LLVM Code Generation for SimpliC
EDAN70 Project Report

Johan Henriksson

D11, Lunds Tekniska Hégskola
dat11jhe@student.lu.se

Abstract

This paper briefly describes the process of extending a simple
compiler implemented in a previous course with new language
constructs and modifying it to output intermediate code for
the LLVM compiler infrastructure instead of x86 assembly. This
allows us to take advantage of features like built-in machine
code optimizations and the ability to generate assembly code
for multiple platforms. Advantages and disadvantages of using
LLVM as a compiler framework will also be discussed.

1. Introduction

The Low Level Virtual Machine, or LLVM, is a large compiler frame-
work consisting of (among other things) the LLVM Intermediate
Representation (IR) and the compiler back-end. LLVM IR is an
abstract RISC-like instruction set, but includes key higher-level
information such as type information, control flow graphs and
data flow representations that allows for more effective analysis
of the program(7].

This allows anyone to write a compiler front-end for their lan-
guage and output LLVM IR instead of compiling directly assembly
code. The intermediate representation is then compiled by the
LLVM compiler to the target platform assembly language. There
are several advantages to this approach, the two biggest ones
are getting access to all of the compiler optimizations built in to
the LLVM compiler, and the ability to output machine code for
virtually any platform.

The objective of this project was to extend the language de-
veloped in the compiler course, SimpliC, and modify it to output
intermediate code for the LLVM compiler instead of the naive x86
implementation we developed in the previous lab sessions. The
language extensions include two new data types for floating-point
numbers and boolean values, global variables and support for
custom structures with manual memory management.

We will also take a look at the process of generating LLVM IR
code, a few common pitfalls, how LLVM IR differs from x86 assem-
bly, and finally compare their advantages and disadvantages.

2. SimpliC Extensions

In order to make code generation more interesting, several new
features has been added to SimpliC.

2.1 Original SimpliC

The original version of the SimpliC language is very basic. It has
C-like syntax, a single integer data type, support for functions with
arguments and return values, local variables and basic arithmetic
as well as logical comparison operators.

A program can interact with the user by using the built-in read
and print functions.

2.2 DataTypes

Two new data types have been added in order to be able to
represent floating-point numbers and boolean values. They are
appropriately named float and bool respectively, much like in C.
However, one key difference between my SimpliC implementation
and normal C is that both integers and floating-point numbers
are always represented using 64 bits. To make the boolean data
type more useful, the standard logical operators - and, or, not -
have also been added.

2.3 Global Variables

Global variable support has been also been added and they work
much like they would in any C-like language. As you might expect,
global variables can be declared in the global scope and may then
be accessed or modified from anywhere in the program.

2.4 Structures

The extended version of SimpliC also supports custom composite
data types or structures. Structures are automatically allocated
on the heap upon declaration without an assignment. In order
to avoid memory leaks, all allocated structs must be manually
destroyed with the delete keyword. Since SimpliC does not have
a notion of pointers, structures are handled using references.
References are essentially pointers in the sense that they refer
to memory allocated somewhere else, but there is no support for
casting or pointer arithmetic. This gives SimpliC some type safety
but there are still the problems of null pointers and accidentally
accessing freed memory. The syntax is straight-forward and allows
structures to be declared as follows:

struct int_list {
int_list next;
bool last;
int value;

Figure 1. Integer list declaration example

The int list structure represents a simple list node in a list of
integers. This implementation has no concept of null values and
so we need an extra boolean value to keep track of whether there
is a next list node or not. It is possible to nest the structure within
itself due to reference semantics. Since references to allocated
memory can be returned without copying and we can decide
when to allocate, the example below would work without structure
copies or memory leaks.

N

int_list prepend int(int_list list, int v) {
int_list node; // allocate
node. last = false;
node.value = v;
node.next = list;
return node; // return reference copy

Figure 2. List preprend function example

Structures can only be declared in the global scope - they may
not appear inside a function. This was a deliberate choice to make
name and type analysis easier.

The abstract syntax tree grammar for structures is defined as
follows:

Struct ::= "struct" IdDecl "{" StructDeclx "}"
StructDecl ::= TypeDecl IdDecl ";"
IdUse ::= ID | StructldUse

StructldUse IdUse "." ID

Grammatically, the structure definition itself is fairly simple.
It is similar to a function block except that only declarations are
valid statements inside a structure block.

Identifiers referring to structure fields are a bit more tricky.
Normal SimpliC identifier references are represented by an IdUse
node, consisting of an ID token - a simple terminal containing
upper- and lowercase characters between A and Z. I extended the
original IdUse so that it can either be an ID token or a StructldUse.
StructldUse, in turn, is defined recursively as an IdUse, the dot
token, and an ID terminal. This parses structure field identifiers
into a tree with the outermost field as the root node.

a.b.c = true;

Figure 3. Structure field access

This tree structure makes it easier to generate code for calculat-
ing the field address later on. The example above would be parsed
into the following abstract syntax tree:

StructIdUse
N\
a \\\
StructIdUse \\\
\
/,/ \\ \
IdLFse \\\ \\\
') \
a . b . C

Figure 4. Structld AST Example

3. Code Generation

The goal is to output LLVM IR code from the compiler front end
instead of going directly to x86 assembler. LLVM IR is a virtual
instruction set architecture, essentially a high-level assembly lan-
guage, that is annotated with types and other high level infor-
mation to support multiple target platforms and more effective
compiler optimizations [5].

The structure of the actual code generation has not changed
much from the lab code from the compiler course. Each AST node

[

N}

has a codeGeneration method that takes a PrintStream to output
the code to. This section will describe how to generate LLVM IR
for the non-trivial language features available in SimpliC.

3.1 Functions

Generating code for functions is a simple task since LLVM IR has
full support for functions, arguments and returning values, and
the syntax is similar to what one would expect from a higher-level
language. Because all stack management is handled automatically,
this step is almost trivial in comparison with the work involved to
do it in x86 assembly directly.

define
ret
}

i64 Of(i64 %a) {
i64 %a

Figure 5. Example function in LLVM IR

3.2 Local Variables & Static Single Assignment Form

Static Single Assignment form (often abbreviated as SSA form)
is a property of an intermediate representation (IR) language,
which requires that each variable is defined before it is used, and
assigned to exactly once [6]. LLVM makes use of this property in
order to provide easier and faster compiler optimizations, but it
also sets some constraints on code generation.

If registers were mutable, the obvious way to represent local
variables in LLVM IR would have been to simply use a register
variable for every local variable. One solution to this problem
is variable versioning, which means that an index or version
number is appended to each variable and incremented each
time it is changed. However this has the drawback of having to
keep track of the most current version of the variable. The proper
workaround is to explicitly allocate local variables on the stack
using the alloca instruction, and then store the resulting stack
address in an immutable register variable.

When accessing or modifying a local variable, it has to be
explicitly loaded or stored to its address. Because the address
of the variable never changes, there is no longer a problem with
mutability[8] and no need to keep track of variable versions.

%i = alloca 64
store i64x %i, i64 5
3 %1 = load i64x %i

Figure 6. Example of how to read and write a local variable. Note
that %i is immutable.

Function arguments remain immutable in this implementa-
tion of SimpliC. This is a deliberate design choice since the LLVM
code becomes simpler and it is usually considered bad practice to
modify function argument variables anyway.

3.3 Control Statements

SSA form poses another problem when it comes to implementing
control structures that rely on branching. If variable versioning
is used to deal with SSA, the compiler has to keep track of which
variable version is the current one after each branch, e.g. in a
situation where a variable is modified in both cases of an if
statement. To do anything useful with the variable after the if
statement, the compiler would need to know which version of the
register is the current one. A phiinstruction is provided for just this
purpose, but it’s possible to circumvent the problem entirely by
implementing local variables using explicit allocation of variables
on the stack, as explained in the previous section [8].

Using this method, there’s no longer any need to keep track of
variable versions or which branch was taken, and so implement-
ing the if- and while statements becomes easy. LLVM provides
branching and comparison instructions that are very similar to
those available in x86 assembly, which means that the process of
implementing control structures is also similar.

3.4 Expressions

Arithmetic and logical expressions are also similar to their x86
counterparts, except that the naive one-register solution for all
intermediate values can no longer be used due to the nature of
LLVM IR and SSA form. Instead the compiler has to generate a
new variable name for each intermediate result, and then pass it
on to the parent AST node that needs to use it.

A simple implementation is letting the codeGeneration method
of each expression node output its code to the PrintStream as
usual, but instead of returning void it returns a string with the
name of the register containing the result of the operation. Inter-
mediate registers are numbered, starting from 1 at the beginning
of each function.

3.5 Structures

LLVM has built-in support for custom structure types similar to
C, however, structure fields are referred to by a zero-based index
instead of a name. Despite the built-in support, there’s still a few
tricky parts when it comes to generating code for structures.

The first problem is how to access fields. LLVM provides the
getelementptr instruction to calculate the offset of a given struc-
ture field. In most cases, this instruction will be optimized into a
LEA instruction (or similar) and thus cause no additional overhead
[8]. In order to solve the problem of nested structure references
like the one described in the language extensions section, the
address is resolved recursively from the bottom up. To compute
the address of a field, only the structure base address and the field
index is required. This means that as long as we start at the bottom
of the tree, each field address can be computed using the "parent
field" address and the field index. The bottom node will always
end up being a variable or something else with a known address.

The second problem is memory allocation. LLVM exposes
malloc through a special instruction, but due to the lack of a sizeof
macro, we need a way to calculate the size of structures. One neat
solution is to use the getelementptr instruction to calculate the
offset of the second element in an array of structures starting at
address 0. This operation is optimized away by LLVM and we’re
left with a constant in the resulting assembly code [8].

The final problem is how to free memory used by the allocated
structures. I chose to expose a wrapped version of the C standard
library’s free function, so when code is generated for the delete
statement, it’s turned into a call to free.

3.6 Linkingwith C

Implementing the library functions was perhaps the most inter-
esting part of the project. While they could theoretically be imple-
mented in LLVM IR directly, wanted to try to link the output from
the LLVM compiler with a library implemented in C. It's not only
much easier to implement the library in C, it also opens up the
possibility of exposing any C library to SimpliC, so that it could
potentially do something more than just toy examples.

The process turned out to be surprisingly easy since LLVM IR
is compatible with the C calling convention by default. Instead of
letting LLVM compile the IR directly to an executable file, it’s set it
up so that it outputs an object file. This output object file is then
linked with a precompiled C library (another object file) using the
GNU linker (1d) to produce the final executable.

4. Evaluation

I will try to evaluate this project based on the performance tests
we did among myself and the other groups, as well as the advan-
tages of using LLVM for your compiler project based on my own
experience working with it.

4.1 Performance

Two tests were used to compare performance to the other groups
working on similar projects. Two other groups had compatible
SimpliC extensions; one did another LLVM back-end implementa-
tion and the other generated bytecode for the Java Virtual Machine
(JVM), so we tried to measure performance and compare between
these groups.

The tests were simple programs that first generates a large tree
structures and then locates a specific node using two different
methods for traversing the tree. Test A uses an iterative algorithm
while Test B uses a more traditional recursive solution. Compila-
tion time is not included in tests A and B.

4.1.1 TestA

The other LLVM group had trouble running this test, so it only
serves as an execution time comparison between the my LLVM
optimized x86 code and unoptimized JVM bytecode.

LLVM G2 and JVM

20000

== JVM
—— LLVM G2

15000
10000

__—0—_—_—_—_—.

Figure 7. Performance Test A - Iterative Algorithm. Execution
time as a function of input size for my LLVM implementation
and the JVM implementation. Vertical axis: Execution time in
milliseconds

The LLVM implementation was around 10x faster than the JVM
in all of the measurements. It's not a very interesting comparison
since LLVM produces native code while the JVM is executing the
program in a virtual machine, but at least it seems to indicate
that the machine code generated by the LLVM compiler is fairly
efficient and well optimized. Note that the JVM byte code is not
optimized except for any adaptive optimization the JVM may have
applied during runtime/just-in-time compilation.

4.1.2 TestB

The next test is slightly more interesting because we have a few
data points from all the groups. However, the other LLVM group
didn’t manage to run the larger example (orange bars).

200
Group/ Time

I 2000 (NN 20000 200000

Figure 8. Performance Test B - Recursive Algorithm. Execution
time for different input sizes. Vertical axis: Execution time in
milliseconds. Color indicates the number of nodes.

We can see that for the small examples, execution time is
similar between the two LLVM implementations and the JVM
is way behind. It looks like the JVM takes almost 100 ms just to
start up, while the LLVM executables finish running in just a few
milliseconds.

4.2 Larger Programs

For the last test case we used a small python script to output Sim-
pliC code for building large tree structures statically. We measured
the compilation time to get an idea of how our compilers coped
with larger programs. For every additional node, the source file
grows by approximately 6 lines of code. I've only included mea-
surements of my own implementation here due to inconsistent
measurements between the groups.

Compile time vs Node Count

30s
[

=]
=)
n
7]

Time
=
w

Os

20 100 200 1000 2000

Node count

Figure 9. Large Programs test: Compile time as a function of pro-
gram size. Nodes are created statically and each node is approxi-
mately 6 lines of code.

As you can tell from the graph, compile time grows dramati-
cally once the number of nodes becomes larger than a few hun-
dred. This is because the algorithms used in the name and type
analysis are very naive and not very efficient. Since every node
becomes a local variable, name and type look-ups will be more
and more costly as the number of nodes increase.

In its current state, my compiler is unsuited for any program
larger than a few thousand lines - note that the source code file
for the 2000 node test is around 200 kB.

4.3 Compiler Implementation

As for the implementation itself, it was significantly easier to
output LLVM IR than it was to work with x86 assembly directly.
This is mostly due to the fact that LLVM IR is a higher level
language and so it’s much easier to read and understand the
output code itself, and there is no need to worry about details
like pushing/popping register values or correctly incrementing or
decrementing the stack pointer. There’s also support for data types
and structs which came in really handy for this project. Lastly,
since the output of your compiler is compiled again by LLVM,
there’s another layer of error checking involved which makes it
easier to catch errors in the code generation step.

5. Conclusion

Using LLVM as a compiler back-end has lots of advantages com-
pared to implementing a custom code generation back-end. It is
much easier to both write, read and understand LLVM IR, which
means that less time will be spent dealing with both code gen-
eration and debugging assembly code. The compiler can also
instantly take advantage of all the optimizations built-in to LLVM
without having to reinvent them. Finally it is possible to com-
pile to a multitude of different platforms without any extra work,
and even in the rare cases where compilation to some obscure
platform is necessary, you also have the option to compile to C.

As for disadvantages, [haven't been able to come up with many.
One possible disadvantage would be in a situation where you
need greater control over the compilation process, perhaps to
add a custom language-specific optimization. But since LLVM is
open source and very extensible, customization is still possible if
required [4].

Compiling to C is actually an alternative to LLVM - it's low level,
fast, portable and there are optimizing compilers available for
virtually any platform. However, since C wasn’t designed for this
purpose, this method solution with its own set of disadvantages.
One problem is that advanced language constructs expressed in
a few lines in the source language may compile into thousands
of lines of C code, which was the reasoning behind starting the
Haskell LLVM compiler project [9]. Other common problems are
very little control over how the C code itself is compiled, and the
fact that compiling C is usually a slow process, especially for larger
programs.

The original compiler project was developed using three main
libraries. The scanner and parser used are jFlex, a fast and flexible
scanner generator(3], and the Beaver LALR parser generator [1],
both written in Java. Finally, the JastAdd framework provides ref-
erence attribute grammars and aspect-oriented programming for
implementing clean computations and operations on the abstract
syntax tree [2]. I personally think that LLVM was a very good fit
together with JastAdd, beaver and jFlex. It makes it reasonably
easy to go from a simple compiler with naive x86 assembly output
to something much more useful - optimized and C-compatible
machine code for multiple different hardware platforms.

References

[1] Beaver, a lalr parser generator. URL http://beaver.sourceforge.
net/.

[2] Jastadd. URLhttp://jastadd.org/.

[3] Jflex, a fast scanner generator for java. URLhttp://jflex.de.

[4] Writing an llvm pass. URL http://1lvm.org/docs/
WritingAnLLVMPass.html.

[5] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke. LLVA: A
Low-level Virtual Instruction Set Architecture. In Proceedings of the
36th annual ACM/IEEE international symposium on Microarchitecture
(MICRO-36), San Diego, California, Dec 2003.

[6] M. M. K. M. Jianzhou Zhao, Santosh Nagarakatte and S. Zdancewic.
Formal verification of ssa optimizations for llvm. In Proceedings of the
Thirty Fourth ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2013).

C. Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Mas-
ter’s thesis, Computer Science Dept., University of Illinois at Urbana-
Champaign, Urbana, IL, Dec 2002. Seehttp://11lvm.cs.uiuc.edu.

[7

[8

M. Lyngvig. Mapping high-level constructs to Illvm
ir, 2015. URL http://11lvm.lyngvig.org/Articles/
Mapping-High-Level-Constructs-to-LLVM-IR.

J. van Schie. Compiling Haskell To LLVM, Thesis Defense, Utrecht

University, Netherlands, June 2008. URL http://11lvm.org/pubs/
2008-06-CompilingHaskelltoLLVM. pdf.

9

