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Abstract

Localization  is  essential  to  modern  autonomous
robots  in  order  to  enable  effective  completion  of
complex  tasks  over  possibly  large  distances  in  low
structured environments.

In this paper,  a Extended Kalman Filter is used in
order  to  implement  self-localization.  This  is  done  by
merging  odometry  and  localization  information,  when
available.  The used  landmarks  are  colored  poles  that
can  be  recognized  while  the  robot  moves  around
performing normal tasks.

This paper models measurements with very different
characteristics  in  distance  and  angle  to  markers  and
shows results of the self-localization method.

Results of simulations and real robot tests are shown.

1.Introduction

A robot with a high degree of autonomy  needs self-
localization to fulfill its goals. These autonomous robots
generally move on a low structure environment. Usually
the robot must find out where it is, using measurements
made by on-board sensors and using known features of
the environment that surround the robot.

Some technological approaches are frequently used:
– Laser  measurements  –  expensive  but  accurate,

sometimes may be unsafe and crude[1],  [2],  [3],
[4] 

– Ultrasonic sonar – limited range, low frequency,
quality of measurements dependent of target type
and angle [5], [6], [7], [8], [9], [10] e [11]

– Infrared – limited range, quality of measurements
dependent of target angle and reflectivity

– RF  techniques  –  may  be  expensive,  frequently
require active structure on the environment  [12],
[13], [14]

– Vision –  Least  intrusive.  High  amount  of  data
allowing  recognition  of  different  types  of
landmarks, hard to guarantee the reliability 

Robot localization using vision to find ceiling lamps
is an example of using interesting characteristics of the
real scene where the robot will be deployed  [15],  [16].

Some authors  [17] study several interesting features that
could  be  used  for  robotic  localization.  By finding the
contour of the closed corridor where the robot moves,
[18] it  is  able  to  calculate  orientation  of  the  moving
robot. Other authors  [19] use a Kalman Filter variant to
keep  track  of  visual  landmarks  over  an  outdoor
environment for a moving robot. In [20] it is proposed a
strategy where both local and global localization is made
by use of the lines of the field where the robot moves
(the  global  method  is  used  when the  local  method,  a
match between expected and actual measurements is not
achieved).

The present work aims at achieving self-localization
by only using vision and odometry. The motivation of
such work is the robotic soccer competition, namely the
F2000 league of the RoboCup Federation.  This league
uses  poles  as  artificial  colored  landmarks  usable  for
localization.  In  the  actual  setup  of  the  localization
system, a pole measurement is a distance and a direction.
Distance information is of poor quality but direction is of
high accuracy. Using only the distance and angle to  a
single pole does not fully determine the   x , y ,
values for  the robot.  Such measure allows however to
improve a  previous estimate.  By using measures  from
several different landmarks, the amount of independent
information will generate a high quality estimate of the
localization  of  the  robot.  In  order  to  generate  this
estimate, a Kalman Filter is used (KF). This tool allows
data fusion from localization landmarks and odometry to
converge the estimate of the robot's state to the real state
of the robot (its localization). The described work uses
the setup described in [21], [22] and [23].

The organization of this paper is as follows: firstly,
the presentations of formal parameters of the robot and
of the Kalman Filter.  After  that,  some simulations are
shown in order to ascertain the validity of the method
and showing how interesting the method is. Real robot
testing  is  also  shown  before  the  presentation  of  the
conclusions of this paper.
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2.Model of the robot

Let  us  assume a  robot  with  differential  locomotion
without slip [22] [23]such as in figure 1.

Figure 1. Model of the robot and its axis

The complete state of the real robot is X'(t) and given
by (Figure 1):

( ) ( ) ( ) ( ) ( ) ( )[ ]TttvttytxtX ωθ=' (1)

Where x(t) and y(t) are the position of the center point
C of the robot on the xy plane, θ(t) is the orientation,  v
(t)  the tangential  speed of the C point  and  ω(t)  is  the
corresponding  angular  velocity.  Using  odometry  to
measure  speed  of  each  wheel,  v1(t)  and  v2(t),  the
following apply:
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where  b  is  the  distance  between  the  two  traction
points, usually approximated by wheel distance.

The kinematics of the robot are given by:
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All numeric values used in the paper are taken from
the values found for  the   robots  of  the “5dpo 2000”
team. 

3.Extended Kalman Filter

With the dynamic model given by (4) and considering
control  signals changing only at  sampling instants,  the
state equation is [24]:

dX t 
dt

= f  X t  , u t k  , t  , t∈] t k , t k1] (5)

where u(t)  =  [v(t)  ω(t)]T,  that  is,  odometry
measurements are used in the kinematic model as inputs.

This state should be linearised over  t=tk  , X(t)=X(tk)
and u(t)=u(tk):
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With state transition matrix:

Φ*(k) = exp( A*(k)( tk - tk-1) ) (7)

When  a  robot  sees  a  marker  at  global  coordinates
(xp  ,  yp) the  relative  measure  taken is   (xpr  ,  ypr) on a
referential local to the robot at (x,y,θ).

Thus the measures are:
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and by differentiating the observations matrix:
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The Extended Kalman Filter (EKF) equations are as
follows [24]:

i) state estimate at time t=tk , X(k-), knowing previous
estimate t=tk-1 , X(k-1) and  control  u(tk)  that  can   be
calculated by numerical integration of equation (5).

ii) Propagation of the covariance of the state 

( ) ( ) ( ) ( ) ( )kQkkPkkP T +Φ−Φ=− ** 1 (10)

where Q(k) is the covariance of the noise in (5) and
also relates to the accuracy of the model used.

If there is a measurement, the following also apply: 

iii) Kalman Gain calculation:
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iv) State covariance update.
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v) State update.
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4.Simulation

As mentioned before, all data is taken from real robots
and field experience [21],  [23]. In this environment, the
robots move in a field of more than 5 over 10 meters and
localize themselves by the coloured poles at the corners.

Using the axis system that connects robot and pole,
the  estimate  of  the  standard  error  for  the  distance
measurement  to  the  pole  is  (sdv_dist_m*distp).  This
means  that  distance  error  is  proportional  to  actual
distance.  For  the  angle  measure,  a  given  constant
sdv_ang   exists  wich makes  ypr =  sdv_ang*distp  (see
figure 1).
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In  order  to  have  the  measurements  in  an  absolute
referential, a rotation is necessary:

θp= tg­1 y p­ y
x p­x  - θ (14)

where (xp , yp) are the known landmark coordinates in
the (absolute) world and  (x ,  y ,  θ) is the state of the
robot. The state rotation matrix is then:

Rot = [ cos p sin  p
­sin  p cos p] (15)

This  rotation  affects  covariance  according  to  [24],
[25]:

R(k)= Rot* R’* RotT (16)

The simulation presented uses sdv_dist_m = 0,1 m/m
and  sdv_ang  =  0,06rad.  These values  are  calculated
experimentally in 1000 measurements made with a static
robot  in  10  different  positions  –  currently  one
measurement is possible every 40 ms.  P(k) and Q(k) are

initialised  as identity matrices multiplied by the scalars
respectively 10-3 and 2*10-5. 

The  simulated  measurements  are  given by equation
(8)  and  adding  noise  according  to  the  model  of  the
measurement mentioned previously.

4.1.Convergence test – stopped robot
For an initial test, let us test the convergence of the

EKF in a very simple situation. 

In the following simulations, the robot's position and
estimated localization are calculated and shown every 40
ms  (that  is  also  the  control  cycle  period  of  the  real
system). In order to supply a good amount of localization
information, the simulated robot always changes the seen
landmark every 2 seconds. The real position of the robot
is represented by a square  and estimates are circles. The
first landmark is a 5 points star and the second is a 6
points star.

Observing figure 2 where the robot stands still in state
(x,y,θ)=(4 m, 0 m, 0 rad) and the estimate starts from
(0,0,0)  it  is  possible to see the estimate converging to
real robot position over time. The change in the “seen”
marker may be identified by the resulting change in the
direction  of  convergence  for  the  estimate. One  can
observe that  a single marker does not produce a good
estimate but the frequent change in markers viewable by
the robot at very different angles produces an interesting
localization  information  leading  to  a  low  covariance
estimate with a high degree of confidence.
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Figure 2. Convergence of the estimate with
the robot standing still (estimate is circle,
real robot is square and markers are stars)



4.2.Moving robot
Let us now consider figure 3. The estimate starts from

(0,0,0) and the real robot from (0,-2,0). The speeds of the
moving robot follows a Gaussian distribution N(average,
standard deviation) with the following numerical values:

   v = N(1, 1)   [m/s]
   ω = N(0.5, 0.5) [rad/s]

The simulation in figure 3 shows even more that only
the change in seen markers provides good localization
information.  As  time  goes  on,  angle  to  marker  1  is
smaller  and  thus  a  small  error  in  localization  is
noticeable. 
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Figure 3. Convergence of the estimate with
a moving robot

4.3.Bump simulation
Localization is critical when odometry fails to provide

accurate  information  and  this  happens  when  robots
travels through irregular ground,  touches things or slides
in  the  ground.  In  any  of  these  cases,  the  robot
unpredictably  changes  its  localization.  Simulation  of
such events  is  shown in  figure  5.  When robot  is  near
position  (3,1),  its  position  and  attitude  are  changed
instantaneously. As measurements from the two markers
are  received  by  the  robot,  its  localization  estimate  is
corrected approaching the real robot state. The quality of
the information gathered by the system is better when the
angle  to  both  markers  is  large  –  in  that  situation,
convergence is faster because the measurements ellipses
have less overlapping (see figure 4).

Figure 4. Left: Small overlap of covariance
matrices hint high confidence localization;
Right: Small angle between markers result
in large overlap of covariance thus hinting
low quality in localization
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Figure  5.  Localization  when  the  robot
crosses a bump

5.Real robot experiences

An  experimental  setup  was  built  that  allows  for
automatic  localization  over  two  methods:  an  external
localization method (figure 6) that is assumed with low
errors and the self localization method based on the EKF
that runs inside the robot. 



Figure 6. Robot seen from above; this type
of image is used for external localization

Figure  7.  Close  up  of  the  robot,  without
covers and showing wirings

Figure 8 presents the diagram for representing robot
position for the real robot and its estimate (to be used in
figure 9). Additional information presented in figure 9 is
the covariance of the estimate.
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Figure 8. Left: Real robot; Right: Estimated
robot; both at  x=0 , y=0 ,=0 

The real experimental setup has four markers placed
on each corner of  the field presented in figure 9.  The
situation depicted is a  turning robot following a circle
that sees poles in sequence. As the robot sees different
markers, the state estimate inside the robot convergences
over its real position. All data is taken at intervals of 40
ms; times in figure 9 are given in seconds.

The robot uses an on-board PAL camera and real time
vision  processing  in  the  on-board  PC  in  order  to
determine  colours  and  provide  pole  localizations  for
poles of 3 colours, 1 meter high, 20 cm diameter. This
calculation is made every 40 ms. A photo of the actual
robot can be seen in figure 7.

The actual dynamic test of the robot describing circles
is  presented  in  figure  9.  As  time  passes,  the  estimate
converges to the real robot state. It can also be seen the
covariance changing over time as several different poles
are  measured  and  global  the  covariance  changed
according to model mentioned earlier in the EKF rules.

6.Conclusions

The  presented  localization  problem for  the  state  of
this  robot  needs  an EKF.  For  this  tool,  no theoretical
proof of convergence is possible. Additionally, there is
no proof that this filter is optimal.

Simulated  and  real  tests  indicate  however  that
practical convergence exists and that indeed the method
is usable and interesting.

The presented model is taken from the experimental
data gathered.  The measurements taken are to robocup
coloured poles with 5dpo-2000 hardware based on PAL
cameras. This set-up provides measurements of direction
and distance with very different errors. 

The  presented  model  of  the  measurements  is
adaptable to self-localization problems using any kind of
markers  where  direction  and  distance  to  marker  have
different errors such as the experimental setup features.

Localization information from one pole alone is poor
and  the  availability  of  several  measurements  from
different markers is essential for a localization with a low
covariance and a high degree of confidence.

In  the  real  setup  it  is  not  possible  to  view
simultaneously  two  poles  (the  viewing  angle  of  the
camera does  not  allow that).  The theoretical  approach
given does allow for that and that would be interesting in
order to reduce covariance of the localization estimate.
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Figure 9. Real robot run; four poles; times in seconds
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