
	7 Conclusion
	Acknowledgments
	References

