
EDAN65 Guest Lecture
CodeProber, Testing, ExtendJ

Anton Risberg Alaküla
22/9 2025, MA:6



Outline & Goal

Today I will present:

● My research area, focusing on “CodeProber”
● How to test compiler semantics

Goal:

● Help you get started on Lab 4 (perhaps the most challenging lab in the course)
● Show that the tools & techniques you learn scales to “real” languages



Who am I?



● IKEA web 
sites

Antons Timeline

Hello
World

1990 2009

D09

2014 2018 2021

● IDE for 
designers

● PhD student, Tools 
for developers of 
program analysis 

Not entirely: I now had to do more code review.
“Would a better compiler or program analyzer 
reduce the need for code review?”

Promotion!
A good thing, right?



● Live exploration tool for compilers and program analyzers
○ Doesn’t actually compute anything, merely provides a UI for exploring your own computations

● Used during labs in
○ Compilers (EDAN65)
○ Program Analysis (EDAP15)

● Developed since 2022

CodeProber



CodeProber



Fractions (Again!)



Goal: Compute f for each Leaf, where f is the Leaf’s 
fraction of all values.



Implementation Session: Fractions



On-Demand Evaluation



Our implementation

Input AST

Main function:

Challenge: In what order 
are things evaluated?



Evaluation result

sum=8

sum=8

partsum=8

frac=0.125
sum=8

partsum=1

partsum=7

partsum=3 partsum=4
frac=0.375

sum=8

sum=8

solid blue = evaluated during “leaf1.fraction()”

dashed green = evaluated during “leaf3.fraction()”

Things to note:
● When calling an attribute like “leaf1.fraction()”, JastAdd will compute necessary dependencies 

automatically. This means you can access attributes in any order you want, no setup/preparation needed.
● During “leaf3.fraction()”, only 3 new values were computed. Most dependencies were already cached.
● Very little was computed for “Leaf 4”. Unless explicitly requested, JastAdd/on-demand evaluation will not 

compute anything. This is good for performance!



After break:

How does Rust test their compiler?
Does CodeProber work with “real” compilers?

For all this, and more, stay tuned!



Compiler Testing



Hypothesis & Goal (active research)

● Compilers and program analyzers are mostly tested using end-to-end tests
○ Example: the “.in” and “.expected” files you work with
○ This is popular in part because unit tests are inconvenient to create/maintain

● Unit tests are used & seen as useful in nearly all other parts of software 
engineering

● Can we improve unit testing for compilers/program analyzers?



Only looked at Rust so far

How are programming languages* tested? 



Rust repo

● 2.8m lines of rust code
○ 570k compiler, 403k LSP implementation



● I ran all tests on my laptop
○ 37709 tests in 43 minutes

● 22007 compiler tests
○ 18490, or 84% are “ui”

Rust Test Breakdown



Compiler “UI” ~= Terminal

● A “UI” test contains two files, for example:

● Basically an end-to-end test
● Similar to “.in” and “.expected” files



Con

● Involves large part of the system
○ Harder to understand what code is 

involved
○ Regressions harder to fix

● Cannot be used during development
○ Can’t do end-to-end testing if the two 

“ends” don’t exist yet!
● Mainly used for error messages

○ What about testing non-failure 
functionality?

UI Testing Pro/Con

Pro

● Easy
○ Easy to write
○ Easy to understand the purpose of the test

● Shows that the system works end-to-end



Problem with Unit-Testing Compilers



ExtendJ type inference unit test

Arrange

Traversal

Act
Assert

This part is annoying 
and boring to write.
Also a maintenance 
problem.



What would you prefer?

…+20 lines outside of screen



Testing Style Recommendations: Do Both!

● During development, create many smaller unit tests in 
CodeProber for each piece of functionality

● Once a larger feature works, create one or more E2E tests too
○ ..either in CodeProber
○ ..or using .in/.expected



Demo: Rust(-Analyzer) + CodeProber



Coding Session: Extending ExtendJ



● CodeProber usage during labs is optional, but recommended
○ It is most effective in Lab 4, but can be used in 5 & 6 too

● Please write tests
● Want to try CodeProber with ExtendJ to solve some riddles involving Java?

○ https://github.com/Kevlanche/codeprober-playground

In Conclusion

https://github.com/Kevlanche/codeprober-playground

