
Type inference for Go
Project in Computer Science - EDAN70

Emin Gigovic
D11, Lund Institute of Technology Sweden

dat11egi@student.lu.se

Philip Malmros
D11, Lund Institute of Technology Sweden

dat11pma@student.lu.se

Abstract
Automatic deduction of a data type from a given expression is in
programming referred to as type inference. How advanced the type
inference varies between languages, it can go from being a ”nice
to have” feature, to being a core part of the language. A subset of
the statically typed language Go was implemented using JastAdd,
with focus on type inference. By automated tests and comparison
of how well type inference works in other languages, the subset
was evaluated in a primarily qualitative manner.

Keywords Type inference, Go, JastAdd, Reference Attribute
Grammars

1. Introduction
The ability to automatically interpret the type of an expression
in a programming language at compile time is the definition of
type inference, which in general is characteristic for functional
programming languages like Haskell[1]. The advantage with type
inference in a programming language is primarily the freedom to
omit types, which makes several programming tasks easier. Two
characteristic type terms used in this context are: dynamic types
and static types. Static typing means that the type of a variable is
known at compile time and dynamic typing means that the variable
type is interpreted at runtime.

1.1 Problem Description
A type system consists of rules that assigns types to variables
depending on their computed value. Type inference in Go can only
be used for initialization of variables and constants. The purpose
of this project is to implement a subset of Go using JastAdd with
focus on type inference and doing a qualitative evaluation of the
implementation by various measurements, comparisons towards
other programming languages and presenting useful examples of
inference.

2. Background
2.1 Go
Go, or often called golang, is a statically typed language with
garbage collection, various safety features and the possibility to
use concurrent programming. The syntax is highly influenced by
C and C++, and the goal of the developers was to create a lan-
guage which is concise, simple and safe. Some of Go’s touted fea-
tures include: fast compilation time, concise declarations and ini-
tializations of variables through type inference, built in concurrency
modules and remotely managing packages[2]. The team behind Go
aimed to improve the working environment for their designers and
programmers by making the process at the software development
more productive by the use of Go to eliminate slowness and clum-
siness. Common critique of the language include lack of particular

features which makes it hard to use the language in large-scale soft-
ware development. Some examples of ”missing” features are: lack
of extensibility like operator overloading, uncontrolled dependen-
cies, limitations of use in system programming due to the function-
ality of the used garbage collection and the absence of a Hindley-
Milner type system in the implementation of the type inference sys-
tem.

2.2 Type inference
Explicitly writing what type variables have at their definition is
common in programming. However, using type inference the com-
piler can often handle this part on its own. To what extent the com-
piler can do this varies from language to language, but the principle
behind type inference is to iteratively derive some valid type for the
language from an expression containing one or more values. Some
examples of what can be inferred by a compiler in this way are
values for: variables, parameters and return statements[3].

The actual point of having the compiler support something like
type inference can be broken down into two main parts. First of
all, when used properly it can make code much more readable, for
instance by reducing this C++ code:

vector<int> v;
vector<int>::iterator itr = v.iterator();

to this

vector<int> v;
auto itr = v.iterator();

While the gain might look insignificant here, if the type had been
more complex but still intuitive with properly named variables, the
value of type inference starts to become apparent as in many cases
it would let us reduce redundant information in our code. This level
of type inference is on the lower end of what is possible however,
some languages use type inference for other features in addition to
readability. Haskell is one such language, in which it is possible to
write:

succ x = x + 1

This gives a function succ that will take x (regardless of what type x
has), add one to it and then return the result. Explicit type specifiers
could still be used for more advanced functions, so the compiler has
an easier time understanding what the code is actually supposed to
do, and is less likely to do any mistakes[4].

2.3 Type inference in Go
As mentioned above, type inference can be implemented to varying
extent, and in Go’s case the implementation is rather bare bones.



According to Go’s developers they were aiming to reduce the clut-
ter often found in statically typed languages when they designed
their type system. One of the major reasons for this seems to have
been that they felt that many programmers were finding the type
systems found in languages like Java or C++ too cumbersome, and
that they preferred the approach in dynamically typed languages.
So when designing Go they borrowed some of the ideas from these
languages. One of these ideas was to use simple type inference for
variables, giving the feel of writing dynamically typed code, while
still using the benefits of static typing[5, 6]. As mentioned in the
section above, type inference can also cover things like parameters
and return values, but this is absent in Go.

In practice the type inference in Go can be triggered by either
simply leaving out the type information when declaring a new vari-
able or constant, or by using the “:=” notation, which is a short-
hand for declaring a new variable (there is no shorthand for con-
stants) with an inferred type. In Go the following three statements
are equivalent:

var a int = 10
var a = 10
a := 10

Go’s type inference is a bit half-done regarding how it handles
inferring values containing identifiers. Essentially the compiler will
not allow type casting on values retrieved from identifiers, so to
give a few examples:
This code runs without problems, and a becomes a float64 value:

a := 1 + 1.1

No problems below either:

a := 1.1
b := 1 + a

However, this code will give an error that the value used from a has
been truncated to an Integer, instead of casting a to a float64, giving
b the type float64 in the process:

a := 1
b := a + 1.1

There is a similar problem here:

a := 1
b := 1.1
c := a + b

Instead of casting a to a float64, the compiler will find that the types
don’t match and gives an error.

2.4 JastAdd
JastAdd[7] is a compilation system that supports Reference At-
tribute Grammars (RAGs) used for generating language-based
tools, such as compilers. Explicit definitions of graph properties
in a program is used because of the existing support for reference-
valued attributes, which is an important feature in the system. Prop-
erties of abstract syntax nodes can be programmed declaratively,
attributes have values defined by equations and reference values
points to other nodes in the abstract syntax (AST). Attributes can
be defined either as synthesized or inherited depending on if the in-
formation should be propagated upwards or downwards in the AST.
The order of declaration of attributes and equations have no influ-
ence of their meaning which allows the programmer to organize

the code into modules for reuse and composition. Data structures
are embedded in the AST, which results in an object-orientation of
the program. Java is integrated in JastAdd and the resulting model
is implemented using Java classes to form a method API for the
attributes. The advantage of declarative programming is the ability
to easier add extensions to an existing language.

3. Implementation
The Go subset is implemented with the help of JastAdd, the parser
generator Beaver and the scanner generator JFlex. We used JastAdd
to implement attributes for the abstract syntax tree (AST), semantic
analysis, error analysis and the interpreter. The semantic analysis
consists of type analysis and name analysis. The purpose of name
analysis was to define attributes for checking multiple declarations
or undeclared variables and functions. Type analysis has the func-
tionality of checking if the type assigned to a variable is valid, if
parameter and return type is correct or exists if needed. Supported
types in our subset are int, bool, float64 and void. Int and float64 are
used for basic arithmetic operations while void is used for declaring
functions, stating that the return value can be omitted.

func main() {
var a int = 5;
var b = a + 2;
c := a + b;

}

Compile-time errors are implemented via collection attributes. Ev-
ery contribution is automatically collected by the attribute evalu-
ator, traversing the AST and adding each contribution to the col-
lection. Only relevant errors are reported which implies that errors
caused by other errors are not reported. Example of relevant errors
are mismatched types, undeclared variables or functions, missing
or incorrect type on the return statement, mismatch on the parame-
ter values and possible dead code in a block.

To extend what would be possible to use in code examples, and
since they can use type inference, our subset also includes global
and constant variables.

var a = 5;
var a2 = true + 3;
var c = 5.9;
var f float64 = 2;

func main() {
var b int = a;
var d bool = a + c; // Will give an error
var g int = f; // Will give an error

}

func main() {
const a int = 2;
a = 1; // Error
const b float64 = 3.14;
b = 5; // Error
const c bool = false;
c = true; // Error
const d = 5;
d = 2; // Error
const e int = b + c;

}

Regular control structures like if and for-statements are supported
by our subset. A while-statement in Go is defined as a for-loop
consisting of only one condition, and is thus supported as well. A
curious aspect regarding if -statements in Go is that, like in a for-



statement, you can define a statement that is only executed once at
the start of the if, the result of which is only in scope for the rest of
the if-statement.

func main() {
if i := 1; i > 10 {
}

}

func main() {
var i int = 1;
for i2 := 1; i2 < 10; i2 = i2 + 1; {
i = i + 1;
}

}

As we mainly focused on type inference, we never got around to
implementing the package system that Go utilizes to make use of
functionality in other files. Since the Println function in Go uses a
package, this meant that we had to make our own (albeit) simple
predefined printing function that is completely separate from Go.
Our Print can only handle one parameter, a variable of some sort,
and will simply print the value of this variable.

An interpreter was implemented with the help of various at-
tributes, and executes a program by traversing the corresponding
AST and outputs values or errors to the user via a print method.

4. Evaluation
4.1 Functionality
To the extent of our subset, we have as far as we can tell almost
equivalent functionality to Go, including how the type inference
system works. For instance, while Go supports type casting for in-
ference of constant values, it does not support type casting for val-
ues that comes from used identifiers. Our subset however, is unable
to do any type casting whatsoever, as we had missed that there was
a difference between the two cases for actual Go until very late in
the project. Constants in our subset also has the unintended quirk of
being able to be given values that does not necessarily come from
another constant value. Apart from these two cases we have not
found anything noteworthy that differs between out subset and an
equivalent slice of the actual language.

Originally it was intended that we were to try and make im-
provements on how Go handles some things concerning type in-
ference. The two first things to start with was trying to fix the odd
and inconsistent approach to inferring values from identifiers used
in Go, as well as attempt to add inference for parameters and/or re-
turn values. Unfortunately we had issues solving some other parts
of the implementation, and so never really got the time to make a
serious effort to make these improvements.

4.2 Handling errors
The treatment of errors works in such way that only relevant errors
are reported, which means that errors caused by other errors are not
reported. Relevant errors are undeclared variables or functions, type
conflicts, wrong or missing type on the return-statement, mismatch
on the parameter-values or possible dead code in a block. Below
are different code samples which shows how errors are handled in
different situations. In the first code example there are mismatched
types, the second one has the wrong return type the third example
has a incorrectly declared main function.

func main() {
var a int = 5;
var b int;

var c float64 = 10.5;
b = a + 2;
a = b + c;

}

Error at line 6: Invalid operation: b + c (mismatched
types: int and float)

func main() {
var a = 1;
return a;

}

Error at line 4: Trying to return int in void function

func main() int {
}

Error at line 1: Main function should be void

The next code example illustrates how the error handling and type
conflict implementation differs from our subset compared to the
original Go compiler.

func main(){
age1 := 20
age2 := 20.5
age3 := age1 + age2
age4 := 20 + 20.5

}

Running this code in our compiler yields the error messages below
as our subset is unable to use any casts at all.

Error at line 4: Invalid operation: age1 + age2
(mismatched types: int and float)

Error at line 5: Invalid operation: 20 + 20.5
(mismatched types: int and float)

The difference compared to the original Go compiler is that the
error at line 5 is not reported since it is a valid statement according
to their implementation.



4.3 Lines of Code
The implementation of our subset was evaluated with respect to
the number of lines of code with the evaluation tool Cloc[8]. Cloc
counts the amount of code including blank lines, comment lines and
physical lines of several languages like JastAdd, Java, Beaver, Flex
and Go. Table 1 shows various measurements for the implementa-
tion of our subset and table 2 shows the measurements of the labs
in the compiler course EDAN65 for comparison, since our subset
is based on the code from the labs and covers a subset of similar
size.

Language Files Blank Comment Code
JastAdd 8 170 21 765
Java 10 98 129 440
Beaver 1 54 1 200
Flex 1 11 8 61
Abstract grammar 1 11 0 48
Sum 21 344 159 1514

Table 1. Lines of code for our subset

Language Files Blank Comment Code
JastAdd 12 196 62 936
Java 7 62 86 380
Beaver 1 32 1 105
Flex 1 11 8 51
Abstract grammar 1 9 0 34
Sum 22 310 157 1506

Table 2. Lines of code for the labs in the compiler course EDAN65

One thing to note is that while the total sizes might not be that
different, it has to be taken into account that the code for the
Go subset is extensively refactored compared to the code from
EDAN65.

5. Related Work
As this project only implemented a subset of a language with such a
narrow focus, especially considering how relatively simple the type
inference is in Go, we had difficulties finding any other projects that
had done something similar. In a broader sense however, our project
can be related to other smaller example language implementations
that make use of attribute grammars, like SCHADOW[9].

6. Future Work
After ironing out some known problems with our subset, future
improvements could include extending it with more areas from Go.
Every Go program is made up of packages that are used in the
code with import paths, and adding correct package handling is a
possible extension to our subset. Another important addition would
be things like arrays and structs, so it would be possible to represent
some proper data.

When the subset would be a bit more fleshed out it would
probably be a good time to try to do some additions to the actual
type inference system, so that casts of values from identifiers are
handled better. Eventually support could be added for parameter
and return-value inference.

While the possibility to output the Abstract Syntax Tree(AST)
exists in our subset, for large files it is a bit hard to get a clear
overview of the AST which makes it more difficult to interpret the
output. Improving the presentation of this information is certainly
something that could be done if development would continue.

7. Conclusion
The purpose of this project was to implement a subset of Go, using
JastAdd, including type inference and evaluate it in a qualitative
way by examining how advanced the type inference in Go actually
is and comparing it to other languages by useful inference exam-
ples. How advanced the support for type inference is varies from
language to language, in which we can now state that the type in-
ference in Go is not very advanced, rather it is quite bare bone
compared to Haskell and Scala, which both are use more high-level
type inference. Limitations that were found after implementing and
evaluating the type inference in Go was that only the right hand side
of an expression is evaluated and it is only possible to use type in-
ference at initialization of variables.

The implementation of the subset was based on an earlier imple-
mentation of a simple language called SimpliC and from the evalu-
ation table of lines of code for respective part, we can see above that
the total sum of code does not differ that much, where the amount of
JastAdd code is lesser and amount of Beaver code has increased a
bit. The reason for this is that a majority of the code was reused but
refactored to a higher coding standard while new functionality was
added, which made the amount of parser (Beaver) code increase.

A future project based on the existing code from this project
could be to increase the subset of Go by covering several other fea-
tures in Go, adding more type inference supprt as well as improving
the output printout considering the available AST option.

Acknowledgments
We would like to thank Niklas Fors for supervising this project.

References
[1] https://www.haskell.org/, .
[2] Rob Pike. Go at google: Language design in the service of software

engineering: Keynote, splash, 2012. URL http://talks.golang.
org/2012/splash.article.

[3] Luca Cardelli. Basic polymorphic typechecking. Sci. Comput. Pro-
gram., 8(2):147–172, 1987. URL http://dx.doi.org/10.1016/
0167-6423(87)90019-0.

[4] https://www.haskell.org/onlinereport/decls.html#
type-signatures, .

[5] Rob Pike. Less is exponentially more, 2012. URL
http://commandcenter.blogspot.de/2012/06/
less-is-exponentially-more.html.

[6] https://golang.org/doc/faq.
[7] Görel Hedin. An introductory tutorial on jastadd at-

tribute grammars. Postproceedings of GTTSE, 2010. URL
http://fileadmin.cs.lth.se/sde/publications/papers/
2009-Hedin-GTTSE-preprint-tutorial.pdf.

[8] A. Danial. Cloc— count lines of code, 2009. URL http://cloc.
sourceforge.net/.

[9] S. Doaitse Swierstra Arie Middelkoop, Atze Dijkstra. Iterative type
inference with attribute grammars. GPCE’10, October 2010. URL
http://dl.acm.org/citation.cfm?doid=1868294.1868302.


