Extending Simplic with an LLVM backend

Project in Computer Science — EDAN70
January 26, 2016

Johan Forss Lasson

D11, LTH, Sweden
datlljfo@student.lu.se

Abstract

In this brief article we detail our method for designing an LLVM
back end for an ad hoc C-like language known as SimpliC. We
outline the features of the language and the extensions to it which
we have made. We also give some background on LLVM and the
closely related topic of LLVM-IR. The main focus of the article
is on how we have solved the different challenges which we came
across while implementing the back end, mainly related to allocat-
ing memory for structs, using SSA-form variables in an efficient
way, and using C-functions in LLVM-IR code. We also compare
the performance of our implementation to that of others.

Keywords LLVM, LLVM IR, jastadd, SimpliC, C, Compiler Con-
struction

1. Introduction

This project was undertaken as part of a project course, which
aimed to give a deeper understanding of compiler construction.
To facilitate this, we were given a number of project descriptions
more or less closely related to compilers, and had to select a project
which interested us.

We chose to implement a Low Level Virtual Machine (LLVM)
back-end for a compiler created in a previous course as well as
making some improvements to the front end of the said compiler.
Very briefly put, LLVM is an infrastructure which uses LLVM In-
termediate Representation (LLVM-IR), whose level of abstraction
lies somewhere in between assembler instructions and C-code, to
enable very high levels of optimization while still retaining reason-
able compilation times. The seminal work in the field is "LLVM:
An infrastructure for multi-stage optimization” published by C.A
Lattner in 2002 [6]. LLVM is described in depth under section 2.1.

We chose this particular project as LLVM seemed to be an
interesting concept at the time, an we were keen to see how it
compared to pure assembler code generation. There was also the
matter of part of the group having some experience with optimizing
compilers, SSA (Static Single Assignment) form variables[4] and
other related concepts, which further pushed us towards selecting
this particular project.

Starting out, we had a more or less working SimpliC to Assem-
bler compiler, which we created in a previous course. We added
front end support for new constructs such as floating point vari-
ables, C-like structs and global variables (section 4). We also wrote
a new back end from scratch which was capable of SimpliC to
LLVM-IR compilation (section 5). To evaluate our work, we com-
pared the performance of our product to that of other groups carry-
ing out identical or similar tasks (section 6).

This article might be an interesting read for someone with basic
knowledge of compiler construction, who is interested in creating

Alexander Ahlander

D11, LTH, Sweden
datllaal@student.lu.se

a compiler for their own language. It might also be of use to those
interested in comparing the performance of LLVM and the JVM.

2. LLVM

Under this section we describe the two main concept concerning
LLVM, the LLVM itself and the LLVM-IR, which is the code
written for usage with LLVM.

2.1 LLVM

LLVM is a rather large framework for compiling and optimizing
software. Essentially, it combines beneficial features of many other
frameworks of similar purpose to attempt to combine their benefits,
thereby creating a superior final product.

On the compilation side of things, a main beneficial factor is that
LLVM does not enforce any particular object model, which makes
it possible to compile essentially any programming language to
LLVM. This in turn means that a large application that may contain
code written in several different programming languages may be
compiled to a single language, that being LLVM-IR.

Concerning optimization, LLVM is capable of performing pro-
file driven optimization by collecting data related to the execution
during run time. Through saving the LLVM-IR instructions along-
side the native code it is also able to perform high level optimiza-
tions over time [5].

2.2 LLVM-IR

Low Level Virtual Machine - Intermediate Representation (LLVM-
IR) is the instruction set to which LLVM compiles high level lan-
guages. It is a strongly typed RISC-like instruction set with vari-
ables written in Static Single Assignment (SSA) form. It possible
to call C functions using LLVM-IR code. It also has support for
structs.

Typing

LLVM-IR being strongly typed means that all variables must be
given a clear type, such as integer, floating point number, character
etc. Each type has several variations, such as i32 and i64 being
32 and 64-bit integers respectively and i/ being a one bit integer,
suitable for storing boolean variables.

SSA form

Code is said to be in SSA form if all variables are immutable, that is
they may only be assigned once. This makes certain optimizations
possible or easier to perform, as the optimizer can assume that no
reassignment will take place. This is usually done by creating a new
version of a variable each time it is reassigned [4].

Phi functions

A Phi functions is an instruction which keeps track of which path a
program took during execution. It uses this information to know
which version of a variable should be used after a conditional
branch.

Functions

LLVM-IR makes creating functions quite convenient. It uses a C-
like structure in which a return type, a name and parameters with
types which are explicitly declared. It is also possible to access
functions from the C programming language in LLVM-IR code.
They are included in the executable at link time.

LLVM-IR example

The following example illustrates a program which assigns 4 and
5 to the variables a and b respectively, and then multiplies these
variables, storing the result in c.

Y%a = add i32 4, 0
%b = add i32 5, 0
%c = mul 132 %a, %b

3. The SimpliC language

During the course EDAN65-Compilers we implemented a compiler
for SimpliC, a simpler subset of C. This compiler generated as-
sembler code. This project aims to extend the SimpliC language
with some new constructs, and to create a compiler which gener-
ates LLVM code.

The starting state of the compiler

The compiler that we used as a starting point was written in Jas-
tAdd, which is a java based language used for building abstract
syntax trees[2]. The parser part of the compiler was constructed us-
ing the Beaver parser generator[1], and the scanner was written in
JFlex [3].

From EDANG65 we already had a somewhat working front end
implementation for SimpliC, and an assembler back end for said
implementation.

Types

The initial front end implementation only had support for declaring
and modifying integers. It was however able to return boolean
values from comparative expressions for internal use.

Arithmetic operations

The initial version supported addition, subtraction, multiplication,
integer division as well as modulo division. All these were of course
only supported for integer operands, as this was the only type fully
implemented (see above).

Comparative expressions

We initially supported most comparative expressions, these being
equal, not equal, larger than, larger than or equal, smaller than
as well as smaller than or equal. These were also, for obvious
reasons, only supported integer operands. We did not, and still do
not support the booleans operations such as and, or, xor etc, and as
such we do not support ’chaining” of comparative expressions e.g

(i<5 || (i =25

This shortcoming is however quite easy to work around using
nestled conditional statements.

Conditional statements

We had support for the conditional statements if else and while.
This implementation has not really been changed during the
project, as we have extended the comparative expressions to use
non integer numbers, which means that they may be used in condi-
tional statements as well.

Functions

Support for functions was present with integers as parameters and
return type and could be called as both an expression and a state-
ment. The return value from a function is decided by a simple return
statement, but the use of a return statement was not enforced by the
compiler.

Comments

There was some support for comments, using c-like block comment
syntax, i.e

/¥ comment x/

There was no support for line comments.

4. Language extensions

To ensure that the project workload was significant enough to
motivate the time and academic credits allocated to it, we extended
the SimpliC front end with some new constructs, some quite simple
such booleans and floating point variables and some with a more
significant effort required, i.e c-like structs and global variables.

4.1 Global variables

Global variables are variables that are not contained in a function,
and are accessible from anywhere in the program. Support for
these kinds of variables has been implemented. This means that
the following programs are legal:

int a = 2;
int main(){
a =a+ 2;
a=>b+ a;
int b = 4;

4.2 Booleans

A boolean variable is a type of variable which can only hold one of
two values; true or false. This is useful when making and storing
results of comparisons. Support for boolean variables has been
added. Booleans may be declared and used as in the following
program:

int main(){

bool a = true;
bool b = 5!=3;
bool ¢ = false
bool d = a==b;

4.3 Floating point variables

A floating point variable is a variable which can hold a numeral
value containing a decimal point, e.g. 6.3. Previously the language
could only handle whole numbers. We will not implement compar-
ison between int and float. Floats may be declared and used as in
the following program:

int main (){

float a = 1.5;
float b = 1.5 + 1.3;
float ¢ = a + b;

4.4 Structs

A struct is a structure which can hold a predefined collection of
variables. These variables can then be accessed and used by the
program. Structs are declared globally. Structs should be able to
contain other struct, and as such needs to use reference semantics.
Structs and their variables may be declared and used as in the
following program:

struct astruct{
int b;
bool c;
float d;

}

int main (){
astruct a;

a.b = 2;

a.c = true,;

a.d = 5.5;

int e = a.b + 3;

bool f = a.c == false;

float g = a.d + 1.7;

5. Implementation of back end

We implemented a new back end for LLVM-IR code generation.
In doing this a number of challenges appeared, to which solutions
were to be found. Below is a brief description of each of these and
our solution for them.

5.1 Variable representation

LLVM-IR is strongly typed, with quite a lot of possible formats for
each kind of data. This means that it is a good idea to think quite
carefully about how to optimally represent data.

Integer variables

Integer variables are represented using the LLVM type 132, which
represents the number as 32 bits. Our integers are signed so that
they are able to represent negative as well as positive numbers.

Boolean variables

Boolean variables are represented using the LLVM type i1, which
represents the boolean value as a single bit, O for false and 1 for
true.

Floating point variables

Floating point variables are represented using the LLVM type dou-
ble, which represents the number using 64 bits. It would probably
be possible to use the float type instead, but we had problems get-
ting that to work, so we switched to double, which was more intu-
itive to use.

5.2 Variable declaration

A variable can be initialized to a starting value when declared in
SimpliC, with an exception of structs. The initialization works like
an assignment, explained in the next section. Since LLVM does
not require a variable to be declared, the most of the information
required by the assignment and uses of the variable in question is

already calculated in the front end.The exception is the SSA form
which requires every variable to be added to a map once before use,
which is most easily done in the declaration.

5.3 Variable assignment

In SimpliC it is possible to assign a value to a declared variable as
follows:

a = 5;

It is also possible to assign a value to a variable as it is being
declared, as below:

int a = 5;

However it is not possible to simply assign a value to a variable
in LLVM. To work around this we performed the add which was
applicable for 0 or 0.0 respectively. This means that in the case of
integers and booleans, we used add and 0. In the case of floating
point number we used fadd (float add) and 0.0, since LLVM does
not perform type promotion of the argument automatically.

When assigning a new value to a variable the version number
corresponding to this variable is increased to ensure that future uses
of this variable refer to the correct value. The reference variable
version is also set to this new version, which ensures that any
code pertaining to this variable is using the correct version of the
variable.

In LLVM, global variables, that is variables that are not enclosed
by a function, can only be accessed using a pointer. This pointer
is used when assigning a value to these variables, by using the
instruction store.

5.4 Conditional statements

We support the conditional statements if and while. Both of these
evaluate a boolean and act accordingly. To be able to perform
branching we use the label concept in LLVM, which works by
creating labels which the execution may jump to given certain
circumstances.

5.5 Structs

Structs are declared using only a list of types in LLVM. The el-
ements are then accessed by with the getelemptr instruction, us-
ing the index instead of the name. As the elements are stored in a
pointer, they do not need to have a new version when reassigned.
This is however not true for the containing struct. Since the structs
use reference semantics, they need to be allocated on the heap,
which is done using the malloc function from C.

5.6 Static Single Assignment form

To simplify optimization, all variables in LLVM are in Static Single
Assignment (SSA) form, which means that they are immutable.
While this may be very good for optimization, it does not make
for easy code generation. We worked around this using a version
system in which we put the a version number after each variable to
get around the need to overwrite the variable, which is not possible.
To keep track of which version of a variable was the most recent
one, we used a map which was passed around among the functions
which required it. For an example of this mechanism see listing 1.

5.7 Phi functions

The content of this section is related to SSA (see above).
When executing code containing conditional statements, there will
be some code paths that may or may not be run. This means that
certain variables may have been modified in different ways on
different runs.

When trying to use a variable that may have been modified
in this way it is very useful to know where it has been modified,

and therefore what its value should be. To accomplish this one can
divide the code into blocks, for example an if statement may be a
block. A Phi function can use information about what variable may
have been modified and in which blocks this may have happened to
resolve which version of the variable should be used.

Listing 1. Example of code converted to SSA form with phi func-
tion
/x before conversion to SSA form x/
int x = 5;
if (/xcond=/){
x = 10;
}

print(x);

/x after conversion to SSA form x/
int x0 = §5;
if (/xcond=/){

int x1 = 10;

int x2 = phi(x0, x1);
print(x2);

5.8 Code generation

Code generation is performed simply by traversing the abstract
syntax tree (AST) and generating LLVM-IR code for each node.
To simplify the code generation, we stored the results of each
expression in a predefined variable which is then used by the parent
statement or expression. These variables need to be unique since
LLVM-IR is in SSA form, which is done by adding the ancestry in
the AST-tree to the variable name.

5.9 Example SimpliC program and corresponding LLVM-IR
code

The following is a very simple, but valid SimpliC program:

int main(){
int a =5 + 3;

}

It compiles to the following LLVM-IR program (header code
redacted, variable names truncated for brevity):

define 132 @main() nounwind {

main_entry :

%d_a_v0_e_l = add i32 5, O

%d_a_v0O_e_r = add 132 3, O

%d_a_v0_e = add 132 %d_a_vO_e_l1, %d_a_vO_e_r
%a_v0 = add 132 %d_a_vO_e, O

ret i32 0

}

6. Evaluation
6.1 Method of evaluation

As there was one other team doing the exact same project, with
identical language extensions and very similar SimpliC syntax
rules, and another team using the Java Virtual Machine (JVM)
as back end for SimpliC, it seemed reasonable to perform a com-
parative evaluation of the performance of the tools created by each

group.
6.2 Test suites

Two test suites were used to determine performance. Test suite
one, hereafter referred to as T1 consisted of creating a tree using

a loop and then finding the smallest value in this tree and setting
all nodes to this value using a recursive technique. Test suite two
(T2) consisted of using a very large source code file generated
using python to statically create a tree. T1 is focused on testing
the performance of the generated back end code, while T2 focuses
on testing the speed of code generation. For both test suites, runs
were carried out using a number of different tree sizes, the number
of nodes specified in the accompanying graphs.

6.3 Results of test suite T1

The results of T1, illustrated in figure 1, are that our compiler and
the other LLVM group have quite similar execution speed, with the
JVM group being significantly slower at lower node counts, due
to the long start up time of the JVM itself. As can be seen, the
other LLVM group failed to execute the program for larger trees,
running into segmentation fault issues. This discrepancy in largest
executable tree size between two groups using the same back end
is probably due to a difference in the manner in which the variables
are stored.

When measuring the execution time for 8000000 nodes, we no-
ticed that the execution time decreased substantially, from approxi-
mately 8000 ms during the first run, to stabilizing at approximately
4000 ms after five runs. We suspect that this might the result of
LLVM performing run time optimizations.

Execution times were measured using a very simple shell script.
The measurement for each number of nodes were repeated at least
three times.

Execution time Test Suite T1

10000 B our
group

Il Other
LLVM

group
JVM
100
10 II
mil II

2000 20000 200000 2000000 8000000

1000

Execution time (ms)

Number of nodes in tree

Figure 1. Execution time of test suite T1. Total execution time with
varying tree size for each group when running T1

6.4 Results of test suite T2

Looking at the results of T2, illustrated in figure 2, show a clear dif-
ference in compilation time for programs containing a large amount
of code, with our implementation being at a distinct disadvantage.
We are not certain as to the cause of this, but we suspect that we
may have quite a lot of redundant JastAdd code pertaining to type
and name analysis.

Compilation times were established by running an ant script
which compiled the source file, and noting the execution time of
this ant script.

Compilation time Test Suite

B Our
100000 group
'g B Other
= LVMM
£ 10000 group
o
S
k)
g
g 1000 I I
G
. L in Em
20 100 200 2000

Number of nodes

Figure 2. Compilation time of test suite T2. Total compilation time
with varying tree size for the LLVM groups when compiling T2.
JVM group did not record compilation time for T2.

7. Related work

LLVM is, in comparison to other subject such as Unix or C, quite
a novel concept. SimpliC is more or less a fictive programming
language. These factors combines to make it slightly hard to find
relevant related work. Despite this, we have found some works that
might be interesting.

LLVM: An infrastructure for multi-stage optimization. C.A
Lattner [6]

This PhD thesis is essentially the seminal work in the field of
LLVM. It discusses what the developer of LLVM originally had
in mind as important properties of the system, as well as measures
taken to establish said properties.

JastAdd - an aspect-oriented compiler construction system. G
Hedin [2]

This paper explains the design behind JastAdd, why Java and object
orientation in general makes sense when creating abstract syntax
trees.

8. Concluding discussion

We have implemented an LLVM based back end for the SimpliC
language. We have also made some extension to said language,
and created front end support for these. The results were that
LLVM slightly outperforms the JVM, but that the difference in
performance decreases as program complexity increases.

This makes sense as LLVM in turn compiles to assembler,
which should be able to utilize the resources of a given platform
more effectively than the JVM, since the JVM is a virtual machine.
There is also the matter of JVM needing a rather long time to start.
These results could be useful when deciding whether to use Java or
something that can compile to LLVM for a given task.

Expanding on this subject it would be interesting to implement
a similar solution for an actual language such as standard C. This
would also allow more relevant comparison between the LLVM =
Assembler pathway as opposed to compiling directly to Assembler.

Acknowledgments

The authors would like to extend their appreciation to the members
of the other groups mentioned in this paper; Johan Henriksson (the
other LLVM group), Elliot Jalgard and Philip Mrtensson (the JVM
group), all of LTH, for useful suggestions when troubleshooting as
well as creation of bash script and generally being easy to work

with. We would also like to thank Mr. Christoff Biirger of LTH for
his supervision of this project.

References

[1] Beaver grammar specification. Available on-line at
http://beaver.sourceforge.net/spec.html. Accessed January, 2016.

[2] G. Hedin and E. Magnusson. Jastadd an aspect-oriented compiler
construction system. Science of Computer Programming, 47(1):37-58,
2003.

[3] G. Klein. Jflex users manual. Available on-line at www. jflex. de.
Accessed December, 2015.

[4] C. Lattner and V. Adve. The llvm instruction set and compilation
strategy. CS Dept., Univ. of Illinois at Urbana-Champaign, Tech. Report
UIUCDCS, 2002.

[5] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Opti-
mization, 2004. CGO 2004. International Symposium on, pages 75-86.
IEEE, 2004.

[6] C. A. Lattner. LLVM: An infrastructure for multi-stage optimization.
PhD thesis, University of Illinois at Urbana-Champaign, 2002.

