Implementation of PQL in Java 8 using Extend]

David Akerman
D, Lund University, Sweden

dat12dak@student.lu.se

Abstract

Effective use of parallelism can improve performance, but it is
at the same time hard to get right. A solution to this problem
is to use language specially designed to make parallelism
easy, PQL is one such language. PQL is a query language
embedded in Java which tries to make parallelism easier for
the programmer by letting the underlying implementation
take care how the computation is done. PQL has only been
implemented in Java 6 and Java 9 has already been released.
The PQL language can be implemented in the extensible Java
compiler Extend] which is highly modular and more easily
updated when a new version of Java is released. We have
implemented a subset of PQL in Extend] and evaluated its
performance. We found that our implementation was a bit
slower than a parallel Java8 Streams in some benchmark, but
has the same performance in other benchmarks.

1 Introduction

Today parallelism is a important concept to achieve high
performance. Problem is that with traditional programming
models programming solutions which utilize parallelism is
not trivial, may introduce hard to find bugs like deadlocks
and race conditions. Also it generally complicates the code
which makes it harder to change later. A solution to this
problem is to use another programming language which
make it easy to utilize parallelism. Sequential computing is
still important though and should still be possible in this
language.

A answer is to embed a language which can handle parallel
computations well in a language which can handle sequential
computations. Examples of this is Parallel Language Inte-
grated Query(PLINQ)[2] and Parallel Query Language(PQL)[5].
Both PLINQ and PQL are declarative query languages which
is based on first order logic and let the programmer express
computations in terms of what should be computed instead
of how it should be computed. How the computation should
be done is instead decided by the underlying implementa-
tion. This makes it possible for the implementation to do
optimizations such as parallelization. PLINQ is a Microsoft
solution which is embedded in .Net languages and PQL is
embedded in the Java 6 language. Another solution that is
not a query language is to do computations with streams
were StreamJIT[6] and Java 8 streams are some examples.
Instead of queries you modify a stream with a sequence of

Course paper, EDAN70, Lund University, Sweden
January 15, 2018.

Yu Zhang
Lund University, Sweden
yu.zhang.7161@student.lu.se

map, filter and reduce operations.

PQL was implemented directly in the javac compiler by mod-
ification of the already existing code base by Reichenbach[5].
Modification of the javac code is a problem because for each
new release of the java language the new javac compiler
needs to be rewritten. It is proposed that instead of rewriting
the javac compiler for each new release, the Extend] compiler
is extended with PQL instead. Extend] is an extensible Java
compiler which lets you extend the Java language by chang-
ing the grammar, adding tokens and implementing semantic
analysis with the Jastadd reference attribute grammar. In
this project we implement a subset of PQL for Java 8 with
Extend]. This implementation is evaluated by comparing the
performance of this solution with three different types of
code, ordinary for loops, Java8 Streams and the original PQL.

2 Language

PQL is a query language which is based on first order logic
and use operators such as "and" and "or", as well as quantifiers
such as "exists" and "forall". PQL reserve the keywords query,
reduce, forall, exists and over. With PQL you can use query
to create new collections by doing intersections and unions
of already existing collections with additional conditions
which filter out specific elements. Collections which PQL
support is map, set and array. PQL also use the higher-order
function reduce with the keyword reduce. At the current
implementation the PQL language act as an extension to the
Java language. It lets a Java-expression(JAVA-EXPR) be an
PQL query (QUERY).The query has the production:

(QUERY) ::= (QUANT-EXPR)
id

l (JAVA-EXPR)

| (QEXPR)

A quant-expression has the production:
(QUANT-EXPR) ::= (QUANT) (ID) *:’ (QUERY)

| query ‘C (MATCH))’ *:’ (QUERY)

| reduce ‘Cid)’ (ID) [over (ID-SEQ)] : (QUERY)

(QUANT) ::= forall
| exists

The quant expression forall will check if a variable fulfills
a condition for all of its possible values and exists check if at
least one possible value of the variable fulfill the condition.
Both of these quant expressions will evaluate to a boolean
value. A simple example of a forall quant-expression is:

Course paper, EDAN70, Lund University, Sweden

forall x: 2+xx == x + X

This expression will check if the variable x multiplied with
2 is is equal to x added with x for all possible values. This
is of course always and will evaluate to the value true. A
similar example for exists is:

exists x: X % 2 == 2

This will test if there exists a integer x divided by 2 with
a remainder of 2. This is not true for any integer so it will
evaluate to false.

A query has the non-terminal symbol MATCH and it has
a production for each of the supported collections:

(MATCH) = ‘Set’ *.” ‘contains’ ‘C {ID) ‘)’
| ‘Map’ ‘.’ ‘get’ ‘(’ (ID) °)’ ‘==" (ID) [default (QUERY)]
| ‘Array’ ‘[’ (ID) ‘1’ ‘==’ (ID)

A concrete example of a query quant-expression is:

query (Set.contains (person)):
(students.contains (person) ||
teachers.contains (person))
&& person.country == India

This query will do a union of the set of students and the
set of teachers and filter out every person which does not
come from India. So in the end we will get a set of every
student and teacher from India.

A reduce require a reduce function with a method signa-
ture "public static T r(T, T)". Other requirements of function
is that it is associative, commutative and that T is unambigu-
ous. To get more specific details about the reduce function
check the original PQL report [5].

A reduce can be written like:

reduce (sum) tax: taxes.contains(tax) &&
tax > 1000

This reduce will evaluate to the sum of all taxes that is
over 1000.

In PQL there is a specific expression called Q-expression
which can use logical variable in the quant-expression and
is without side-effects. Ordinary Java expressions can also
be inside a quant-expression but they can not use logical
variables. A Q-expression has the production:

(QEXPR) ::= ‘(" (QUERY) ‘)’

| (QUERY) (BINOP) (QUERY)

| (QUERY) instanceof (JAVA-TY)

| (UNOP) (QUERY)

| (QUERY) ‘“? (QUERY) ‘:’ (QUERY)

| (QUERY)".” ‘get’ " (QUERY) *)’

| (QUERY) ‘[’ (QUERY) ‘T

| (QUERY) ‘.’ ‘contains’ ‘(" (QUERY) ‘)’

| (QUERY) “.’ id

| (QUERY) ‘.’ length
| (QUERY) ‘.’ size ‘(" ‘)’

David Akerman and Yu Zhang

The Q-expression is very similar to a ordinary Java-expression.

Differences is that a Q-expression does not have method calls
but instead have cases for some specific collection methods
such as contains, size etc. <BINOP> is ordinary binary oper-
ations found in Java with the addition of implication as "=>"
and UNOP is unary operations found in Java.

A feature in PQL is that the logical variable in a quant-
expression can be either implicit or explicit typed.
(ID) == id

| (JAVA-TY)id

In case of a implicit type the range of values used is in-
ferred by statically analyzing the <QUERY> in the quant-
expression. When a explicit type is used the behavior is
different depending on the type. If Int is used the conditions
is evaluated for each of the possible 232 values, the same goes
for booolean and enum. For float, double and reference the
condition is evaluated for each live value/object with the spe-
cific type on the Java heap. To get a more detailed description
and some more examples check the original work[5].

3 Implementation

The implementation of PQL is largely based on the Extend]
framework. Like other compilers, this implementation can
be divided into five parts: lexical analysis, syntactic analysis,
semantic analysis, code generation and optimization.

For the simplicity, we changed the grammar slightly and
only implement a part of the PQL. For one thing, in the
original PQL definition, the java expression is parallel with
the quant expression and both the two kinds of expression
belong to query, which means they should have the same
priority. However, in our implementation, quant expression
is implemented as a subset of java expression to avoid too
much modification in Extend]. For another, our PQL can only
support two sorts of quant expressions: exists expression
and query expression with set.

3.1 Lexical Analysis

The main problem we need to solve is to eliminate the ambi-
guity caused by PQL keywords.
Consider the following PQL statement:

query (Set.contains(x)): x == 0
And the normal Java statement as below:
Set<String> s = Collections.emptySet();

The token "Set" may have different meaning when PQL is
implemented based on Java, either a keyword or an implica-
tion of the Set interface. The solution to this ambiguity is to
define a new lexical state in the scanner that has different
actions than the default state. In detail, the scanner changes
its state from the default state to query-state (the new state
defined) when it meets the token "query" and alters from

Short Title

query-state to the default state after the ":" token. Accord-
ingly, the token "Set" generates a keyword in the query-state
while an identifier in the default state.

3.2 Syntactic Analysis

Firstly, several new classes are defined according to the PQL
grammar.

We defined an abstract class Query to be a subclass of Expr
and a class QuantExpr to be a subclass of Query. Although
this seems redundant at this moment, it is necessary for the
future extension. There are two subclasses of QuantExpr
that are defined as below:

QueryQuantExpr : QuantExpr ::= Match Expr;

QuantQuantExpr : QuantExpr ::= CM Expr;

The QueryQuantExpr and QuantQuantExpr correspond-
ing to the query expression and exists expression respec-
tively. To complete the grammar, we defined the class Match
and CM as well.

abstract Match;

SetMatch : Match ::= CM;

Currently, since we only support the query for sets, there is
only one subclass of Match: SetMatch. However, it is exten-
sible to support MapMatch and ArrayMatch in the future.

CM = Modifiers TypeAccess Declarator;

The class CM is similar to a variable declaration so we took
usage of the Modi fiers, TypeAccess and Declarator that are
classes already defined in Extend] to make PQL more com-
patible to Extend] and easier for semantic analysis.
Secondly, new production rules are added to parse the PQL
expressions.

For the query expression, the rule is:

query_expr — QUERY (match) : expression

In the rule above, JQUERY”, ”(”, ”)” and ” : ” are terminal
symbols while match” and "expression” are non-terminals
symbols. Accordingly, the class QueryExpression contains
two children: one is a match, another is an expression. The
match will decide which kind of data type the query will
create and the expression is the rule that the query will base
on. When this rule is met, the parser will return an instance
of QueryExpression.

Similarly, the production rule for exists expression is:

exists_expr — EXISTS cm : expression

In this rule, JEXISTS” and ” : ” are the keyword symbols.
Meanwhile, a ¢cm and an expression are component that
will determine how the exists expression works. The non-
terminal symbol expression that appears in both rules for
query expression and exists expression is a normal java ex-
pression. match and cm are elements in PQL. To complete

Course paper, EDAN70, Lund University, Sweden

the context free grammar, we included the rules for match
and cm as well.
match — SET . CONTAINS (cm)

cm — type? declarator

Since c¢m is similar to a java variable declaration, we reused

the type and declarator from the original Extend]. Finally,

to implant the PQL in Extend], we added a production rule

to post fix_expression. Not only can post fix_expression de-

rive from primary, name, postincreament_expr or postdecrease_expr,
it can also derive from query_expression now since query_expression
should have the same precedence as these elements after our
modification of the grammar.

3.3 Semantic Analysis
3.3.1 Type Analysis

Our quant-exppressions make use of ordinary Java-expressions
instead of Q-expressions. Which means that many analyzes
are already implemented in Extend] including Type Analysis.
So with only some small additions we got several compiler
checks for our quant-expressions.

3.3.2 Name Analysis

The query expression uses different lexical scope from the
normal java expression because the variable in the expression
part of a query expression can either be defined before this
query expression or in the match part of this query expression.
Therefore, when the name checker looks for declaration for
a variable in a query expression, it should take the match
part of this query expression as well.

3.3.3 Set Analysis

Because query expression need to have at least one set to
iterate over at the start when it should filter the set. We sim-
plify this compared to the original PQL by require that there
is a call to the method contains in the expression of a query.
By analyzing this call we can retrieve a set which we can
iterate over. If no set is found we get a compiler error. There-
fore, we defined a new attribute getContainSet() for the node
QueryQuantExpr and QuantQuantExpr. This attribute will
return a list of all the sets that used as theSet.contains() in the
expression part. Moreover, a collection attribute will throw
an error to the error list if the attribute getContainSet() is
null.

3.4 Code Generation

To generate code for PQL, the strategy is to transform the
quant expression to an equivalent stream expression and
then we let the already existing Extend] code generate Byte-
code for the stream expression.

For a query expression, we use a parallel stream to iterate
over a set and filter the elements in this set based on the ex-
pressions of the query_expression. In detail, the main struc-

ture of the stream_expression will be someSet.stream().paralell(). filter(s

Course paper, EDAN70, Lund University, Sweden

someExpr). The someSet is one of the sets in the expressions
of original query expression and someExpr is the expressions
without the someSet.contains(). For example, the query ex-
pression below:

query (Set.contains(x)): s.contains(x) && x==

will be translated to:

s.stream (). parallel (). filter (x —> x==0)
.collect(Collectors.toSet())

Both of the two expressions above are to create a new set
composed of the elements that belong to the set s and equal
to 0.

In the transformation, what we need to know is the set
to be iterated, the remaining expressions and the type of
elements in the set. Firstly, for the set to be iterated, the
first set in the attribute setAllContains() will be picked out.
Secondly, for the remaining expressions that will be used
as the filter conditions, we create a new attribute called
exprRemoveOneContain() that we use to replace the con-
tain method call for the set we iterate over with the boolean
literal true (because it will always be true anyway). Thirdly,
because type inference in lambdas is not fully supported,
the type of lambda expression need to be specified with
a cast. Attribute predicateType() will use the elements in
setAllContains() to get the callers of contains(). The caller
is either a method call or a set and the element type is acces-
sible by the attribute type() of the method call or the set. For
a exists expression we have a similar approach as query but
we use the stream method anyMatch instead of filter.

4 Evaluation
4.1 benchmarks
There are four benchmarks that we use to evaluate the perfor-
mance of PQL: webgraph, threegrep, setnested and setexists.
The first three of them are was also used in the performance
evaluation of the original PQL implemented in Javaé6. The

fourth benchmark is a new one. We ran the benchmark on a
Intel core i7 2.9GHZ.

e webgraph

Set <Webdoc> documents;
documents = Generator.documents;

result =query(Set.contains (Webdoc doc)):

documents. contains (doc)
&& exists link:
doc.outlinks.contains (link)
&& exists link2
link . destination
.outlinks.contains (link2)
&& link2 .destination == doc;

David Akerman and Yu Zhang

link to the first webdocument. So webdocs that links
to itself through another webdoc.
o threegrep

result = query(Set.contains(byte[] ba)):
data.contains (ba)
&& exists j:
ba[j] == ((byte) '0")
&& ba[j + 1] == ((byte) '1")
&& bal[j + 2] == ((byte) '2")
&& index.contains(j);

Threegrep is simpler than webgraph. It will search for
the byte array that contains "123" in a series. We did
a little change to it because the original version does
not have set.contains() in exists part which is a must
in our implementation. But the function of the query
remained the same.

e setnested

result = query(Set.contains(int x)):
generatedSetl.contains (x)
&& x < 10
&& generatedSet2.contains (x);

Setnested calculate the intersection of two large data
sets. It is easy to understand that this leads to much
computations for large sets.

e setexists

result = exists int x:
generatedSetl.contains (x)&&
generatedSet2.contains (x)&&
generatedSet3.contains (x)&&
generatedSet4 .contains (x)&&
generatedSet5.contains (x)&&
generatedSet6.contains (x)&&
generatedSet7 .contains (x)&&
generatedSet8.contains (x)&&
generatedSet9.contains (x)&&

generatedSet10.contains (x)&&

X < 10;

4.2 Evaluator

e Manual for loop

Setexists is to check whether there is an element that ten
large data sets have in common and that is lower than 10.

Besides our PQL, we used five other evaluators to run the
benchmarks and compared the results with each other.

Webgraph carries out a complex computation. It will
find webdocuments which link to webdocuments which

What a PQL expression can calculate can also be done
by for loop equivalently. This evaluator use for loops
with a single thread.

Short Title

e Parallel for loop
This use for loop as well, but use multithreading with
4 threads.

o Stream
This use Java8 Streams to do the computations.

e Parallel Stream
This use Java8 parallel Streams. Only the outermost
stream is parallel. Use 4 threads. A bit different than the
streams which we generate in our PQL implementation
which all will be parallel streams.

e Original PQL in Java6
This is the PQL implemented in Java6 that does not use
the stream. It use 4 threads. Was not used for setexists.

4.3 Results

The plots below show the results of different evaluators with
different benchmarks. Each column corresponds to one of
the evaluators and the bar of our PQL implementation is
in red while the others are in blue. The height of each bar
means the average time to complete. According to Andy
Georges[3] non-determinism due to JIT compilation, thread
scheduling and garbage collection makes Java performance
hard to quantify. So to get a reliable result we run the cal-
culations 60 times, ignore the time for the first 10 iterations
and take a average of the time for the 50 following. There is
a vertical black line on the top of each bar which represents
the confidence interval of the average result(in some cases
to small to be visible).

Webgraph Benchmark test Intel Core i7 2.9GHZ (macbook pro)

Figure 1. The performances of evaluators on webgraph

From this picture, our PQL outdoes the manual for loop that
is the baseline. However, it is a little slower than parallel for
loop, parallel stream and the PQL in Javaé6. The difference
between the performance of our PQL and parallel stream
is caused by the many parallel streams which cause some
overhead.

Course paper, EDAN70, Lund University, Sweden

Threegrep Benchmark test Intel Core i7 2.9GHZ (macbook pro)

Figure 2. The performances of evaluators on threegrep

In this case, we can see that evaluators which use streams
is the slower bunch. A possible explanation can be that the
streams do not evaluate the conditions in the more opti-
mal way. As before the overhead of using to many parallel
streams makes our PQL slower.

Setnested Benchmark test Intel Core i7 2.9GHZ (macbook pro)

Figure 3. The performances of evaluators on setnested

There is many computations in this benchmark due to the
large sets used but the logic for the benchmark is pretty
simple. This benchmark only need one stream which means
that parallel stream and PQL should generate the same code.
As can be seen the confidence interval is a bit bigger. So our
PQL has the same performance as parallel streams in this
benchmark. Parallel stream seems to perform better overall.
This benchmark is not as intensive as the other benchmarks
before, which may expalin the sub par performance of the
original PQL. The original PQL assumed that using several
threads would not gain anything, so it only used 1 thread.

Course paper, EDAN70, Lund University, Sweden

Setexist Benchmark test Intel Core i7 2.9GHZ (macbook pro)

Figure 4. The performances of evaluators on setexists

As the benchmark before only one stream is used. This
result is pretty similar to the previous benchmark as well.

performance-threads plot

ggggggggggggggg

Figure 5. The performances of evaluators on webgraph with
different number of threads

In this graph we see performance of evaluators for the
webgraph benchmark with different number of threads. In
the case of 1 thread the evaluators use the code of the parallel
version but with only one thread.

5 Related work

The original work by Reichenbach [5] is most related to
our work. In that work they designed the PQL language,
implemented it in Java 6 and evaluated the performance.
Our work has a smaller scope and only implement a part
the language. Other difference is that we implemented the
language as a extension to Extend] unlike the original work
which was implemented by modifying the Javac compiler.
Many of the benchmarks we use in the evaluation are the
same as in the original work but we compare the implemen-
tation to other solutions for example in the original work
they evaluate the performance on mysql and haddoop and
in our work we evaluate the performance of Java Streams.
As far as solutions that tries to solve the same problems as
PQL the biggest contenders are Java Streams and PLINQ for
C#. Unlike PQL Java Streams are a library in Java instead
of a language. Java Streams lets you express computations

David Akerman and Yu Zhang

with a chain of method calls on a stream object. The dif-
ference between how parallelization is handled with Java
Streams is that the programmer need to use parallel stream
as well as use a collection that can handle concurrent ac-
cess to get parallel computations. PQL will automatically
parallelize computations. Another advantage of PQL is that
it will automatically reorder filter conditions at runtime to
get better performance, this is not done with Java streams.
PLINQ is also query language like PQL but PLINQ has syntax
that closely resemble SQL with syntax like "select”, "from”",
etc. PLINQ also require the programmer to specify which
collections traversal is done in parallel[2]. Other solution
that use the approach of using streams is Streamlt [6] and
StreamPI[4]. Streamlt is programming language which was
implemented as a extension to a Java compiler and use mes-
sages sent with a FIFO-queue through filters and streams to
do computations. StreamPI is a library for Ada and C++ and
use a similar approach as Streamlt.

6 Conclusion

We have implemented a subset of the PQL language as a ex-
tension to the Extend] compiler. Our version of PQL is able to
do intersection of sets as well as filter sets with several con-
ditions with the additional requirement that the expression
inside a query contains a set calling the method contains. The
quantifier exists was also implemented. Our implementation
transform each query into the corresponding Java parallel
Stream, which later is transformed to the correct byte code
by the compiler. Our evaluation results show that our PQL
implementation is a bit slower than Java Streams, the origi-
nal PQL implementation and parallel version with for-loops.
That our implementation is slower than Java Streams can be
explained by the fact that we parallelize each of our streams
which will create many threads which each add extra over-
head that slow down the computations. Our work show that
it is possible to implement subset of the PQL language in
Extend], but we think that most the PQL frontend could be
implemented as well. Extending Extend] with the rest of
PQL language could be done as a future work. Generating
immediate language code for PQL(PQIL) that can be used by
the runtime introduced in "A Backend Extension Mechanism
for PQL/Java with Free Run-Time Optimisation"[1] to get
better performance could also be done.

Acknowledgments

First we would like to thank Christoph Reichenbach which
helped us throughout the project. Also we would like to
thank Jesper Oqvist for showing us alternative solutions
when we encountered bugs in Extend].

References

[1] Hilmar Ackermann, Christoph Reichenbach, Christian Miiller, and Yan-
nis Smaragdakis. 2015. A backend extension mechanism for PQL/Java

Short Title

[2

]

(3]

(4]

5

[6

—

—

with free run-time optimisation. In International Conference on Compiler
Construction. Springer, 111-130.

J Dufty and E Essey. 2007. Running queries on multi-core processors.
MSDN Magazine (2007), 133-142.

Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically
rigorous java performance evaluation. ACM SIGPLAN Notices 42, 10
(2007), 57-76.

Jingun Hong, Kirak Hong, Bernd Burgstaller, and Johann Blieberger.
2012. StreamPI: a stream-parallel programming extension for object-
oriented programming languages. The Journal of Supercomputing 61, 1
(2012), 118-140.

Christoph Reichenbach, Yannis Smaragdakis, and Neil Immerman.
2012. PQL: A Purely-Declarative Java Extension for Parallel Program-
ming. Springer Berlin Heidelberg, Berlin, Heidelberg, 53-78. https:
//doi.org/10.1007/978-3-642-31057-7_4

William Thies, Michal Karczmarek, and Saman Amarasinghe. 2002.
Streamlt: A language for streaming applications. In Compiler Construc-
tion. Springer, 49-84.

Course paper, EDAN70, Lund University, Sweden

https://doi.org/10.1007/978-3-642-31057-7_4
https://doi.org/10.1007/978-3-642-31057-7_4

	Abstract
	1 Introduction
	2 Language
	3 Implementation
	3.1 Lexical Analysis
	3.2 Syntactic Analysis
	3.3 Semantic Analysis
	3.4 Code Generation

	4 Evaluation
	4.1 benchmarks
	4.2 Evaluator
	4.3 Results

	5 Related work
	6 Conclusion
	Acknowledgments
	References

