
Extending Simplic with an LLVM backend
Project in computer science, EDAN70

January 16, 2017

Kasper Bratz
Lunds Tekniska Högskola
dat12kbr@student.lu.se

Erik Hedblom
Lunds Tekniska Högskola
tpi11ehe@student.lu.se

Abstract
This paper explores the concept of extending an already existing
compiler with a back-end for generating LLVM-intermediate code
in place of x86-assembler code. A LLVM back-end will be written
for an existing compiler for the the language SimpliC, a bare bones
implementation of C, to examine what benefits can be made using
LLVM. The SimpliC language will also be extended with some new
functionality to compare complexity of implementation for x86-
assembly and LLVM.

1. Introduction
When implementing a compiler there are a several important deci-
sions to make and one of those is how to implement code gener-
ation. The compiler could use an intermediate representation (IR)
to facilitate modularization, where the different modules use the
IR as the common format. Another choice is whether to to target
assembly directly or another lower level language, such as C.

LLVM is a compiler infrastructure with the goal of providing a
strategy for optimizing and generating code for arbitrary program-
ming languages [5] described further in section 3. The main focus
of this article will be to explore the differences of using LLVM in-
termediate representation instead of X86-assembly as the target for
code generation in a compiler.

To explore the potential benefits of using LLVM we decided
to implement a LLVM back-end for an existing compiler for a
language called SimpliC, a bare bones implementation of the C
language further described in section 2. The existing compiler for
SimpliC is implemented to generate unoptimized x86-assembly
code, making it an ideal starting point to investigate the gains
from optimizing code with LLVM. This paper will also briefly
investigate the complexity of implementing a compiler back end
in x86-assembly and LLVM-IR. To do this we will extend SimpliC
with several features while taking note of what problems arise when
implementing.

In addition to trying to asses how easy or difficult it is to im-
plement a back end using LLVM-IR or x86-assembly as the target,
we will also evaluate performance of both back ends. Performance
will be measured in run time of the compiled programs, compila-
tions time and the size of the binary output files. The result of our
evaluation can be found in section 6 should convince you of the
superiority of using LLVM.

2. The SimpliC compiler
The SimpliC compiler is a lab compiler developed in and used in
the compiler course at Lunds Tekniska Högskola. It implements
a subsets of the C language and only supports one data type,
integers. Furthermore it supports variables, functions, if and while

statements, Boolean and arithmetic operations. It is implemented
in Java.

2.1 Scanner
The scanner is implemented using JFlex, which is a scanner gen-
erator implemented in Java[3]. This scanner is used for our lexical
analyze.

2.2 Parser
A grammar on Extended Backus-Naur form, EBNF, is used to
specify the SimpliC language and from the EBNF grammar the
parser is generated. The parser generation is facilitated by Beaver,
a Java LALR parser generator.

2.3 Code generation
The SimpliC compiler performs no optimizations and outputs x86-
assembly. The x86 assembly code is generated from the abstract
syntax tree using JastAdd which is a meta compilation system
which supports reference attribute grammars[2]. Before generating
code the SimpliC compiler also does some basic static analysis like
checking number of arguments in function calls and name analysis.

3. LLVM
LLVM is a compiler infrastructure with the aim to supply a multi-
platform strategy for compilation and was originally created to be
used as a replacement to the existing code generator in the GCC
stack. Today LLVM works as a large framework for compiling and
optimizing software, providing a source and platform independent
optimization strategy.

The LLVM infrastructure was designed to solve some problems
of traditional compiler strategies, where code was represented as
either high level abstract syntax trees or very low level assembly,
not allowing for aggressive multi stage optimizations. [5].

LLVMs approach to these problems were the LLVM intermedi-
ate representation, a code representation similar in abstraction level
to the assembler language while still including high level constructs
for data flow, control flow, and type information. [5]

The LLVM-IR language is constructed with optimization and
flexibility in mind and is designed to facilitate LLVMs multi-stage
optimization system [5]. LLVM currently supports compile-time,
link-time, run-time and idle-time optimization, providing high per-
formance optimization. LLVM-IR is a cross-platform representa-
tion, abstracting away most machine specific instructions and can
today be assembled to most common hardware architectures.

4. Implementing the LLVM back-end
There are a couple of key differences making LLVM-IR code gen-
eration both easier and more complex as opposed to x86 assembly
generation. First of all LLVM-IR requires all register variables to
be on single static assignment (SSA) form[4]. SSA-form require
each variable to be defined exactly once and each use of a variable
must be dominated by it’s definition[1], meaning a variable must be
defined before it can be used. We have circumvented part of this re-
quirement by explicitly allocating all named variables in the stack
frame, using the alloca instruction. By doing it this way we do not
have to translate the variables to SSA-form. Only temporary vari-
ables introduced by the compiler have to be on SSA-form and since
those are only used within a single basic block we can also avoid
using Phi-functions, a way to determine what value a variable in
SSA-form should assume after e.g a conditional expression.

An example of how variables are stored in LLVM could look
like

/ / A s s i g n m e n t o f 1 t o t h e v a r i a b l e a .
%a = a l l o c a i 3 2
%tmp1 = add i 3 2 0 , 1
s t o r e i 3 2 %tmp1 , i 3 2 ∗ %a

Secondly LLVM has a higher abstraction level than x86-
assembly, providing some higher lever constructs such as functions,
if and while statements. These constructs correspond very well to
the C equivalents, making them easy to implement. Furthermore
LLVM-IR overloads functions[4] and hides register types. This did
not have much impact on the original SimpliC LLVM back end
since it only handled integers, but when we moved forward with
implementing booleans and floating point values it eased imple-
mentation. This because we didn’t have to worry about what regis-
ters to put what type of values in, like we did when working with
x86. For instance integers and floating point values sometimes had
to be stored in the same registers but had to have different math-
ematical operations applied to them. Instead, when working with
LLVM, we could use typed variables to handle this problem.

We implemented SimpliC’s predefined print functions in C,
making standard library and which all programs are linked against
during compilation. For consistency we also removed the x86-
assembly implementations of the predefined functions and linked
against the same library.

5. Extending SimpliC
With two working back ends we set out to extend the simpliC
compiler with new functionality, including floats, booleans and
structs.

5.1 Booleans
With the inclusion of Booleans, variables that can only evaluate to
either true or false, the simpliC language now supports expressions
like

b o o l e a n a = t r u e ;
b o o l e a n b = f a l s e ;
whi le (a){ ∗ / S t a t e m e n t s /∗ }

When implementing booleans for the LLVM back end we uti-
lized the built in typ i1, a 1 byte type used for boolean values. In
the x86 back end we represent booleans as integers with either 0 or
1 values.

5.2 Floating point values
The initial version of the simpliC only supported integer values.
With the inclusion of floats we can now write statements like

f l o a t a = 1 . 7 ;
f l o a t b = 1 . 2 ;
a = a+b ;

LLVM supports a full instruction set for floating point values
letting us implement floats in a similar way as booleans, using the
float keyword instead.

In order to include floating point values in the x86 back end all
floating point constants had to be pre-defined as quad-words like

. FLOAT X :
. long 1717986918
. long 1074816614

where the floating point value is represented as two 32 bit inte-
gers, with the first value representing the 32 most significant bits,
and the second the least significant bits. These values when con-
catenated and interpreted as a double precision float represent our
value. These values can then be handled within the xmm registers
of x86.

In both the x86 and LLVM back end we were also forced to use
different instruction sets when performing arithmetic operations on
floating point values.

5.3 Structs
With the inclusion of structs the SimpliC language now supports
C-like variable containers like

s t r u c t foo = {
i n t a ;
boo l b ;
f l o a t c ;
s t r u c t b a r = {

i n t a ;
i n t x ;

} ;
} ;

Accessing these variables is done by navigating through the
struct using dot notation like

foo . a = 1 ;
foo . c = 1 . 1 ;
foo . b a r . a = 1 ;
p r i n t I n t (foo . b a r . a) ;

The most time consuming part of implementing structs for Sim-
pliC was actually extending the front end of SimpliC. Making sure
the scanner and parser correctly handled structs and that the ab-
stract syntax tree had the required helper functions. What we did
when implementing the x86 back end was to save field in the structs
as regular variables, but made sure struct field access after this point
pointed to the right memory address. In the LLVM back end fields
in structs were instead saved with the dot notation they would later
be accessed with.

s t r u c t a = {
i n t x ;

}

/ / Saved as
%a . x = a l l o c a i 3 2

The last problem we had to deal with in both back ends was
how to pass structs as arguments. What we ended up doing was to
simply ”flatten” the struct to its individual fields, passing them one
by one as arguments. Thanks to some previous work with the AST
the arguments maintained their addresses/full names.

6. Evaluation
Evaluating the new LLVM back end in comparison to our existing
x86 back end was performed in two steps. First we evaluated the
performance of our compiler and generated code. Secondly we
evaluated the complexity of the back end implementations. This
was done similarly to other evaluations of LLVM back ends.[6]

The complexity of the back ends will primarily be interesting for
developers wanting to implement their own back end, while code
performance will be interesting for users of the compiler.

6.1 Performance evaluation
When evaluating performance of our generated code we considered
run time, but also other metrics such as compile time and size of the
compiled code. To test these metrics we introduce two test suites,
T (1) and T (2).

• T (1)

Test suite 1 consists of compiling and running a source code file
with a very naive implementation of the Fibonacci sequence.

i n t main () {
i n t n = 4 0 ;
i n t i n d e x = 0 ;
whi le (index<n){

p r i n t I n t (f i b o n a c c i (i n d e x)) ;
i n d e x = i n d e x +1;

}
re turn 0 ;

}
i n t f i b o n a c c i (i n t i){

i f (i == 0){
re turn 0 ;

}
i f (i == 1){

re turn 1 ;
}
re turn f i b o n a c c i (i −1) + f i b o n a c c i (i −2);

}

The Fibonacci sequence is implemented with a running time of
O(2n). T (1) was run for n = [35, 40, 41, 42, 45].

• T (2)

Test suite 2 consists of compiling a very large source code file
generated to be filled with identical methods, each method is
called once and the result is printed.

i n t f0 () {
i n t i = 0 ;
boo l b = t r u e ;
f l o a t f = 0 . 0 ;
whi le (i < 1000) {

i f (b) {
i = i + 1 ;
b = f a l s e ;

} e l s e {
b = t r u e ;
f = 1 . 2 ∗ f ;

}
}

re turn i ;
}

i n t main () {
p r i n t I n t (f0 ()) ;

}

T (2) was run for [5000, 10.000, 20.000] functions.

T (1) is focused on measuring run time differences of the generated
code from the x86 and LLVM back ends while T (2) is used to
measure the speed of compilation and optimization.

6.1.1 Results
To ensure our results were consistent we ran each test suite 20 times
and constructed a 95% confidence interval.

Result of T (1)

35 40 41 42 45
0

5

10

15

20

Fibonacci numbers

Se
co

nd
s

LLVM run time
x86 run time

The results of T (1) clearly show LLVM outperforming the un-
optimized x86 code by≈ 50%. Both LLVM and x86 does however
still display the same exponential time behaviour introduced by the
test suite. This indicates that LLVM is able to optimize away about
half the execution time for each recursive call in the Fibonacci se-
quence, but not the naive implementation of the algorithm itself.

Result of T (2):

5000 10.000 20.000
0

20

40

60

80

100

120

140

160

Number of functions

Se
co

nd
s

x86 compilation time
LLVM compilation time

The results shows a compile time increase of ≈ 60% when
compiling with our LLVM back end. When compiling with the
LLVM back end the compiler will perform the same actions as
the x86 compiler, but after generating LLVM IR code also run
optimizations and code generation for a target hardware structure.
With this in mind an increased compile time is to be expected.

Size of compiled code: The size of the binary file can be of
importance when working in a resource constrained environment.
For our test cases LLVM is able reduce the size of the binary file
by a significant amount, up to 82%.

Code Size(bytes) LLVM x86
T (1) 8 793 11 178

T (2) 5.000 functions 558 816 3 190 592
T (2) 10.000 functions 1 106 128 6 404 152
T (2) 20.000functions 2 218 944 12 853 784

6.2 Usability evaluation
When evaluating the usability of the LLVM infrastructure we are
going to look at a few indicators that might give some insight in the
difference in complexity when implementing a LLVM back end
compared to an x86 back end.

One indicator can be how many source lines of code (SLOC) are
required to implement a working back end for a language. This will
give a general idea of the complexity behind an implementation.

Back-end SLOC for simpliC back end
x86 316

LLVM 263

These numbers are quite modest, since the x86 back end more
heavily relies on utilities introduced when building our abstract
syntax tree such as node indexing.

As for the experience we had with implementation during this
project , we found that outputting LLVM IR was significantly
easier. This mainly due to the fact that LLVM IR is a higher level
language, and such is more readable and intuitive to understand.
There is also no need to worry about the stack frame, memory
addresses or what registers is most suitable for each data type.

A good example is how a function definition could look. In
x86 assembly you would have to worry about the stack and base
pointers, pushing and pulling the correct arguments to appropriate
registers and so on. In LLVM a function definition could instead
look something like

d e f i n e i 3 2 @add (i 3 2 %x , i 3 2 %y) {
e n t r y :

%tmp = add i 3 2 %x , %y
r e t i 3 2 %tmp

}

It is clearly readable what variables are sent as arguments, what
return type the function must have and no mentions of the stack or
base pointers have to be made.

When extending SimpliC with support for functionality like
floats and booleans we also found that the support for data types,
floating point instructions and structs LLVM offers made the im-
plementation several times easier.

For instance when adding two floating point values stored as
variables we could write something like

%c = fadd f l o a t %a , %b

When implementing this in x86 we had to first predefine the
floating point values on the stack and then save them in a specific
memory adddress. When using the add operation the values would
have to be moved to the xmm registers to be able to do floating
point addition like

addsd %xmm1, %xmm0
movq %xmm0, %r a x

With all things considered we fell that generating LLVM-IR is
easier than outputting x86 code from a usability point of view. Im-
plementing the LLVM back end was mostly a straight forward pro-
cess, while the x86 back end involved allot of problems involving
registers, data representation and fiddling with the stack frame.

7. Related work
Today LLVM is used to develop front and back ends for several
languages. Some notable projects are

• Clang 1 - a compiler using a LLVM back end for C based
languages like C and C++. Clang has the ambition to be able
to be a full replacement for the GCC stack. Clang is, like our
project, based on a LLVM IR back end.

• The Glasgow Haskell Compiler offers to use a LLVM back end
when compiling 2, and has reported about 30% reduction in
program run time when applied3. In our implementation we saw
a ≈ 50% decrease in run time, but this was from completely
unoptimised code, while GHC started with already optimised
code.

• The OpenJDK zero assembler project offers a LLVM based JIT-
compiler called Shark 4. Shark is stable on platforms with a
stable LLVM JIT.

High level virtual machines such as the JVM also offer a virtual
instruction set that can be targeted by several programming lan-
guages, which can be considered an IR. Targeting high level virtual

1 https://clang.llvm.org/
2 https://downloads.haskell.org/g̃hc/7.6.3/docs/html/users guide/code-
generators.html
3 http://blog.llvm.org/2010/05/glasgow-haskell-compiler-and-llvm.html
4 http://openjdk.java.net/projects/zero/

machines come with the the benefit that you can include libraries
built for the VM, but has to follow a certain object model and often
offer limited run time optimisations. Languages like Clojur 5 target
the JVM with great success. Projects performed in earlier years of
the course EDAN70 have implemented back ends generating java
byte code, the IR for the JVM, instead of LLVM IR finding similar
improvements in run time.

8. Discussion
After implementing a working back end generating LLVM IR in-
stead of x86 assembly code and extending the compiler with new
functionality we were able to come to some conclusions on weather
a LLVM back end is a suitable replacement for the previous x86
back end. Based on the performance evaluation it appears to be a
trade off between compile time and run time, with the LLVM back
end outperforming the x86 back end by≈ 50% in run time with an
increase of about≈ 60% in compile time due to code optimization.
For most systems however, run time will be prioritised over compile
time, since compile time is often trivial in comparison. Compiling
with the LLVM back end will also in most cases reduce the size of
the generated binary file, being an important aspect if the file is to
be run in a resource constrained environment.

From a usability point of view we found that implementing in
LLVM IR was more intuitive and produced more readable code.
This mainly due to the higher abstraction level of LLVM IR and
built in support for typing. This should become even more obvious
when building compilers for more complex languages, with LLVM
IR offering an extensive, well developed instruction set.

The fact that LLVM is both platform and source code indepen-
dent is also a big advantage over x86.

The one downside that we found made LLVM more complex to
work with is the requirement of variables to be in SSA form. We
were able to circumvent this requirement due to the simplicity of
the SimpliC language, but for a more complex language you would
probably need to fully implement SSA form and Phi functions to
support them.

As for the question if our LLVM back end is a suitable substitute
for our x86 back end we find that the LLVM back end comes out
ahead in almost every aspect and is a good choice.

9. Future work
To further improve the SimpliC compiler while still exploring the
benefits of using LLVM, we feel it would be interesting to rebuild
our compiler using the LLVM API 6. This would allow us to further
customise the optimisation passes of the LLVM optimiser and also
allow us to extend the compiler with JIT support. This would be the
best way to fully explore what gains can be made by using LLVM
and what optimisations would be optimal for the SimpliC language.

It would also be interesting to write a third back end generat-
ing some other intermediate representation, such as java byte code.
This would allow us to not only compare LLVM IR to unoptimised
x86 code, but to other intermediate representations offering optimi-
sations.

10. Acknowledgements
Finally we would like to extend our thanks to Alfred Åkesson of
LTH for mentoring us through this project.

5 https://clojure.org/
6 http://llvm.org/doxygen/index.html

A. Appendix
References
[1] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.

Zadeck. Efficiently computing static single assignment form and
the control dependence graph. ACM Trans. Program. Lang.
Syst., 13(4):451–490, 1991. doi: 10.1145/115372.115320. URL
http://doi.acm.org/10.1145/115372.115320.

[2] G. Hedin and E. Magnusson. Jastadd–an aspect-oriented com-
piler construction system. Sci. Comput. Program., 47(1):
37–58, 2003. doi: 10.1016/S0167-6423(02)00109-0. URL
http://dx.doi.org/10.1016/S0167-6423(02)00109-0.

[3] G. Klein. Jflex user’s manual. Available on-line at www. jflex. de.
Accessed August, 2010.

[4] C. Lattner and V. S. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In 2nd IEEE
/ ACM International Symposium on Code Generation and Opti-
mization (CGO 2004), 20-24 March 2004, San Jose, CA, USA,
pages 75–88, 2004. doi: 10.1109/CGO.2004.1281665. URL
http://dx.doi.org/10.1109/CGO.2004.1281665.

[5] C. A. Lattner. LLVM: An infrastructure for multi-stage optimization.
PhD thesis, University of Illinois at Urbana-Champaign, 2002.

[6] D. A. Terei and M. M. T. Chakravarty. An llvm backend for
GHC. In Proceedings of the 3rd ACM SIGPLAN Symposium on
Haskell, Haskell 2010, Baltimore, MD, USA, 30 September 2010,
pages 109–120, 2010. doi: 10.1145/1863523.1863538. URL
http://doi.acm.org/10.1145/1863523.1863538.

