EDANG65: Compilers, Lecture 09
More on Attribute Grammars
+ Interpretation

Gorel Hedin
Revised: 2025-09-29

This lecture

Regular
expressions

runtime system

— = source code (text)

(scanner)

Lexical analyzer

Context-free
grammar

. J
——————&————
N

- - tokens

Syntactic analyzer
(parser)

Attribute
grammar

— - AST (Abstract syntax tree)

Visitors
Static aspects
Attribute grammars

— - Attributed AST

Intermediate
code generator

J

———— - &----

— = intermediate code

Optimizer

~

J

———— - &----

— = intermediate code

Target code
generator

~

- - target code

activation
L stack
records
garbage
collection
— heap
objects
Interpreter
_ 1 code
V|rtu.aI - and
machine] data
[machine}
2

Attribute mechanisms

Intrinsic — given value when the AST is constructed (no equation)

Synthesized — the equation is in the same node as the attribute

Inherited — the equation is in an ancestor

Broadcasting — the equation holds for a complete subtree

Reference — the attribute can be a reference to an AST node.

Parameterized — the attribute can have parameters

NTA —the attribute is a "nonterminal" (a fresh node or subtree)

Collection * — the attribute is defined by a set of contributions, instead of by an equation.
Circular * — the attribute may depend on itself (solved using fixed-point iteration)

* Treated in this lecture

More examples of collection attributes

Example: uses of declaration

reversing references

IdDecl ::= <ID:String>; [Program]
IdUse ::= <ID:String>;

— T~
[ClassDecl] [ClassDecl]

/\ /\
[\ /N

1dDecl | | IdDec Iduse | | Iduse |

ID:"bll ID:uan ID:llau |D="a"
decl decl

Example: uses of declaration

reversing references

IdDecl ::= <ID>; [Program]

IdUse ::= <ID>;
— T~
[ClassDecl] [ClassDecl]

A "uses" attribute contains the collection of

IdUses referring to the IdDecl / \ / \

[|dDecl] [IdDecI ldUse] [ldUse

ID="b" ID="a" ID="a" ID="a"
uses= @ uses={|__L|,|:|} decl decl

coll Set<IdUse> IdDecl.uses() [new HashSet<IdUse>()] with—add—root—+Program;

IdUse contributes this
to IdDecl.uses() can skip because of defaults

for decl();

JastAdd Java grammar Examp|e: NPM metric

ClassDecl ... conditional count
MethodDecl ...
ConstructorDecl ...
[Program]
[ClassDecl] [ClassDecl]
[MethodDecI ConstructorDecI MethodDecI MethodDecI

e

NPM — Number of Public Methods and constructors in a cIass

JastAdd Java grammar Examp|e: NPM metric

ClassDecl ... conditional count
MethodDecl ...
ConstructorDecl ...
[Program]
/ T N
[ClassDecl npm=1 [ClassDecl npm=2
[MethodDecI] [ConstructorDecl] [MethodDecl] [MethodDecI]

-
[Private]

NPM — Number of Public Methods and constructors in a class

class Counter {
int count = 0;

void add(int i) { count +=; } can skip because of defaults

} 7\

coll Counter ClassDecl.npm () trew-Ceunterf} with-aee root ClassDecl;

MethodDecl contributes 1 when isPublic() to ClassDecl.npm();
ConstructorDecl contributes 1 when isPublic() to ClassDecl.npm();

Circular attributes

Circular attributes

syn Set<State> State.succ() = ...;

What states are reachable
from state k?

|

StateMachine]

10

Circular attributes _ StateMachine

syn Set<State> State.succ() = ...;

What states are reachable
from state k?

State, > State, " State, State,

A

reachable={2,3,4} reachable={2,3} reachable={2,3} reachable=0

Mathematical definition:
reachabley, = succy, U U reachable;

sjE€succy

Implementation using a circular attribute

syn Set<State> State.reachable() circular [new HashSet<State>()] {
HashSet<State> result = new HashSet<State>();
result.addAll(succ());
for (State s : succ())
result.addAll(s.reachable());
return result;

A circular attribute may depend (transitively) on itself.

Circular attributes - termination

Does this computation terminate?

Implementation using a circular attribute

syn Set<State> State.reachable() circular [new HashSet<State>()] {
HashSet<State> result = new HashSet<State>();
result.addAll(succ());
for (State s : succ())
result.addAll(s.reachable());
return result;

¥

A circular attribute may depend (transitively) on itself. 12

Circular attributes - termination

Does this computation terminate?

Yes!

The values (sets of states) can be arranged in a lattice.

The lattice is of finite height (the number of states is finite).
The equations are monotonic: they use set union.

Warning! JastAdd does not check this property. If you use non-monotonic
equations or values that can grow unbounded, you might get nontermination.

Implementation using a circular attribute

syn Set<State> State.reachable() circular [new HashSet<State>()] {
HashSet<State> result = new HashSet<State>();
result.addAll(succ());
for (State s : succ())
result.addAll(s.reachable());
return result;

¥

A circular attribute may depend (transitively) on itself. 13

Useful lattice types

Set lattice

Start with the empty set.

Use the UNION operator.
Make sure there is a finite set
of possible values in a set.

Boolean lattices
The lattice is of finite height:
only two possible elements

{S1, S2, S3}

/ ’ \ TRUE FALSE
{S1, 82} {S1, S3} {S2, S3}

| > =<

{81} {S2} [S3) FALSE TRUE

1] Start with FALSE Start with TRUE
Use the OR operator Use the AND operator

14

Circular attributes — beware of externally
visible side effects!

It is ok to use local side effects:

syn Set<State> State.reachable() circular [new HashSet<State>()] {
HashSet<State> result = new HashSet<State>();
result.addAll(succ());
for (State s : succ())
result.addAll(s.reachable());
return result;

¥

Only the local object is changed. There are no externally visible side effects. This is fine!

15

Circular attributes — beware of externally
visible side effects!

It is ok to use local side effects:

syn Set<State> State.reachable() circular [new HashSet<State>()] {
HashSet<State> result = new HashSet<State>();
result.addAll(succ());
for (State s : succ())
result.addAll(s.reachable());
return result;

¥

Only the local object is changed. There are no externally visible side effects. This is fine!

Warning! If you by mistake change the value of an attribute, e.g.

. S.reachable().add(...) ...

JastAdd does not detect this error, and inconsistent attribution may result.

16

There are many fixed-point problems in compilers
and program analysis tools

17

There are many fixed-point problems in compilers
and program analysis tools

e Cyclic class hierarchy: find out if a class inherits from itself

* Definite assignment: find out if every variable is guaranteed to have been
assigned a value before it is used.

e Call graph analysis: for example, find methods that are never called (dead code)
* Data flow analysis: for example, find variables that are never used (dead code)

* Nullable, FIRST, and FOLLOW (if your "compiler" is actually a parser generator)

18

Program analysis

compute program properties

to find compile-time errors

to generate code

to optimize code

to find probable bugs or vulnerabilities
to support interactive tooling

to measure quality

19

Program analysis

compute program properties

to find compile-time errors

to generate code

to optimize code

to find probable bugs or vulnerabilities
to support interactive tooling

to measure quality

Static Dynamic

on the source code on a running program
or on compiled code

the analysis holds for all possible analysis of one particular run
program runs

many extend basic analyses like
name and type analysis

20

Example static analyses

name-analysis.jrag

type-analysis.jrag

control-flow.jrag

data-flow.jrag

call-graph.jrag

metrics.jrag

....Jrag

What are the possible successors of a given statement?
Are there statements that are unreachable in a method?

What statements affect the value of a variable at a given point?
Are there statements that are unnecessary in the method?

What methods are called by a given method?
Are there methods that are never called?

Compute some useful metrics of a method,
class or program.

21

Modular extension in JastAdd

Base language

Abstract grammar

* ast

* jrag

Basic analysis

E—

JastAdd

* java

- |

Generated
AST classes

22

Modular extension in JastAdd

Base language

Abstract grammar

* ast

—> JastAdd —) L * java

* jrag Generated

AST classes
Basic analysis ’

*.jrag

Analysis A

New analysis A

23

Modular extension in JastAdd

Base language

Abstract grammar

* ast

* jrag

Basic analysis

*.jrag

Analysis A

New analysis A

|
—> JastAdd —) L * java
Generated
’ ‘ AST classes
*.ast * jrag * jrag

New language Basic analysis for Analysis A for
construct new construct new construct

Language extension

24

Think declaratively!

subtree context

25

Think declaratively!

subtree context

What is the property you would like to compute? Declare as an attribute.

What other properties would allow you to easily define its value? Declare as more attributes.
Make an attribute synthesized if it depends on information in the subtree of the node.

Make an attribute inherited if it only depends on the context (nodes outside the subtree).
Don't think about the order of computation.

26

getParent antipattern

v

B | eq..=7???;
Question:

Suppose B needs the value of A.x.

Is it a good idea to use getParent()?
Why not?

Answer:
B does not know the type of its parent —

a cast would be needed, and a typecase
if there is another rule C ::= B.

If another rule D ::= B is added, we

would need to change the code for B —
the extension will not be modular.

eq getB().v() = x();

v

B | inhv

eq..=Vv();

Refactored solution:

Let B define an inherited attribute v.
A (and C) will now need to supply an
equation for v (modular additions).

If a D ::=B rule is added, D will also need to
supply an equation for v. B will not have to

be changed.

No typecases or casts needed.

27

instanceOf antipattern

eq... = ???

TR

abstract B;

C:B;
D :B; v /.
C X D y
Question:

Suppose A needs the value of C.x or D.y.

Is it a good idea to use instanceOf
(typecase)? Why not?

Answer:
The type of A's child is B. It does not

know what all the subtypes of B can be.

If A uses a typecase, this code would
need to change if another subtype E : B
is added — the extension will not be
modular.

eq ... = getB.v();

AL (A

/| synv 4/_\ syn v
C X D y

eqv()=x(); eqv()=yl();

Refactored solution:

Introduce a synthesized attribute v in B.

A can now use the v attribute.

C and D can each supply an equation for v.

If an E : B rule is added, it is sufficient to add
an equation for E.v. The code in A will not
have to be changed.

No typecases or casts needed.

28

Review of attribute mechanisms

Intrinsic
Synthesized
Inherited
Broadcasting
Reference
Parameterized
NTA
Collection
Circular

29

@ >

<x:int>

Intrinsic attribute

A

(o
_J

Defined in abstract grammar.
Given value when AST is constructed.

30

Synthesized attribute

0]
o)
o
>
1
< <
=} <
<2

Define in the node itself. Use in parent.

31

Inherited attribute attribute

eqA.getBx=...| A

eq..=..X.. F\Bj

inh x

Use in the node itself. Define in a parent.

32

Broadcasting

eqA.getBx=...| A

The definition does not have to be in the immediate parent.

33

Reference attributes

eqB.aC=...
eq..=..aCx...

aC

An attribute can be a reference to another node.
Attributes of that node can be accessed.

34

Parameterized attributes

eqB.p(Cc)=...

p(cl)=...

p(c2)=...

p(c3)=...
p(null)=...

An attribute can have parameters.
There is one attribute instance for each possible parameter combination.

35

Nonterminal attributes (NTAs)

synntaCA.n=... A

An attribute can be a new fresh subtree.

36

Parameterized nonterminal attribute

syn nta C A.n(String s) = ...

An NTA can be parameterized.

n("a")

n("b")

37

Collection attributes

coll Set A.c() [new HashSet()] with add

B contributes x ...

A collection is a combination of contributions.

E contributes y ...

38

Circular attributes

c={...} c={...}

The c attributes depend on each other

syn Set B.c() circular [new HashSet()] = ... next().c() ...;

A circular attribute depends (transitively) on itself.
Typically, several attributes depend on each other along a cyclic structure.
The evaluation algorithm uses fixed point iteration.

Developed at Characteristics | Example applications

JastAdd

Silver

Kiama

JavaRAG

RACR

uuagc

Attribute grammar systems

Lund University, Sweden
http://jastadd.org

University of Minnesota, USA
https://melt.cs.umn.edu/silver/

Macquarie University, Australia
https://github.com/inkytonik/kiama

Lund University, Sweden
https://bitbucket.org/javarag/javarag/

Technical University of Dresden, Germany
https://github.com/christoff-buerger/racr

University of Utrecht, The Netherlands
https://hackage.haskell.org/package/uuagc

Generates Java

Generates Java

Scala library

Java library
Scheme library

Generates Haskell

Java compiler ExtendJ (Lund U)
Modelica compiler OCT — Optimica
Compiler Toolkit (Modelon AB)
Aspect) compiler abc, built as
extension to Extend) (U. of Oxford,
McGill U.)

Java bytecode analysis framework
Soot, uses Extend] as its frontend
(McGill U., Paderborn U.)

Robotics applications (TU Dresden)

Java compiler (ableJ, U. of
Minnesota)

C compiler (ableC, U. of Minnesota)
Promela compiler (U. of Minnesota)

Skink: Static analysis of LLVM
Cooma: Research on capability-based
programming

Parts of the compiler for CAL (an
actor language for stream processing)

40

Compiler architecture

Traditional pass-oriented
Passes compute data in explicit order

N N N N

read and wrjte
explicit travergals or visitor frameworks

(v

Global
symbol
table

(U

Examples (most compilers):

- OpenlJDK Java compiler (visitors)
- Clang C compiler (visitors)

Query-based
Computation order is implicit

only read
attribute grammars orf memoizing frameworks

NG Ak /)

Examples (some newer compilers, in particular for IDE integration):
- ExtendJ (attribute grammars)

- Roslyn (query API)

- Rustc, RustAnalyzer (memoizing framework)

The Interpreter design pattern

42

The interpreter design pattern

Commonly used for many computations in a compiler.
Here explained using Ordinary OO. Modularize using AOP or Visitors.

Intent: Given a language, define a representation for its grammar along with an interpreter
that uses the representation to interpret sentences in the language.
[Gamma, Helm, Johnson, Vlissides, 1994]

AbstractExpression [«

interpret(Context)

JA

TerminalExpression NonterminalExpression

interpret(Context) interpret(Context) {
child.interpret(...);

}

43

The interpreter design pattern

Commonly used for many computations in a compiler.
Here explained using Ordinary OO. Modularize using AOP or Visitors.

Intent: Given a language, define a representation for its grammar along with an interpreter
that uses the representation to interpret sentences in the language.
[Gamma, Helm, Johnson, Vlissides, 1994]

AbstractExpression [«

interpret(Context)

JA

TerminalExpression NonterminalExpression

interpret(Context) interpret(Context) {
child.interpret(...);

}

AbstractExpression, TerminalExpression, NonterminalExpression,
interpret, and Context are just ROLES in the pattern.

In our programs, we will use our own names.
44

abstract Stmt;

Block : Stmt ::= Stmt™*;

Assign : Stmt ::= IdUse Exp;
abstract Exp;

Add : Exp ::= Left:Exp Right:Exp;
ldUse : Exp ::= <ID>;

IntExp : Exp ::= <INT>;

—*p Stmt

A

Example use of Interpreter

A A 4

Exp

— Block Assign

Add

IdUse

IntExp

45

abstract Stmt;

Block : Stmt ::= Stmt™*;

Assign : Stmt ::= IdUse Exp;
abstract Exp;

Add : Exp ::= Left:Exp Right:Exp;
ldUse : Exp ::= <ID>;

IntExp : Exp ::= <INT>;

*

Example use of Interpreter

Pattern roles:
context: vars
interpret: execute, value

—» Stmt : Exp
execute(vars) 2 value(vars)
v
— Block Assign Add IdUse IntExp
execute(vars) execute(vars) value(vars) value(vars) value(vars)
vars a map String -> Value, keeping track of the current values of variables
execute executes a Stmt, changing and using the vars map
value executes an Exp and returns its value, making use of the vars map

46

Example implementation using JastAdd aspects

abstract Stmt;

Block : Stmt ::= Stmt*;

Assign : Stmt ::= IdUse Exp;
abstract Exp;

Add : Exp ::= Left:Exp Right:Exp;
IdUse : Exp ::= <ID:String>;
IntExp : Exp ::= <INT:String>;

aspect Interpreter {
abstract void Stmt.execute(Map<String, Integer> vars);

void Block.execute(Map<String, Integer> vars) {
for (Stmt s : getStmts()) { s.execute(vars); }

}
void Assign.execute(Map<String, Integer> vars) {
int value = getExp().value(vars);

vars.put(getldExp().getID(), value);
}

abstract int Exp.value(Map<String, Integer> vars);

int Add.value(Map<String, Integer> vars) {
return getLeft().value(vars) + getRight().value(vars);
}
int IdUse.value(Map<String, Integer> vars) {
return vars.get(getID());
}
int IntExp.value(Map<String, Integer> vars) {
return String.parselnt(getINT());
}
}

47

Summary questions:

Give examples of properties that can be computed using collection attributes.

What is a circular attribute?

How is a circular attribute evaluated?

How can you know if the evaluation of a circular attribute will terminate?
Give examples of properties that can be computed using circular attributes.
How does the Interpreter design pattern work?

48

