
Problem A

String Factoring
source code: factoring.*

Spotting patterns in seemingly random strings is a problem with many applications. E.g. in our
e�orts to understand the genome we investigate the structure of DNA strings. In data compression
we are interested in �nding repetitions, so the data can be represented more eÆciently with
pointers. Another plausible example arises from the area of arti�cial intelligence, as how to
interprete information given to you in a language you do not know. The natural thing to do in
order to decode the information message would be to look for recurrences in it. So if the SETI
project (the Search for Extra Terrestrial Intelligence) ever get a signal in the H21-spectra, we need
to know how to decompose it.

One way of capturing the redundancy of a string is to �nd its factoring. If two or more
identical substrings A follow each other in a string S, we can represent this part of S as the
substring A, embraced by parentheses, raised to the power of the number of its recurrences. E.g.
the string DOODOO can be factored as (DOO)2 , but also as (D(O)2)2. Naturally, the latter
factoring is considered better since it cannot be factored any further. We say that a factoring
is irreducible if it does not contain any consecutive repetition of a substring. A string may have
several irreducible factorings, as seen by the example string POPPOP . It can be factored as
(POP )2, as well as PO(P )2OP . The �rst factoring has a shorter representation and motivates
the following de�nition. The weight of a factoring, equals the number of characters in it, excluding
the parentheses and the exponents. Thus the weight of (POP )2 is 3, whereas PO(P )2OP has
weight 5. A maximal factoring is a factoring with the smallest possible weight. It should be clear
that a maximal factoring is always an irreducible one, but there may still be several maximal
factorings. E.g. the string ABABA has two maximal factorings (AB)2A and A(BA)2.

Input

The input consists of several rows. The rows each hold one string of at least one, but less than
80 characters from the capital alphabet A-Z. The input is terminated by a row containing the
character '*' only. There will be no white space characters in the input.

Output

For each string in the input, output one line containing the weight of a maximal factoring of the
string.

Example

Input: Output: Maximal factorings:

PRATTATTATTIC 6 PR(A(T )2)3IC
GGGGGGGGG 1 (G)9, and ((G)3)3

PRIME 5 PRIME

BABBABABBABBA 6 (BAB)2(A(B)2)2A, and (BAB)2A((B)2A)2

ARPARPARPARPAR 5 (ARP )4AR, A(RPA)4R, and AR(PAR)4

*

1



Problem B

Mountain Village
source code: mountain.*

After a long summer's march through the rough terrain of northern America, the indian tribe had
found a place where they hopefully would be left alone. The chief proclaimed that this would be
the new place for their village, despite the rocky nature of the landscape. They set a temporary
camp for the night, content with the piece of land they had discovered. The very next day however,
it stood clear that some e�ort planning the locations of the Teepee tents had to be made. It was
simply too great a di�erence in altitude between the tents, making the walk along some paths
extremely tiresome. Therefore, the chief ordered his witty son, Fast Thought, to �nd a connected
area in their vicinity, large enough to host all tents of the tribe, having as small di�erence between
the highest and lowest point as possible.

The task called for some altitude measurements of their whereabouts, which caused no problem
for Fast Thought, since he was wise in the ways of trigonometry. He divided the land into
squares big enough to host a tent each and estimated the altitude of each square. Now the
problem was reduced to �nding a connected region containing at least as many squares as there
were tents, having the smallest di�erence between the highest and lowest altitude. He drew a
rectangular matrix A, representing the area, where the entry ai;j at row i and column j, was the
altitude of the square with coordinates (i; j). He considered an entry ai;j adjacent to the entries
ai;j+1; ai+1;j ; ai;j�1; and ai�1;j , and called a set of entries connected if for every pair of entries in
the set, there was a connecting path of adjacent entries in it. Since the size of the tribe altered
with time, Fast Thought decided to solve the problem for a general number of tents. Thus the
problem left to solve for him was to �nd a set of at least k connected entries aij in the matrix A,
such that the di�erence between the largest and the smallest entry in the set was minimized.

Input

On the �rst line of input there are two integers, r; c � 40, giving the dimension of the matrix
A. The following r lines, each containing c integers between 0 and 99, are the entries ai;j of the
matrix. The next line contains a single integer n � 100, and is followed by n lines each holding a
single positive integer ki � rc.

Output

For each ki, output one line containing the minimum di�erence between the largest and the smallest
entry for any connected set of at least ki entries.

Example

Input: Output:

5 10 0

0 0 3 46 0 46 0 0 12 12 0

0 0 13 50 49 46 11 10 10 11 3

0 51 51 49 99 99 89 0 0 10 4

0 0 48 82 70 99 0 52 13 14 89

51 50 50 51 70 35 70 10 14 11 99

6

1

5

10

12

47

50

2



Problem C

Pebble Solitaire
source code: pebble.*

I bet you have seen a pebble solitaire game. You know the game where you are given a board with
an arrangement of small cavities, initially all but one occupied by a pebble each. The aim of the
game is to remove as many pebbles as possible from the board. Pebbles disappear from the board
as a result of a move. A move is possible if there is a straight line of three adjacent cavities, let
us call them A;B; and C, with B in the middle, where A is vacant, but B and C each contain a
pebble. The move constitutes of moving the pebble from C to A, and removing the pebble in B

from the board. You may continue to make moves until no more moves are possible.
In this problem, we look at a simple variant of this game, namely a board with twelve cavities

located along a line. In the beginning of each game, some of the cavities are occupied by pebbles.
Your mission is to �nd a sequence of moves such that as few pebbles as possible are left on the
board.

1 2 3 4 5 6 7 8 9 10 11 12

a)

b)

c)

Fig 1. In a) there are two possible moves, namely 8! 6, or 7! 9. In b) the result of the 8! 6
move is depicted, and again there are two possible moves, 5 ! 7, or 6 ! 4. Making the �rst of
these results in c), from which there are no further moves.

Input

The input begins with a positive integer n on a line of its own. Thereafter n di�erent games
follow. Each game consists of one line of input with exactly twelve characters, describing the
twelve cavities of the board in order. Each character is either '-' or 'o'. A '-' character denotes an
empty cavity, whereas an 'o' character denotes a cavity with a pebble in it. There is at least one
pebble in all games.

Output

For each of the n games in the input, output the minimum number of pebbles left on the board
possible to obtain as a result of moves, on a row of its own.

Example

Input: Output:

5 1

---oo------- 2

-o--o-oo---- 3

-o----ooo--- 12

oooooooooooo 1

oooooooooo-o

3



Problem D

Manhattan
source code: manhattan.*

You are the mayor of a city with severe traÆc problems. To deal with the situation, you have
decided to make a new plan for the street grid. As it is impossible to make the streets wider,
your approach is to make them one-way (only traÆc in one direction is allowed on a street), thus
creating a more eÆcient 
ow of traÆc.

The streets in the city form an orthogonal grid { like on Manhattan avenues run in north-
south-direction, while streets run in east-west-direction. Your mission is to make all the streets
and avenues one-way, i.e. �x the direction in which traÆc is allowed, while maintaining a short
driving distance between some ordered pairs of locations. More speci�cally, a route in the city is
de�ned by two street-avenue crossings, the start and goal location. On a one-way street grid, a
route has a legal path if it is possible to drive from the start location to the goal location along
the path passing streets and avenues in their prescribed direction only.

A route does not de�ne a speci�c path between the two locations { there may be many possible
paths for each route. A legal path in a one-way street grid is considered simple if it requires at
most one turn, i.e. a maximum of one street and one avenue need to be used for the path.

When travelling by car from one location to another, a simple path will be preferred over a
non-simple one, since it is faster. However, as each street in the grid is one-way, there may always
be routes for which no simple path exists. On your desk lies a list of important routes which you
want to have simple paths after the re-design of the street grid.

Your task is to write a program that determines if it is possible to �x the directions of the
one-way streets and avenues in such a way that each route in the list has at least one simple path.

Destination

Source

Destination

Source

Destination

Source

a) b) c)

Fig 1. a) An illegal path. b) A legal but non-simple path. c) A simple path.

Input

On the �rst line of the input, there is a single integer n, telling how many city descriptions that
follows. Each city description begins with a line containing three integers: the number of streets
0 < S � 30, and avenues 0 < A � 30 in the street grid, and the number of routes 0 < m � 200
that should have at least one simple path. The next m lines de�ne these routes, one on each line.
Each route de�nition consists of four integers, s1; a1; s2; a2, where the start location of the route
is at the crossing of street s1 and avenue a1, and the goal location is at the crossing of street s2
and avenue a2. Obviously, 0 < s1; s2 � S; 0 < a1; a2 � A.

4



Output

For each city, your program should output 'Yes' on a single line if it is possible to make the streets
and avenues one-way, so that each route has at least one simple path. Otherwise the text 'No'
should be printed on a line of its own.

Example

Input: Output:

3 Yes

6 6 2 No

1 1 6 6 No

6 6 1 1

7 7 4

1 1 1 6

6 1 6 6

6 6 1 1

4 3 5 1

9 8 6

2 2 4 4

4 5 3 2

3 4 2 2

3 2 4 4

4 5 2 2

2 1 3 4

5



Problem E

Mushroom Misery
source code: mushroom.*

The Institute of Ubiquitousness in Lichtenstein, LIU, conducts a project where the e�ect of a
special type of fungi, sphera carnelevarium, are studied. This fungus is very special, since it grows
in a circular fashion from its centre, without interference from other objects or other individuals.

Until now, the impact of this forest-living creature has been measured by examining a grid
consisting of n � n squares of size 1 m2. A grid is considered a�ected if fungi are present in the
square, otherwise it is considered clean. Grids where the fungus merely touches the border of the
square are not considered a�ected.

Of course, the task of examining grids is tedious and now unnecessary, since Prof. M�uggel
discovered that the grow rate is exactly 2.718281828 m/day. Now, counting the number of a�ected
squares should be like a stroll in the park, right? Since there are a lot of old data which will be
compared to the new data, the rules of counting the squares must be the same. Do not use data
types with unnecessary low precision in your calculations.

Input

On the �rst line of input there is one integer, N � 50, giving the number of test cases in the input.
After this line, N test cases follows. Each test case starts with a line containing two integers size; n
such that 0 < size � 1000000; 0 � n � 1000, where size is the size of the grid in meters and n is
the number of individuals in the test grid. After this line, n lines follows, each line consisting of
three decimal number, 0 � x � size; 0 � y � size; 0 < r � size, where x and y are the zero-based
coordinates of the centre of the individual and r is the (estimated) radius in meters.

Output

For every test case, output one line containing the number of a�ected squares (a number between
0 and size2). However, the number of a�ected squares are always less than 1000000000 (109).

Example

Input: Output:

2 1

3 1 13

1.5 1.5 0.44

5 3

2 2 1.31

1.5 2.5 0.5

3 3 0.94

The example corresponds to these cases:

6



Problem F

Board Wrapping
source code: wrapping.*

The small sawmill in Mission, British Columbia, has developed a brand new way of packaging
boards for drying. By �xating the boards in special moulds, the board can dry eÆciently in a
drying room.

Space is an issue though. The boards cannot be too close, because then the drying will be too
slow. On the other hand, one wants to use the drying room eÆciently.

Looking at it from a 2-D perspective, your task is to calculate the fraction between the space
occupied by the boards to the total space occupied by the mould. Now, the mould is surrounded
by an aluminium frame of negligible thickness, following the hull of the boards' corners tightly.
The space occupied by the mould would thus be the interior of the frame.

Input

On the �rst line of input there is one integer, N � 50, giving the number of test cases (moulds)
in the input. After this line, N test cases follow. Each test case starts with a line containing one
integer n, 1 < n � 1000, which is the number of boards in the mould. Then n lines follow, each
with �ve 
oating point numbers x; y; w; h; � where 0 � x; y; w; h � 10000 and �90Æ < � � 90Æ.
The x and y are the coordinates of the center of the board and w and h are the width and height
of the board, respectively. � is the angle between the height axis of the board to the y-axis in
degrees, positive clockwise. That is, if � = 0, the projection of the board on the x-axis would be
w. Of course, the boards cannot intersect.

Output

For every test case, output one line containing the fraction of the space occupied by the boards to
the total space in percent. Your output should have one decimal digit and be followed by a space
and a percent sign (`%').

Example

Input: Output:

1 64.3 %

4

4 7.5 6 3 0

8 11.5 6 3 0

9.5 6 6 3 90

4.5 3 4.4721 2.2361 26.565

The example corresponds to the case:

φ w

h
y

x

7



Problem G

Circular Lock
source code: circular.*

For the fourth time this month only, the absent minded mathematics professor Bolk�as had lost
his keys. Realizing, that a change of personality to one that keep track of trivialities seemed
unlikely, he started to invent a lock with a non-material key. Of course, he could just have chosen
a combination lock, but as there were far too many numbers 
ying around in his daily thoughts,
this idea was indeed a poor one. What he needed, was a lock which could be deactivated by solving
a mathematical problem. For this type of lock, he could always be certain to have the \key" on
him. However, for the sake of safety, the problem had to be hard enough for anyone trying to �nd
the solution merely by testing all possibilities. Still, if you knew the mathematics behind the lock,
you should be able to deactivate it.

Being a big fan of modular arithmetics, Bolk�as designed the lock as a 2 � 2 array of four
modular devices (cf. �g. 1). A modular device is a discrete counter with a display showing the
current state of the counter, and a trigger. Each counter can be in any of the states 0; 1; ::; p�1,
where p � 1 is the period of the counter. By trigging a counter, the state of the counter changes
from i to i + 1, except when the state is p�1, in which case the new state is 0. For each row
and each column of the array, the professor put an increaser button on the panel of the lock. By
pushing the increaser button for a row or column, both counters in that row or column are trigged.
The lock is deactivated exactly when all four modular devices are in state 0. Bolk�as also added a
mechanism to activate the lock. Upon locking, each modular device is put in a randomly chosen
state, not all equal to 0 (since in that case the lock would be immediately deactivated). Sadly
enough, the professor soon found that for some quadruples of periods, it sometimes happened that
the lock was put in a combination of states such that it could not be deactivated! However, it
did not take him long to �nd an interesting relation between the locks, which helped him, and
hopefully you, to decide if a lock could be deactivated or not:

He observed that a lock whose modular devices had
the periods p11; p12; p21; and p22, and were put in
the states s11; s12; s21; and s22, could be deactivated
if and only if a lock with all modular devices hav-
ing the same period p = gcd(p11; p12; p21; p22), and
the states s0ij = sij mod p, could. The function
gcd(a; b; c; d) is the greatest common divider of a; b; c;
and d.

Input

The �rst line of input consists of a single positive in-
teger n. Thereafter n scenarios follow. Each scenario
consists of two rows of four integers each. Row i of
each scenario, (1 � i � 2), contains the four integers
si1; si2; pi1, and pi2 in that order. sij and pij are the
current state and period respectively, of the modular
device at row i and column j. No period pij is larger
than 10000, and 0 � sij < pij .

Output

For each scenario, output one line containing the
text \Yes", if it is possible to deactivate the lock by
pressing the four row and column increaser buttons
in some order. Otherwise the text \No" should be
printed.

s = 0
11

s = 11
12

s = 5
21

s = 8
22

p = 17
11

p = 6
21

p = 11
22

p = 13
12

1

2

1 2

Fig 1. Pressing the increaser buttons of
row 2 once, and column 2 twice, deac-
tivates the lock.

Example

Input: Output:

2 Yes

0 11 17 13 No

5 8 6 11

1 1 3 3

1 0 3 3

8


