
Extending the ExtendJ Java compiler with Java 9
support

Sebastian Hjelm
D13, Lund University, Sweden

dat13shj@student.lu.se

Markus Olsson
D13, Lund University, Sweden

dat13mol@student.lu.se

Abstract
This report covers our extension of the ExtendJ compiler
to cover parts of the Java 9 specification. We will discuss
the changes we have implemented and how they work in
detail. We have also made an evaluation which verifies that
our extension has little performance impact on the existing
compiler.

1 Introduction
ExtendJ is an extensible Java compiler which enables com-
piler developers to add new language features as an exten-
sion, without changing the existing compiler. The compiler
was initially developed with support for only Java 4 [2], and
it has been extended to support later versions, including
Java 7 [9] and Java 8 [6]. This report focuses on enhancing
this compiler with some of the new features that were added
in Java 9.
Adding new features to a language inherently requires

new code to be written, however depending on how the
existing compiler is implemented it can be more or less diffi-
cult to integrate. ExtendJ uses reference attribute grammars
(RAGs) [5] and aspect oriented programming to make it
easier to implement new features as an extension.

With RAGs semantic analysis can be implemented declar-
atively instead of imperatively. Attrbutes can be refined in
a module to change behaviour. Therefore, implementing a
new feature for ExtendJ usually only involves creating a new
module with extensions to the existing code. The only ex-
ception to this would be if some part of ExtendJ would need
to be refactored to make it easier to add the new module.
There are also other extensible compilers, like Polyglot.

Polyglot is another Java compiler, but has some notable differ-
ences to ExtendJ. Polyglot does not use RAGs to do semantic
analysis and it compiles to Java source code instead of byte
code [8].
In 2017 the specification for Java 9 was released, and in

order for ExtendJ to remain relevant and useful to research it
should be updated to support Java 9. The major new feature
in Java 9 is the module system, which allows archives of
Java code to have a predefined API that is the only visible
code from outside. The specification also contains a few
minor changes to Try-With-Resources, the @SafeVarargs

Course paper, EDAN70, Lund University, Sweden
December 22, 2017.

annotation, identifier names, etc. [4]. We have implemented
a few of the minor changes, but implementing the module
system would require too much work for this project.
There is no published work relating to a Java 9 compiler

since the specification is so new. However, there are cur-
rently two Java 9 implementations; the OpenJDK reference
implementation and a beta version of the Eclipse JDT.
This report focuses on the implementation of the minor

changes and the performance impact they cause. During the
project we found and reported a few issues in ExtendJ, these
are discussed in more detail in Section 3.

The rest of this report is organized as follows. In Section 2
we present the small language changes in Java 9 that we have
implemented. Section 3 discusses how these changes were
implemented and what problems we encountered. Section 4
contains an evaluation of the performance impact of the new
module and Section 5 discusses related work. The report is
concluded in Section 6.

2 Java 9 changes
Several of the changes that were introduced in the Java 9
specification are minor changes to existing language features.
We will briefly cover the changes that we implemented in
the following sections.

2.1 Try-With-Resources
Try-With-Resources (TWR) statements where added in Java 7
in order to make resource management simpler. The state-
ment automatically closes its resources when the control flow
leaves its body. The exception management is also improved
since the TWR handles any exceptions that may be thrown
during the initialization and closing of its resources. The
following example shows a common resource management
pattern in java, before the TWR was added in Java 7:
Reader r = null;
try {

r = new InputStreamReader(/*...*/);

r.read();

} finally {

if (r != null) {

r.close();

}

}

By using a TWR statement the code can be simplified; the
following shows equivalent code using Java 7:

1

Course paper, EDAN70, Lund University, Sweden Sebastian Hjelm and Markus Olsson

try (Reader r = new InputStreamReader(/*...*/)) {

r.read();

}

In Java 9 the TWR statements were extended to allow the
programmer to declare the resource variable before the try-
statement. The condition for this is that the variable must
be effectively final i.e. it is either final or only assigned once.
The resource also has to be assigned before the try-statement
ends. An example of this in action is as follows:
Reader r = new InputStreamReader(/*...*/);

try (r) {

r.read();

}

Here we create the resource before the try-statement. Also
note that the variable is not final, although it is only assigned
once.

2.2 SafeVarargs
@SafeVarargs is an annotation that was added in Java 7
to allow programmers to silence warning messages from
variable arity methods. When you declare a variable arity
method with a non-reifiable element type (i.e. a type that
cannot be determined at runtime) you will get a warning.
The following example demonstrates this:
<T> T[] toArray(T... objs) {

return objs;

}

This method takes a variable amount of generic objects and
puts them in a list. When compiling it you will get the fol-
lowing warning:
warning: [unchecked] Possible heap pollution from

parameterized vararg type T

The warning means that the method could possibly cause a
class cast exception by incorrectly using its argument. It is
used conservatively and will appear even if there is nothing
wrong with the code, like in the example above. If the im-
plementation is correct you do not want it to appear when
compiling. The annotation will solve this problem.

In Java 9 the applicability of the annotation was extended
to allow it to be used on private methods.

2.3 Underscore identifier
Compilers with support for Java 8 should emit a warning
when the programmer uses an identifier consisting of only
a single underscore. In the Java 9 specification the single
underscore has been reserved as a keyword. Now you will
get compilation errors for code that uses it as identifiers.

3 Implementation
We implemented the changes that we discussed in Section 2.
For each feature we started by writing small compliance tests.
We made sure that they compiled in OpenJDK 9 but not in

ExtendJ. We then implemented the changes to make the tests
compile. The following sections discuss our implementations
in detail.

3.1 Try-With-Resources
The extension to the Try-With-Resources statement affects
both the syntactic analysis, the semantic analysis and the
code generation. This meant that a lot of existing code was
involved during the implementation.

Our first idea was to extend the existing parser rules with
new productions and adding new nodes to the abstract syn-
tax tree (AST). It turned out that the change was not that
simple due to the underlying design of the existing code.

Previously the AST nodes where hard coded to use declara-
tions, since the TWR statements only accepted declarations.
By keeping the existing code unchanged the only thing we
could do about this was to add a new subclass to the resource
declaration and make it act like it was a resource reference.
The following code shows how this was implemented in the
AST node definition:

ResourceDeclaration : VariableDeclarator ::=

ResourceModifiers ResourceType:Access;

ResourceReference : ResourceDeclaration ::= ;

Since our resource reference was a declaration under the
hood it still interacted with the rest of the compiler like a
declaration which caused issues with type checking, name
analysis, code generation, etc. The code got really convoluted
and messy and in the end we had to decide to take another
route.

Our second and final solution was to simply rewrite most
of the existing code. Using the modularity of ExtendJ we
excluded some of the original files and reimplemented them
in a way that is more general. By doing this we could get
rid of the parse rules and AST node definitions that caused
problems with our first approach, while keeping most of the
attributes and the code generation. We wanted to reuse as
much of the existing code as possible.
After replacing the AST nodes the TWR statement now

used general statements in its resource list instead of variable
declarations which made it possible for us to implement
the new functionality. The structure we ended up with is
displayed in Figure 1.
Once the AST nodes were replaced and the parse rules

were rewritten we had to update some attribute definitions to
make it work with both resource declarations and references,
we did this by refining several attributes. At the same time
we also extended the semantical analysis to check that the re-
sources were valid variables, i.e. that they are effectively final
local variables that are subclasses of AutoCloseable [4].
Lastly we needed to update the code generation. After

some minor changes to adapt to the new AST-structure it
worked for the old type of resources with variable declara-
tions. The existing code needed the resources to be placed

2

Java 9 support for ExtendJ Course paper, EDAN70, Lund University, Sweden

Figure 1. The structure of our AST nodes for Try-With-
Resources. The classes within the dashed box are our addi-
tions.

inside a specific local variable for it to work. Previously this
was not a problem since the variables were declared inside
the try-statement and could therefore easily be stored into
the variable when generating code for it. Now on the other
hand the variable could have been declared much earlier
in the code meaning that its code generation is unrelated
to the try-statement. We handled this by simply loading its
value into the local variable that the try-statement used. The
following code implements this:
VarAccess access = resource.getExpr();

VariableDeclarator var = access.decl();

var.type().emitLoadLocal(gen, var.localNum());

var.type().emitStoreLocal(gen, resourceIndex);

In the above code resource is the resource variable (in
this case a variable access) and resourceIndex is the
memory position where the resource should be stored. The
code simply retrieves the declaration of the variable and tells
it to emit a load instruction followed by a store instruction
to copy the variable reference to the resource index, via the
stack.

3.2 SafeVarargs
Since the SafeVarargs annotation is only used during compi-
lation to suppress warnings the change to its applicability
only affects the semantic analysis of the compiler.
After writing the tests for this feature it was possible

to use their compile errors to track down where the code
needed to be changed. There was one single JastAdd attribute
responsible for validating the usage of the annotation. By
creating a new static aspect and refining the attribute we
could change its behaviour to fit the new specification, see
the code below.

refine SafeVarargs

eq MethodDecl.hasIllegalAnnotationSafeVarargs() =

SafeVarargs.MethodDecl.

hasIllegalAnnotationSafeVarargs() &&

(!isVariableArity() || !isPrivate());

Here we reuse the previous definition but also allow private
variable arity methods.

3.3 Underscore identifier
The change to make the single underscore a reserved key-
word only affects the lexical analysis of the compiler since it
changes how the input is tokenized.

Our first idea of how this could be implemented was to add
a new token to the scanner which consists only of an under-
score and giving it higher priority than the identifier token.
This is the same way other keywords are implemented. How-
ever, this solution turned out to be hard to implement due
to the optimizations that are performed when the ExtendJ
compiler is generated. Since the underscore keyword has no
valid use in the language the compiler generator optimizes
it away.
Our second idea was instead to modify the definition of

identifier tokens to exclude single underscores and this is
what we implemented in the end. Even though this simple
change at first glance seems trivial it turned out to be quite
tricky to get right.
The first problem was identifying in which source files

the identifier token is defined. Over the course of the dif-
ferent Java versions there have been many changes to the
lexical analysis in ExtendJ; in particular there have been mul-
tiple changes to the definition of identifiers. ExtendJ handles
this by including and excluding different files depending on
which Java version you are targeting which made it harder
to know which files are actually used.
The second problem was to include the new files in a

correct way. Macros and rules need to be ordered relative
to each other to make the scanner work correctly. If the
inclusion order is incorrect you will get obscure errors when
you build the compiler.
The final implementation was two small changes. First

we created new macros that define valid characters for Java
identifiers. We then used these definitions to redefine the
identifier token. See the code below:
character = ([:jletterdigit:]|[\ud800-\udfff])

start = !(!([:jletter:]|[\ud800-\udfff])|"_")

(("_")({character})+|({start})({character})*)

The character macro represents all characters that are
allowed in identifiers, while the start macro represents
all characters that are allowed as the first character in an
identifier, except for the underscore.
The identifier definition, on the bottom line, forces an

identifier to either start with an underscore followed by at
3

Course paper, EDAN70, Lund University, Sweden Sebastian Hjelm and Markus Olsson

least one other character or lets the identifier start with
anything but an underscore optionally followed by other
characters.

Note that:jletterdigit: and:jletter: aremacros
that are predefined in the compiler and correspond to any
identifier character and any identifier start character respec-
tively.

We also want to point out that in the real implementation
the macros and the identifier definition were put in different
files in order for the inclusion order to be correct.

3.4 Issues we encountered
During the implementation and evaluation we encountered
several issues with the ExtendJ compiler. All of them have
been reported. The following lists gives an overview of them:

• SafeVarargs with private methods was already imple-
mented. When we ran our compliance tests for the
changes to SafeVarargs we realized that they incor-
rectly compiled without error in ExtendJ 8.

• Misleading compiler error messages for SafeVarargs.
When the SafeVarargs annotation was used on pub-
lic non-static, non-final methods the compiler error
message was misleading.

• The property that defined the location of the Java li-
braries has been changed. When ExtendJ is starting
it tries to fetch the Java libraries using a built-in sys-
tem property that was removed with the release of
Java 9. This needs to be changed to point to the correct
directory

• Compiling some of the open source projects during
the evaluation resulted in ExtendJ crashing. The stack-
traces hinted that this happened due to infinite recur-
sion and nullpointer exceptions.

4 Evaluation
We wanted to ensure that our implementation works cor-
rectly without a significant performance impact. In order to
validate our extension we wrote some compliance tests to
verify that the extension adheres to the Java 9 specification.
We have also evaluated the performance impact by compar-
ing the compilation time with earlier versions of ExtendJ as
well as with the OpenJDK compiler. Finally we counted the
source lines of code (SLOC) of ExtendJ with and without our
extension to see if the amount of new code is reasonable.

4.1 Compilation speed
bitWhen comparing the compilation speedwemeasured only
for programs written in Java 8. The reason for this is that we
only implemented a subset of the Java 9 features and it does
not make sense to compare a compiler with partial support
for the specification with a complete implementation such as
OpenJDK 9. Instead we mainly compared our compiler with
ExtendJ 8 whichmakes it possible to determine if the changes

caused any overhead, but we also included a comparisonwith
OpenJDK 8.
The tests were performed by compiling different open

source projects (see Table 1) 30 times each and then comput-
ing 95% confidence intervals for their execution times. We
did this to be sure whether or not there was any statistically
significant overhead introduced by our extension. For each
of the test runs we measured the total running time from
startup of the compiler JVM to when the instance terminated
as well as the steady-state running time. The steady-state
running time is relevant to make sure that the performance
evaluation is statistically rigorous [3].
biThe results are summarized in Figure 2. As the figure

shows there is no statistically significant difference between
the compilation speed of ExtendJ 8 and our updated version
(except for a single project). However, there is a noticable
difference in performance compared to OpenJDK; we saw
similar differences in compilation time between ExtendJ and
OpenJDK as was presented in previous work [9].

When compiling Cayenne andAntlr ExtendJ crashedwhich
caused the compilation to halt, this is probably the reason
the compilation time decreased for those data points.

Project Revision SLOC
SLogic1 6ac825c 14787
Antlr f3b5ce1 34359
Checkstyle 49d74e7 51278
Corbertura 3b0cd52 52478
Ant 463d198 104270
Castor 442661e 166322
Argouml 19847 195363
Cayenne bf37208 198477

Table 1. The open source projects we used when measuring
the compilation time.

4.2 Java 9 compliance
In order to verify that our changes are compliant with the
Java 9 specification we wrote 22 test cases. The tests are
designed to use the new features in every possible way as
well as testing invalid use cases. An example of such a test
is as follows:
// Test illegal identifier name

// .result=COMPILE_FAIL

public class Test {

private void m() {

String _ = "_";

}

}

This test verifies that it is invalid to use underscores as iden-
tifier names; compiling it results in compilation errors.
1https://github.com/Sebastian-0/SLogic

4

Java 9 support for ExtendJ Course paper, EDAN70, Lund University, Sweden

Figure 2.Average compilation time and confidence intervals
when compiling the open source projects in Table 1.

We used ExtendJ’s regression tests repository2 as a frame-
work to write our compliance tests. They test many of the
features from Java 8 and below by verifying both that cor-
rect code compiles and runs, and that faulty code get errors.
We made sure that our compiler passes all the existing re-
gression tests. This process was almost seamless, however
some old tests needed to be changed since they used a single
underscore as an identifier.

4.3 Source lines of code
We analyzed the implementation size bymeasuring the SLOC
of our compiler extension and the base version of ExtendJ.
The measurements were made with CLOC [1] using custom
filters to include the scanner, parser and JastAdd files. The
results of the measurements are presented in Table 2. Clearly
the amount of new code is relatively small compared to the
total size of the compiler and corresponds roughly to an in-
crease in size of 0.80% which is reasonably small considering
the changes we have made. The SLOC used in the evaluation
was also made with CLOC.

Compiler SLOC
ExtendJ Java 8 38453
ExtendJ Java 9 38761

Table 2. The SLOC of ExtendJ with or without our Java 9
extension.

5 Related work
Currently the only other Java 9 compilers that we know of
are OpenJDK and Eclipse JDT, which is still in beta.
2https://bitbucket.org/extendj/regression-tests

Apart from ExtendJ there are several other compilers that
are implemented to be extensible, the following are some
examples.

• Polyglot - A compiler that compiles to Java code. The
idea is to compile an extended version of Java to ordi-
nary Java code that can later be compiled to byte code.
This compiler is designed to be extensible and make
it easy to add new language constructs and create do-
main specific languages [8].

• JaCo - An extensible Java compiler that is implemented
using a combination of concepts from functional and
object-oriented programming [10].

• Cetus - A source-to-source compiler designed to par-
allelize code. The base version of the compiler only
works with C code but it can be extended to work with
other languages [7]. Unlike ExtendJ this compiler does
not enable the programmer to add new language con-
structs to a language, instead it has a framework that
makes it parallelize code for many languages.

While all of these compilers features extensibility none
of them uses RAGs like ExtendJ. This goes to show that
there have been many different ideas on how to implement
modularity over the years.

6 Conclusion
We have implemented partial support for Java 9 in the Ex-
tendJ compiler and by doing this we have demonstrated that
the modularity of using RAGs works in practice. However
there have been some problems along the way.

While using RAGs in theory allows a compiler to be fully
modularized it also demands good code design and smart
code structure to work in practice. If the structure is not good
enough you may be forced to make more drastic changes.
When we first tried to implement the extension of the Try-
With-Resources statement we ran into this problem; in the
end we had to replace a lot of code rather than extending it
to make the extension work.
In contrast it was much easier to implement the changes

to the SafeVarargs-annotation: we only had to refine a sin-
gle attribute to make it work. Granted that the change was
a minor one this still shows how useful the modularized
framework can be.
Another drawback of using the modular design is that

every time a new Java version is released, another layer
of source code is added in the compiler. Every time this
happens it gets harder and harder for new developers to
orient themselves in the code. We had some problems with
this when we changed the definition of identifier tokens,
both with finding the relevant files and including the new
ones in the correct order.
We only implemented a subset of the new features that

were added in the Java 9 specification so there is much room
for future work. There are both some minor changes left

5

Course paper, EDAN70, Lund University, Sweden Sebastian Hjelm and Markus Olsson

to implement including changes to the diamond operator,
private methods in interfaces, etc. and the major addition of
the new module system. Future projects may also make a full
performance comparison between OpenJDK 9 and ExtendJ
to get a good idea of their relative performance. The last
such comparison was made when ExtendJ was extended to
Java 7.

Acknowledgments
Wewant to thank our supervisor for all his valuable feedback
and help during the project.

References
[1] 2017. CLOC. http://cloc.sourceforge.net. (2017). Accessed: 2017-12-05.
[2] T. Ekman and G. Hedin. 2007. The Jastadd Extensible Java Compiler.

SIGPLAN Not. 42, 10 (Oct. 2007), 1–18. https://doi.org/10.1145/1297105.
1297029

[3] A. Georges, D. Buytaert, and L. Eeckhout. 2007. Statistically rigorous
Java performance evaluation. In Proceedings of OOPSLA 2007. ACM,
Montreal, Canada, 57–76. http://doi.acm.org/10.1145/1297027.1297033

[4] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, and D. Smith. 2017.
The Java® Language Specification Java SE 9 Edition. (Aug. 2017).
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf

[5] Görel Hedin. 2000. Reference Attributed Grammars. Informatica
(Slovenia) 24, 3 (2000).

[6] E. Hogeman. 2014. Extending JastAddJ to Java 8. (2014). Student
Paper.

[7] S. Lee, T. Johnson, and R. Eigenmann. 2004. Cetus – An Extensible
Compiler Infrastructure for Source-to-Source Transformation. Springer
Berlin Heidelberg, Berlin, Heidelberg, 539–553. https://doi.org/10.
1007/978-3-540-24644-2_35

[8] N. Nystrom, M. Clarkson, and A. Myers. 2003. Polyglot: An extensible
compiler framework for Java. In Compiler Construction. Springer, 138–
152.

[9] J. Öqvist and G. Hedin. 2013. Extending the JastAdd extensible Java
compiler to Java 7. In Proceedings of the 2013 International Conference
on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, Stuttgart, Germany, September 11-13,
2013. 147–152. https://doi.org/10.1145/2500828.2500843

[10] M. Zenger and M. Odersky. 2001. Implementing Extensible Compil-
ers. In Proceedings of ECOOP 2001 Workshop on Multiparadigm Pro-
gramming with Object-Oriented Languages. https://infoscience.epfl.ch/
record/64402

6

http://cloc.sourceforge.net
https://doi.org/10.1145/1297105.1297029
https://doi.org/10.1145/1297105.1297029
http://doi.acm.org/10.1145/1297027.1297033
https://docs.oracle.com/javase/specs/jls/se9/jls9.pdf
https://doi.org/10.1007/978-3-540-24644-2_35
https://doi.org/10.1007/978-3-540-24644-2_35
https://doi.org/10.1145/2500828.2500843
https://infoscience.epfl.ch/record/64402
https://infoscience.epfl.ch/record/64402

	Abstract
	1 Introduction
	2 Java 9 changes
	2.1 Try-With-Resources
	2.2 SafeVarargs
	2.3 Underscore identifier

	3 Implementation
	3.1 Try-With-Resources
	3.2 SafeVarargs
	3.3 Underscore identifier
	3.4 Issues we encountered

	4 Evaluation
	4.1 Compilation speed
	4.2 Java 9 compliance
	4.3 Source lines of code

	5 Related work
	6 Conclusion
	Acknowledgments
	References

